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SUMMARY 

In studies of organic soil degradation and transformation, alongside the conventional 

methods used in soil science, an increase in the importance of advanced statistical methods 

can be observed. In this study some multivariate statistical methods were applied in an 

investigation of organic soil transformation in the central Sudetes. Andrews curves, linear 

and kernel discriminant variable analysis and cluster analysis were used. The similarities 

among peatland soils and their layers were determined. It can be stated that the application 

of statistical methods in soil science research related to organic soil transformation is a 

valuable tool. The use of various statistical methods (such as Andrews curves, linear and 

kernel discriminant variables and cluster analysis) can with high probability confirm 

earlier laboratory or field observations. This is particularly justified in the case of organic 

soils derived from varied geobotanical peat materials, different types of peatlands and 

water supply types, which impact the primary properties of the soil. 

Key words: Andrews curves, degradation, kernel discriminant analysis, linear 

discriminant analysis, mountain peatlands 

1. Introduction 

Environmental conditions, and hydrological conditions in particular, play an 

essential role in the functioning of peatlands (Strack et al. 2008). In most cases, 

disturbances in the water conditions of peatlands are the result of human impact 

(Limpens et al. 2008; Glina et al. 2016a). Peatland ecosystems, especially during 

the last century, have been strongly affected by human activity (Heller and Zeit 

2012). Evidence of anthropogenic transformations of peatlands is well preserved 
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in mountainous areas of Poland, including the Sudetes (Glina et al. 2017; Glina 

et al. 2016b) and the Carpathians (Łajczak 2013). At the turn of the 19th and 20th 

centuries mire areas in the central Sudetes underwent intensive drainage 

treatment (Glina et al. 2017). Drainage connected with forest management causes 

multidirectional changes in the physical and chemical properties of organic soils 

(Glina et al. 2016b). In studies of organic soil degradation, alongside the 

conventional methods used in soil science, an increase in the importance of 

advanced statistical methods can be observed (Douaik et al. 2011). The precise 

selection and execution of statistical analyses are significant tools which can 

confirm the findings arising from field and laboratory observations. Moreover, 

they enable clear identification of statistically significant differences between the 

studied objects. In the case of multivariate assessment of peatland transformation, 

multivariate statistical methods, both visual and metric, may be used. The aim of 

this study was to assess the correctness of application of various multivariate 

statistical methods in soil science research concerning organic soil transformation 

in the central Sudetes. Andrews curves, linear and kernel discriminant variables 

and cluster analysis were used. 

2. Material and Methods 

The data (Table 1) used in this paper were earlier reported by Glina et al. (2016b). 

The authors investigated five degraded shallow peatlands located in the Stołowe 

Mountains (central Sudetes). The studied peatlands were differentiated in terms 

of ecological type, elevation, type of water supply and mineral bedrock. The study 

sites represent the following types of peatlands: A and B – peat bogs, C – 

transitional bog, D and E – fen peatlands. The investigated organic soils were 

classified as Dystric Ombric Drainic Fibric Hemic Histosols and Eutric Rheic 

Murshic Sapric Histosols (Lignic) according to FAO-WRB (IUSS Working 

Group WRB 2015). The representative soil samples for laboratory analysis were 

sampled from the central part of each study site by genetic soil horizons in three 

replications (five soil profiles). In the sampled soil material the following 
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parameters were determined: degree of peat decomposition, state of secondary 

transformation – W1 index, mineralization rate (TOC/TN) expressed as the ratio 

of total organic carbon to total nitrogen content, content of cold water extractable 

carbon (CWC) and hot water extractable carbon (HWC), and humification index 

of organic matter (Q4/Q6). These parameters will hereinafter be referred to as 

traits. In the first part of the analysis, apart from the above-mentioned chemical 

properties, the physical properties (MED test – soil hydrophobicity, RF – rubbed 

fiber content, BD – bulk density, ash – content of mineral material) and depth are 

also considered (Glina et al. 2016b). 

 

Table 1. Selected properties of organic soils (mean values)  

– data after Glina et al. 2016b 

Soil 

profile 

Soil 

 horizon 

Symbol  

used in text 

Depth  

(cm) 

CWC HWC 
TOC/TN Q4/Q6 W1 g kg-1 

A 

Hi1 

He 

Hi2 

Ha 

Hi3 

A1 

A2 

A3 

A4 

A5 

0-10 

10-19 

19-34 

34-37 

37-54 

0.62 

0.40 

0.34 

0.38 

0.31 

4.69 

2.51 

2.14 

2.41 

1.98 

39.1 

29.3 

34.3 

30.7 

33.1 

10.6 

9.08 

7,58 

6.05 

7,68 

0.39 

0.33 

0.27 

0.35 

0.30 

B 

Hi1 

Ha1 

Hi2 

Hi3 

Ha2 

B1 

B2 

B3 

B4 

B5 

0-9 

9-18 

18-33 

33-40 

40-47 

0.67 

0.23 

0.32 

0.27 

0.18 

2.90 

1.02 

1.66 

1.61 

0.91 

32.9 

26.5 

40.5 

37.2 

26.8 

4.81 

4.48 

4.20 

4.67 

4.40 

0.52 

0.55 

0.30 

0.35 

0.72 

C 

Ha1 

Ha2 

Ha3 

Ha4 

C1 

C2 

C3 

C4 

0-8 

8-14 

14-23 

23-42 

0.32 

0.45 

0.27 

0.19 

1.91 

2.58 

1.35 

0.94 

31.1 

25.5 

27.9 

19.2 

7.66 

7.57 

7.74 

5.76 

0.59 

0.35 

0.29 

0.35 

D 

M1 

M2 

Ha1 

Ha2 

Ha3 

D1 

D2 

D3 

D4 

D5 

0-12 

12-20 

20-35 

35-50 

50-80 

0.65 

0.43 

0.23 

0.27 

0.26 

3.42 

1.39 

0.83 

1.05 

1.02 

14.6 

14.8 

14.8 

17.4 

21.4 

3.13 

3.53 

3.52 

4.09 

3.10 

0.52 

0.51 

0.42 

0.41 

0.49 

E 

Ha1 

Ha2 

Ha3 

Ha4 

E1 

E2 

E3 

E4 

0-20 

20-30 

30-41 

41-49 

0.36 

0.21 

0.09 

0.04 

2.50 

0.98 

0.82 

0.50 

23.3 

21.5 

20.2 

20.5 

8.28 

6,69 

6.52 

5.98 

0.61 

0.52 

0.54 

0.53 

Legend: TOC/TN – mineralization rate, HWC – hot water extractable carbon, 

CWC – cold water extractable carbon, Q4/Q6 – humification index, W1 – state 

of secondary transformation 
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Modified Andrews curves (Khattree and Naik 2002; Anderson 2003) were 

used to present each multivariate variable ),,...,(
,1, pririri

XXX  , where cr ,...,1  

represents the thr  peatland, i  is the observation taken in the thr  peatland (

r
ni ,...,1 ; 

c

r r
nn1

), and p  is the number of traits. These variables were 

transformed to a curve as follows: 
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observations represent the coefficients of Fourier’s series for ],[ t . Outliers 

appear as single Andrews curves that look different from the rest. In this study 

),,...,( ,1, pririri XXX   is represented by the curve:  
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The curves )(tg
ri

 ( cr ,...,1 , 
r

ni ,...,1 ) are presented on a plane. Similarity 

among the shapes of curves suggests similarity among observations. In 

determining the Andrews curves the division of observations into groups was not 

used, but because the order of variables has a huge impact on the shape of curves 

(provided that the sequence of variables is not determined), variables should be 

sorted in decreasing order. 

The linear discriminant variables method is used to detect differences 

between multidimensional observations using the within-group covariance 

matrix (Krzyśko 2009; Zawieja and Kaźmierczak 2016). In this method the 

knowledge of a given observation’s belonging to the group was used. The 
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maximum of the class differentiation index )'/()'()( lllllJ aSaaSaa WB  is 

searched under the condition 
lkkl

aSa
W

'  (Kronecker delta), where 
B

S  is the 

estimator of the known interclass variation matrix, 
W

S  is the estimator of the 

known within-class variation matrix, 
l

a  is the searched vector of coefficients, 

skl ,...,2,1,   and )1,min(  rps . The thl  discriminant variable takes the form 

Xau '
ll

 . The number of discriminant variables s  depends on the significance 

of the discriminant variables
l

u .  

Nonlinear kernel discriminant variable analysis allows another look at the 

data using the curvature of the space (Deręgowski and Krzyśko 2014; Zawieja 

and Kaźmierczak 2016) to linearly separate the data. In this case finding 

discriminatory variables in the trait space is reduced to solving the optimization 

problem )]'/()'max[(arg llllo KKbbKDKbbb  , where the elements of the 

matrix D  are 
r

n/1  if 
ri

x  and 
''ir

x  belong to the same class ( 'rr  ) and zero 

otherwise, PKPK
~

  with 
nnnn
'1 11IP   (matrix of centering) and )(

~
'ii

kK  

with 
'ii

k = ),(
''irri

k xx  is the kernel matrix, and 
l

b  is the searched vector of 

coefficients. The thl  kernel discriminant variable is in the form Kbv '
ll

 . The 

Gaussian kernel function )/exp(),(
2

yxyx k  is used for calculation of 

nonlinear discriminant variables with  
2

yx .  

Cluster analysis is applied, using variables from discriminant and kernel 

discriminant analyses (the Ward method with Euclidian distance is applied) to 

distinguish groups.  

In this paper a comparison of peatlands was performed both (I) for all 

variables (physical and chemical properties jointly) and (II) for traits determining 

the degree of conversion of peatlands (index W1, CWC, HWC, TOC/TN and 

Q4/Q6), in the following way:  

 Evaluation of organic soil degradation, based on Andrews curves. 

 Determination of linear discriminant variables and presentation of data in the 

plane of the first and second discriminant variables and in the plane of the 

first and third discriminant variables. 

 Cluster analysis for transformed, by discriminant analysis, variables whose 

number is dependent on the significance of their contribution to the model.  
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 Determination of kernel discriminant variables and presentation of data in the 

plane of the first and second discriminant variables. 

 Cluster analysis for transformation of data by kernel discriminant analysis. 

3. Results 

I (1) Chemical and physical properties jointly. The Andrews curves (Figure 1a) 

of study soil A have similar function graphs (one bundle of curves). The curves 

of organic soil D are also quite similar, but there is a greater diversity among the 

studied soil horizons (the amplitudes of the individual curves differ quite 

considerably). In the case of soil profiles B, C and E, Andrews curves do not form 

separate bundles, but are mixed, and the soil horizons vary only in terms of 

amplitude. The deepest soil layers of profiles C and D are clearly distinguishable 

from the other investigated soils (Figure 1d, e). In soil profile B (Figure 1c) great 

differences between surface horizons B1 and B2 were observed, the result of 

different degrees of peat decomposition (fibric-sapric) and mineralization rate. 

The greatest amplitudes are observed in the case of soil horizon B2 (high values 

of parameters). The individual horizons of peat soils B, C and E (Figure 1c,d,f) 

were quite diverse as regards amplitude. The lines of horizons E1 and C2 are 

similar to lines D1–D3 of profile D (fen peatland). Moreover, similarities were 

observed between curves  E1 and C2 and between E3 and B5. The vast majority 

of deeper soil horizons were characterized by large amplitude relative to the 

surface horizons.  
 

I (2) Chemical properties (because CWC and HWC are strongly correlated, with 

a correlation coefficient of 89%, only one of these traits – CWC – is used). In this 

study the impact of all traits on the differentiation of peatland soils is of interest. 

Thus the first step of linear discriminant analysis, concerning the number of traits 

having an impact on the division of observations, is omitted, and all traits are used 

in the analysis. In the next step of this analysis the number of discriminant 

variables having a significant impact on the grouping of observations is 

determined. The p-values for the discriminant variables are as follows: for 
1u  
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and 
2u : 0001.0p , for 

3u : 0031.0p ; for 
4u : 0.1486p ; for all other 

variables the p value is greater than 0.05, thus only the first three variables are 

used in the analysis. The traits CWC and HWC have the greatest contribution to 

the first two discriminant variables. In the results (Figure 2a,b) each of the organic 

soils (A, B, C, D and E) can be linearly separated. In the plane of the first two 

discriminant variables, profiles A (peat bog) and C (transitional bog) are very 

close. However, the third variable completely separates these soils. 
 

I (3) Cluster analysis (Figure 2c) was performed based on the first three 

discriminant variables. As a result of this analysis the structure of the studied 

organic soils is obtained. The soil horizons within profiles A and D are alternated. 

A similar arrangement is shown by the Andrews curves. In soil B the genetic 

horizons 2 and 3 are similar to 5 in respect of the examined traits. In profile C 

(transitional bog) two of the deeper soil layers are the most similar (on the basis 

of Andrews curves layer 4 is separated). Moreover the soil layer E1 is connected 

with horizons within organic soil C. 
 

I (4) The use of kernel discriminatory variables (Figure 3a) with Gaussian kernel 

shows that the soil horizons in peat bog profiles (site A) and the uppermost layers 

of the peat bogs B are similar. Furthermore, soil layers C1, C2 and C3 in profile 

C are similar to the horizons B3, D2 and E1. Soil layers D1, D3 and D4 in profile 

D are similar to each other, and finally the deeper layers C4, B5, B4, D5, E3, E4, 

as well as E2, are in one group.  
 

I (5) In the cluster analysis diagram (Figure 3b) three or four clusters can be 

distinguished. The first combines all of the soil horizons within profile A and 

moorsh horizons D1 and D2 (profile D); the second is mainly composed of soil 

horizons from transitional bog (site C). Soil horizons B3, D2 and E1 also belong 

to this cluster. The third cluster exclusively represents organic soils from fen 

peatland D. These two clusters (the second and third) can be connected. The last 

cluster combines all soil horizons (except layer E1) from profile E and the deepest 

layers of organic soils from study sites C, D and B.  
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a 

 
b (soil A) 

 
c (soil B) 

 
d (soil C) 

 
e (soil D) 

 
f (soil E) 

 

Figure 1. Andrews curves: a – All studied soil horizons; b–f – Soil horizons of 

separate study soils 
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Figure 2. a, b – Linear discriminant variables (a – first and second, b – first and 

third); c – Tree diagram for the first three linear discriminant variables 

 

II (1) Based on the Andrews curves the lines can be divided into two groups as 

regards their shape (Figure 4a): namely soil profiles A, C and E are in the first 

group (large amplitude) and D and B in the second (small amplitude). In the case 
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of profiles A, B and C the soil horizons are arranged in alternating order (Figure 

4b, c, d). In Figure 4a (and also c, e, f) it is visible that the lines for soil horizons 

B1, B5, D1, D2, D3, E3 and E4 are almost identical. For these four traits the 

surface horizons of the examined soils (except profiles D and A) have the largest 

amplitude. It is seen that these profiles differ significantly from each other 
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Figure 3. a – Kernel discriminant variables with Gaussian kernel; b – Tree 

diagram for the first two kernel discriminant variables 
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a b (soil A) 

  
c (soil B) d (soil C) 

 
e (soil D) 

 
f (soil E) 

 

Figure 4. Andrews curves: a – All soil horizons; b–f – Soil horizons of separate 

study soils 
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II (2) Three discriminant variables have a significant impact on the grouping of 

observations. The p-values for the first four variables are as follows: for 
1u  and 

2u : 0001.0p , for 
3u : 0287.0p ; for 

4u : 0.7392.p The traits: 

TOC/TN and Q4/Q6 have the greatest contribution to the first two discriminant 

variables. Soil profiles D (fen peatland) and B (peat bog) can be separated from 

the group containing A (peat bog), C (transitional bog) and E (fen peatland) in 

the plane of the first two discriminant variables (Figure 5a, b). Moreover, profiles 

D and B can be separated from each other. Additionally, based on the third 

discriminant variable (in the plane of the first and third discriminant variables) 

two groups can be separated; the first contains two organic soils A and C, and the 

second contains peatland E. This analysis almost shows that soil horizons D1 and 

D2 (moorsh) are separated from the other layers, which results from the different 

properties of moorsh material.  
 

II (3) The clustering tree diagram (Figure 5c) generally gives a similar division 

of the study soils. Namely profiles A, C and E are in one cluster, while soils B 

and D belong to the second cluster. The more detailed division into clusters is as 

follows: the soil horizons A1, A2, C1, C2, C3, A3 and A5 represent the first 

group, soil profiles from peatland E and the single horizon C4 constitute the 

second group, and horizons D1, D2 and A4 are in the third group. The last (fourth) 

group consists of organic soils from peatland B and soil horizons D3, D4 and D5 

from peatland D. These results indicate that soil transformation in peat bog (site 

B), deeper soil layers in particular, and fen peatland (site D) are generally at the 

same level. 
 

II (4). Based on the kernel discriminant variables method, three or four groups 

can be distinguished. All of the investigated soil samples from profile D are 

allocated to the first group (Figure 6a). The second group consists of layers within 

organic soil E and certain horizons (B5, B4, C2, C4) from profiles B and C. Soil 

horizons A1, A2, A3 and C1 make up the third group, and A4, B1, B2 and C3 the 

last group. Groups three and four can be considered jointly. Among all 

investigated soil horizons, only A5 from the peat bog profile was separated.  
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II (5) Cluster analysis confirms the results obtained by method II (4), but with 

one exception: soil horizon A5 belongs to the group containing surface layers A1, 

A2, A3 of soils from peatland A and soil horizon C1 (Figure 6b). 
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Figure 5. a, b – Linear discriminant variables (a – first and second, b – first and 

third); c – Tree diagram for the first three linear discriminant variables 
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Figure 6. a – Kernel discriminant variables with Gaussian kernel; b – Tree 

diagram for the first two kernel discriminant variables 
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4. Conclusions 

I. Analysis of all traits 

Based on the described Andrews curve analysis for individual observations (soil 

horizons) in organic soil A, it can be stated that the soil layers do not differ in 

terms of the studied traits. However, they clearly differ from the other studied 

soils. The soil horizons within profiles B, C, D and E are intermixed in terms of 

the analyzed traits. Similarly as in the case of A, the soil horizons within profile 

D are quite similar, but they are somewhat mixed mainly with the shallow layers 

of C and E. These analyses showed the internal structure of organic soils; the 

studied soil layers were not arranged in order of depth, but in terms of specific 

traits. Discriminant variables and cluster analysis also make it possible to separate 

the studied soils; e.g. soil C (transitional bog) is similar to soil E (fen peatland), 

whereas soil D (fen peatland) is similar to soil B (peat bog). This was also proved 

by kernel discriminant analysis. Despite the diversity of the parent peat material, 

statistical analysis is useful in finding similarities between soil properties related 

to soil transformation.  

II. Analysis of traits determining the degree of organic soil transformation 

The division of soils into two groups is obtained by application of the Andrews 

curve method and discriminant variables method. The first group contains 

organic soils A, C and E, and the second contains soils D and B. Moreover, the 

surface moorsh horizons in soil D were separated in this analysis. These 

observations are in line with the results of laboratory analysis, which also showed 

strong differentiation of these layers. In the case of soils A and C, similarities 

between the surface soil horizons as regards the degree of transformation were 

also recorded. From Andrews curves it can be concluded that the fen peatland D 

is the most transformed, and that next in order are fen peatland E, transitional bog 

C, peat bog A and peat bog B. From discriminant analysis it is concluded that soil 

A and the surface horizons of B (both peat bog) and soil C (transitional bog) are 



 

 

 

 

58                                                     B. Zawieja, B. Glina 

rather weakly transformed. However, the results obtained for horizon B1 are 

close to those for the moorsh layers in profile D.  

Based on the above conclusions it can be stated that the application of 

statistical methods in soil science research related to organic soil transformation 

is a valuable tool. The use of various statistical methods (such as Andrews curves, 

linear and kernel discriminant variables and cluster analysis) can with high 

probability confirm earlier laboratory or field observations. This is particularly 

justified in the case of organic soils derived from varied geobotanical peat 

materials, different types of peatlands and water supply types, which impact the 

primary properties of soil. 
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ecosystems investigation in the Grójecka Valley (Central Poland). Soil Science 

Annual 67(1): 1-7. DOI 10.1515/ssa-2016-0001 
Glina B., Bogacz A., Gulyas M., Zawieja B., Gajewski P., Kaczmarek Z. (2016b): 

The effect of long-term forestry drainage on the current state of peatland soils: 

A case study from the Central Sudetes, SW Poland. Mires&Peat 18(21): 1-

11. DOI 10. 19189/MaP.2016.OMB.239 
Glina B., Malkiewicz M., Mendyk Ł., Bogacz A., Woźniczka P. (2017): Human affected 

disturbances in vegetation cover and peatland development in the late Holocene 

recorded in shallow mountain peatlands (Central Sudetes, SW Poland). Boreas. 

46(2): 294-307. DOI 10.10.1111/bor.12203 

IUSS Working Group WRB (2015): World reference base for soil resources 2014 update 

2015. International Soil Classification System for Naming Soil and Creating Legends 

for Soil Maps. Food and Agriculture Organization of the United Nations, Rome, 190. 



 

 

 

 

Multivariate methods in organic soil transformation research                     59 

 

Jing Z., Weiqing M., Ye Z. (2015): Fisher linear discriminant method for forest fire risk  

points on transmission line. International Journal of Smart Home. 9(4): 25-34. DOI 

10.14257/ijsh.2015.9.4.03 

Khattree, R., Naik D.N. (2002): Association in contingency tables, correspondence 

analysis and (modified) Andrews plots. In: Huber-Carol, C., N. Balakrishnan, M.S. 

Nikulin, M. Mesbah (Eds.). Goodness-of-fit Tests and Model Validity. Birkhäuser, 

Boston: 311-326. 

Krzyśko M. (2009): Fundamentals of multivariate statistical inference (in Polish). 

Wydawnictwo Naukowe UAM, Poznań: 267-278. 

Łajczak A. (2013): Role of land relief and structure in the formation of peat bogs 

in mountain areas, as exemplified by the Polish Carpathians. Landform 

Analysis 22: 61-73. 
Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden J., Roulet N., 

Rydin H., Schapeman-Strub G. (2008). Peatlands and the carbon cycle: from local 

processes to global implications – a synthesis. Biogeosciences, 5: 1379-1419. 

Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.R. (1999): Fisher discriminant 

analysis with kernels. In: Neural Networks for Signal Processing (Hu Y.H, Larsen J., 

Wilson E., and Douglas S. Eds.) IX: 41-48. 

Strack M., Waddington J.M., Bourbonniere R.A., Buckton E.L., Shaw K., Whittington 

P., Price J.S. (2008): Effect of water table drawdown on peatland dissolved organic 

carbon export and dynamics. Journal of Hydrological Processes 22: 3373-3385. 

Zawieja B., Kaźmierczak K. (2016): Oaks allocation to Kraft classes based on linear and 

nonlinear kernel discriminant variables. Biometrical Letters, 53(1): 37-46. DOI 

10.1515/bile-2016-0005 

  


