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SUMMARY

Methods for dealing with missing data in clinical trials have received
increased attention from the regulators and practitioners in the pharma-
ceutical industry over the last few years. Consideration of missing data
in a study is important as they can lead to substantial biases and have
an impact on overall statistical power. This problem may be caused by
patients dropping before completion of the study. The new guidelines of
the International Conference on Harmonization place great emphasis on
the importance of carefully choosing primary analysis methods based on
clearly formulated assumptions regarding the missingness mechanism. The
reason for dropout or withdrawal would be either related to the trial (e.g.
adverse event, death, unpleasant study procedures, lack of improvement)
or unrelated to the trial (e.g. moving away, unrelated disease). We applied
selection models on liver cirrhosis patient data to analyse the treatment
efficiency comparing the surgery of liver cirrhosis patients with consenting
for participation HFLPC (Human Fatal Liver Progenitor Cells) infusion
with surgery alone. It was found that comparison between treatment
conditions when missing values are ignored potentially leads to biased
conclusions.

Key words: selection model; model for end-stage liver disease; missing not
at random

1. Introduction

Cirrhosis is a state of the liver in which the tissue becomes trapped within
a sea of scar and struggle to regenerate. It causes gradual shrinkage of the
size of the liver. In liver cirrhosis cases, the duration between transplan-
tation and recovery is a crucial period for patients. Patients are generally
monitored through follow up periods with liver functioning effects. The
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severity of the disease in a patient with liver cirrhosis is measured using
the model for end stage liver disease (MELD). The MELD Score (UNOS
Modification)(Kamath and Kim, 2007) is calculated as follows

MELD Score =6.57 x log,(serum creatinine)+

1
+ 3.78 x log, (bilirubin ) + 11.2 x log,(INR) W)

The MELD is a useful tool for determining liver status in patients. It
is a widely used method for organ allocation in liver transplantation. The
score function is formulated with consideration of liver and renal functions.
Several studies have concluded that the low MELD scores can indicate a
higher risk of mortality in liver transplanted patients. Different biochemical
parameters are used to calculate the MELD score (Kamath and Kim, 2007).
The MELD score is used as a primary end point to perform the analysis.
However, to better investigate the effect of treatment, one is often interested
in evaluating how the parameters of interest change over time. These kinds
of follow-up studies are also known as longitudinal studies, and are very
common for clinical trials. Every study has several variables among which
one is the target or primary response variable and the others are potentially
explanatory variables or covariates. Anyone of them can change from visit
to visit and could be measured over time but usually the response variable
is obtained by repeated measures. We are interested in how the change or
variation of the response variable can be explained by the explanatory vari-
ables, and statistical modeling is exploited to approximate the relationship
between the two kinds of variables.

Diggle, Liang and Zeger (2002) presented a detailed summary of models
used for longitudinal data. Popular choices are linear models, generalized
linear models, transition models and mixed effects models. We can obtain
the likelihood function (or conditional likelihood function) based on the
models used as the joint probability distribution function overall subjects
and all time points. MLE (Maximum Likelihood Estimation) methods are
then used to make the estimation and inference. With the same kinds of
models, the computation of estimates becomes complicated when a few data
points are missing. But missing data are very common for clinical trials with
longitudinal studies, reflecting the problematic nature of the phenomenon
under study.

A wide range of statistical models for analysing outcomes with missing
data are available, but their validity depends on the nature of the missing
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data mechanism as well as on the assumptions used. The proportion of miss-
ing data is sometimes noticeably large enough to cause the results to be sig-
nificantly biased. Although investigators and clinical research co-ordinators
may devote substantial efforts to minimising the number of missing values,
some amount of missing data is inevitable in the practice of randomised clin-
ical trials. The data with missing observations can be classified into two cat-
egories: intermittent missing values (i.e., missing values due to occasionally
absence), with observed values afterwards, and dropout values (i.e., missing
values due to earlier withdrawal), with no more observed values. Reasons
for dropout are often study-related, e.g., negative side-effects of the tested
medicines, ineffectiveness of the intervention, and inappropriate conduction
of the therapy (Dragset, 2009; Kaciroti and Raghunathan, 2014). Without
careful handling of dropouts, either biased parameter estimates or invalid in-
ferences would result. This may also be true for intermittent missing values.
It is not possible for us to compute the original joint probability function of
all the repeated measures directly with missing data ((Kaciroti et al., 2012)).
There are at least three ways to deal with this situation: using complete case
only, analysing as incomplete, and imputation. The complete cases only ap-
proach means just keeping the complete cases with specified weight and
dropping all other cases with missing values. The imputation method is to
fill in the missing values with randomly generated ones; but generating ap-
propriate values to approximate the original ones is still challenging (Kim
and Yu, 2012). Analysis as an incomplete model means to integrate out the
intermittent missing values and to ignore the dropout missing values, which
seems a straightforward choice, but is computationally expensive and not
always stable. All of these three approaches focus on the response variable
since we are mainly concerned about estimating the effect of the covariates
on the response variable. If the missing data do not affect the estimation
at all, we can just use the available data directly and ignore the missing
data. Hence the problem arises of the ignorability of the missing values.
Usually this is unknown and so a safe and natural method is to use the
repeated measures model and the missingness indicators jointly (Kaciroti
and Raghunathan, 2014; Kaciroti et al., 2009). There exist three ways to
factor the joint distribution of the complete data and missingness indica-
tors: outcome-dependent factorisation, pattern dependent factorisation, and
parameter-dependent factorisation. Correspondingly there are three kinds
of models: selection models, pattern-mixture models and shared-parameter
models (Dragset, 2009). For analysing data with missing values that are po-
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tentially missing not at random (MNAR), two widely used approaches are
available: pattern-mixture models and selection models. Both approaches
derive their inferences based on the joint distribution of outcome and the
response data indicator (Kaciroti et al., 2008; Daniels and Hogan, 2008).
Selection models partition the function of outcome and response data indi-
cator as the product of a function of outcome and a function of outcome
given response data indicator (Nath and Bhattacharje, 2012; Fitzmaurice
et al., 2008). This requires explicit modeling of the missing-data mechanism
where the probability that a subject is missing may depend on observed and
unobserved values (Satty and Mwambi, 2013).

In this study, we primarily focused on selection modeling frameworks to
account for non-random dropout. We demonstrate the application of selec-
tion models for handling dropout in longitudinal data where the dependent
variable is missing across time. We consider the construction of a selection
model that uses mixed models and where the outcomes are continuous, to
describe the dependency of dropout indicators on the longitudinal measure-
ment. The primary objectives are to investigate the potential influence that
dropout might exert on the dependent measurement on the considered data,
as well as how to deal with incomplete sequences. We apply this method
to a data set arising from a liver cirrhosis study. Section 2 describes the
data methodology, including also notation, general concepts and discussion
related to the selection model, the model used in the analysis. In Section 3,
an application of the selection model to liver cirrhosis data is described. The
results obtained are elaborated in Section 4. Section 5 contains a discussion
of this application, and finally the findings and drawbacks are presented in
Section 6.

2. Data and methodology

2.1. The data

The data considered for this study were taken from the path www.mayo.edu/
int-med/gi/model /mayomodl-5-unos.htm, accessed on Jan 28, 2013. Pa-
tients with MELD score of 12 to 24 were considered not to qualify for a
solid liver transplant because of standard co-morbidities and should have an
estimated life expectancy of approximately 6 to 18 months. Patients with
liver cirrhosis aged between 18 and 70 years, with no gender restriction,
were eligible to take part in the study. Assessments for early determination
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of patient eligibility (14 to 10 days prior to the day of planned cell trans-
plantation) included a full physical examination and medical history, and
grading of encephalopathy. The patients were brought to the radiology suite
approximately 30 to 60 minutes before splenic artery catheterisation. After
initiation of conscious sedation, a catheter was inserted into the femoral
artery and, under fluoroscopic guidance, passed into the splenic artery. The
final position of the catheter was confirmed with a small volume of con-
trast dye. Blood pressure, heart rate, respiratory rate and O2 saturation
were monitored frequently during cell infusion and until the catheter was
removed. Confirmation of splenic artery and splenic vein patency with con-
trast media was performed just before cell infusion and again just after
cell infusion. Post-infusion patients were kept under close surveillance in
the intensive liver care unit (ILCU) for 5 days (3 days is normal in case
of post-catheterisation). In case of required medical attention the stay was
prolonged. All patients (the new therapy group and conventional therapy
group) were provided with a schedule of follow up visits and were instructed
to return for next follow-up visit. All relevant biochemical, pathological and
radiological examinations were performed at each visit along with abdom-
inal ultrasound examination to analyse the portal vein caliber and pres-
ence of ascites. The principal investigator was asked to review the subject
safety data as it was generated. Study outcome and adverse event data were
reviewed to determine whether there was any change to the anticipated
benefit-to-risk ratio of study participation and whether the study should
continue as originally designed, should be changed, or should be terminated.
Any changes to the anticipated benefit-to-risk ratio of study participation or
recommendations related to continuing, changing or terminating the study
were to be reported to the ethics committee. In this study a total of 114
patients with cirrhosis were randomised in two different treatment groups.
The patients were asked to read the informed consent from if they were
interested in participating in the study. After agreeing to participate in the
study, the selection tests and procedures were performed to determine the
eligibility of patients to participate. The study doctor reviewed the results
of the screening tests to determine if a patient could participate in the study.
If so, the patient was assigned randomly to the treatment or control group
based on a randomization procedure. In the treatment group, patients re-
ceived human fatal liver progenitor cell (HFPLC) infusion as background
conventional medical treatment, while in the control group patients received
only the conventional medical treatment without the infusion. The duration
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of the study was 36 months, with 7 visits (baseline, 3 months, 6 months,
9 months, 12 months, 24 months and 36 months). The parameters under
consideration were MELD Scores, therapy and visit. Each patient’s MELD
score was taken at seven different time points.

2.2. Notations

Let us suppose y; is the value of MELD scores for the i** individual and
x; is the value of the covariate for the corresponding i** individual. We
divide y; into two parts (y¢®,y*), with y?* representing the observed
values, and yfms representing values that would be observed if they were
not missing # represents parameters of the model for repeated measures, and
¢ represents the parameters of the missingness mechanism. Let 7; be the
missingness indicator for repeated observations on subject i. Suppose the
missing data are due to dropout; then the measurements for each subject
can be considered up to a defined time point, after which all data are un-
recorded. In this case, a dropout indicator can then be defined as D;, given

by D; =1 +E?:1 7i;, denoting the instance at which dropout first occurred.
2.3. Methods

Data with missing observations can make parameter estimation and infer-
ence much more complicated. Evaluation of the likelihood function requires
integration. Missing observations can apply to both the dependent variables
and the covariates. In modeling missing data, it is frequently necessary to
adopt a joint model for the measurement process together with the dropout
process. Therefore, the full data density is given by

f(yiuri|Xiazi797¢)7 (2)

where X; denotes the design matrix for fixed effects, and Z; denotes the
design matrix for random effects. When missing values are introduced by
dropout, the pattern of missingness can be signified by a scalar d;. Consi-
dering the above model in equation (2), we can factorise this joint density
function in the form of a selection model defined by the conditional fac-
torisations of the joint distribution of Y and R; both are discussed in more
detail in Little (1995) and stated briefly below. A selection model is based
on the following factorisation

i, ril Xi, Zi, 0, 0) = f(yil Xi, Zi, 0) x f(rilyi, Xi, ¢), (3)
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where the first factor in the above factorisation represents the marginal
density of the measurement process, while the second factor represents the
density of the dropout process, conditional on the measurements. The miss-
ing data processes have been developed by Rubin (1976) and Little and Ru-
bin (2014) through the selection model framework. They make distinctions
among different missing data processes. These processes can be formulated
based on the second factor of equation-(6), i.e,

Frilyi, X, @) = f(rilye®, v Xi, 6). (4)

Thus, if the distribution of the missingness process is reduced to f(7;|y;,
Xi, ¢) = f(ri, Xi, ¢) i.e., the process is independent of the measurements,
then the process is defined as missing completely at random (MCAR). If the
missingness probability depends on the observed measurement yfl’s , but not
on the missing measurements y™** i, i.e, f(rilyi, Xi, #) = f(rilye®, Xi, ¢),
then the process is termed missing at random (MAR). Finally, data are
missing not at random (MNAR) or exhibit an informative process, when
the missingness probability depends on the unobserved measurement, ymiss,
and possibly on the observed measurement, 4%, i.e., f (r; | i, Xiy ¢ ) =

. (2
f(ri|y§)bsa ylrn1357 Xi: ¢)
2.4. Modelling with missing values

As mentioned above, a selection model factors the joint distribution into
two parts: the marginal measurement model that describes the distribution
of the complete measurements, and the missingness model that describes
the conditional distribution of the response indicators given the observed
and unobserved measurements. In other words, in a selection model, we first
specify a distribution for the measurement, and then suggest a manner in
which the probability of being observed depends on the data. For continuous
responses, using a selection model formulation as in equation (6), Diggle and
Kenward (1994) combine a multivariate Gaussian linear model together with
the dropout model. In the same way, we consider the measurement model
to be of the linear mixed-effects model type (Laird and Ware, 1982). Recall
that y;; is the response of interest for the ith subject in the study, where
i =1,...,n, at time point j, where j = 1,...,n;. More generally, the model
for y; the (n; x 1) vector of responses for the i*" subject can be written as

yi = XiB + Z;ib; + €, (5)
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where X; and Z; are known (n; xp) and (n; X ¢) design matrices for fixed and
random effects respectively, 3 is the (p x 1) vector of fixed effects, b; is the
(g x 1) vector of the random effects distributed as N (0, K), ¢; is the (n; x 1)
vector of the residual components distributed independently as N(0,Y;), K
is the general (g x q) covariance matrix with (i, )" element and 3, is the
(n; X n;) error covariance matrix.

As noted previously, we focus only on incompleteness due to dropout,
and thus we assume that the first measurement Y;; is measured for all
subjects in the study. In accordance with the notation introduced in section
2.2, the selection model arises when the joint likelihood of the measurement
process and the dropout process is factorised as follows

fQyiril X, Zi, 0, 9) = f(yil X3, 0) x f(rilyi, Zi, §). (6)

We use the linear mixed-effects model introduced in equation (5) to model
the measurement process, together with a logistic regression to describe the
dropout process. According to Diggle and Kenward (1994), the model for the
dropout process is based on a logistics regression for the conditional prob-
ability of dropout at occasion j, given that the subject is still in the study.
Again, the m;(y;;, hij) denotes this probability of dropout at time j, where
hij = (Yi1, Yi2, ..., Yi j1) is a vector possibly containing all observed measure-
ments up to and including occasion j — 1 as well as relevant covariates in
the conditional probability of dropout model. Theoretically, the dependence
on future unobserved measurements is possible to justify but not straight
forward; for simplicity, we model dependence only on the first-order history.
Therefore, modeling the dropout mechanism may be simplified by allowing
dropout to depend upon the current measurement and immediately preced-
ing measurement only, with corresponding regression coefficients, i.e., ¢
and ¢9. In particular, for subjects with observed measurements, dropout
depends on the measurement prior to the last measurement (y; ;1) and the
current unobserved measurement (y;;). A commonly used version of such a
logistic dropout model is

logit Pr(D; = j|D; < 7, hij, yij®) = ¢o + drzi + d1yij-1 + d2yij,  (7)

where ¢g and ¢, denote respectively the intercept and the vector of pa-
rameters for covariates Z;, respectively. The model in equation (7) contains
special cases corresponding to MAR and MCAR mechanisms that can be
obtained from (¢ = 0,¢1 > 0) and (¢2 = ¢1 = 0), respectively.
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The selection models originated from the Tobit models for analysing
missing data (Heckman, 1976). Verbeke and Molenburghs, (2009) addressed
the theoretical translation from the Tobit model to Diggle and Kenward’s
selection model. Subsequently, Troxel, Harrington, and Lipsitz, (1998) ex-
tended it to the non-monotone setting. Selection models for categorical and
other type of measures were also developed; see Fitzmaurice, et al. (1995),
Molenberghs et al. (1997), Nordheim (1984), and Kenward and Molenburghs
(1999).

3. Application to the liver cirrhosis data

In this section, we describe the application of the selection model to data
from liver cirrhosis patients. More background details of this data are given
in Nath et. al (2015).

3.1. Fitting of selection model

In line with Diggle and Kenward (1994), we fit the selection models to the
liver cirrhosis data by combining the measurement model with the logistic
regression for the dropout model. The combined model for measurement
dropout will be fitted to the MELD by maximum likelihood using a generic
function maximisation routine. We use the linear mixed-effects model in the
form

yi = XiB+ ZifBi + € (8)

in order to obtain initial values for the parameters of the measurement
model. In the fitted model, we assume different intercepts and treatment
effects for each of the seven time points, with a (7 x7) unstructured variance
covariance matrix. Specifically, we consider a multivariate normal model,
with unconstrained time trend under the conventional and new therapy
groups. Since the liver cirrhosis data cover 114 subjects (i = 1,...,114) on
seven time points (j = 3,6,9, 12,24, 36), the model can be written as

Yij = Visitjﬂ + BTRT; + ¢;, (9)

where TRT; = 0 for conventional therapy and TRT; = 1 for new therapy.
In this way, the parameter estimates and standard errors as well as p-values
for the eight mean model parameters can be obtained. To fit this model,
we use the lmed package for R software. Next, we consider the dropout
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model. The dropout will be allowed to be independent of covariates. We fit
the model with an intercept, an effect for previous outcome and an effect
for the current unobserved measurement, corresponding to MCAR, MAR
and MNAR, respectively. Dependence on future unobserved measurements
is theoretically possible; we model dependence on the current missing ob-
servation through the dropout model. The probability of MELD scores is
assumed to follow the logistic regression model (a commonly used model
for dropout processes; see, Molenberghs and Kenward 2007) in equation
(7). Estimation of a selection model for MNAR can be seen as a major
complication as the dropout indicators depend on the unobserved measure-
ment. For example, in the selection model mentioned above, the dropout
indicators depend in part on the unobserved longitudinal measurements at
the time of dropout. This leads to complexity in assessing the likelihood
function (Diggle and Kenward, 1994). Generally, the parameters were es-
timated using code written in SAS provided by Dmitrienko et al. (2005)
that maximises the log-likelihood for the model using PROC IML. How-
ever, a recent development suggests that the MCMC approach can be used
to handle this situation. The MCMC approach was used to find the re-
sponse variable and the selection model that fit the missing data indica-
tors, given the responses are defined as follows. Let i be the subject index,
j =1(0,3,6,9,12,24,36) be the visit index, and m = (1,2) (1=new therapy,
2=conventional therapy) be the treatment index. We modelled the response
variable MELDscores; = change;;) using a multivariate normal distribution
with mean p; = (10, 1430, 146, 1495 1235 2445 f36;) and covariance matrix Y.
The mean parameter for the " subject at the j* visit has the regression
model,

pij = pm; % (Baseline MELD Score — constant) + ¢;, (10)

where fi,,,5 is the treatment effect for the 4t visit. All parameters are given
a flat prior: m(my; ), 7(8;), 7(e;) equivalent to 1.

The group intercept €; with a flat prior makes the design matrix rank
deficient. A common strategy is to use a constraint by setting one of the
redundant €; parameters to 0 and reducing the total number of parameters
€ by 1. We did not place constraints on the mj parameters because the
model does not have overall (multidimensional) intercepts over the visits.
The logistic function was used to model the dropout probabilities.

logit (Pr (D; = j|D; < 7, hij, yij®) = ¢o + ¢Zi + ¢1yij—1 + d2yij, (11)
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where ¢g and ¢ denote the logistic regression coefficients for the current
and immediately previous observations respectively, and j denotes the time
points. The covariates include previous and current (possibly missing) re-
sponse variables, because we want to infer conditionally on not having with-
drawn earlier if either of the following might affect a patient’s willingness
to continue the trial: MELD score improvement from previous visit or the
current state of wellness. This type of selection model is referred to as the
Diggle-Kenward selection model (Diggle and Kenward 1994; Daniels and
Hogan 2007). Because there is an expected treatment effect, we want the
logistic regression to include separate intercepts and regression coefficients
for each treatment group. In the model, the covariance matrix takes on an
inverse Wishart prior distribution, and the reminder of the parameters are
assigned flat priors.

4. Results

In this study, many MELD measurements contain missing values because
laboratory specimens were lost or inadequate, or patient follow-up was ter-
minated. In addition, all subjects have observed values at baseline and at 3,
6, 9, 12, 24 and 36 months of follow-up. Some individuals underwent liver
transplantation with either new or conventional therapy, but dropped out of
the study before the scheduled post-baseline time. Most of the individuals
began dropping of the study from 12 months onwards. Therefore, the data
presents three possible dropouts patterns (dropout at time points 12, 24, or
36). All 114 patients are observed at the first occasion (baseline), whereas
there are a total of 103, 94, 86, 67, 14 and 3 patients seen at the month
3, month 6, month 9, month 12, month 24 and month 36 respectively. The
percentage of patients that are still in the study and dropped out from
the study after each follow-up visit are summarised by treatment group in
Table 1.

Table 2 describes the baseline and demography characteristics of liver
cirrhosis patients in the new therapy and conventional therapy groups. The
mean age of liver cirrhosis patient in the new therapy group is 48.6 with
standard deviation (SD) 9.38, whereas in the conventional therapy group,
the mean age is 49.85 with SD 11.06. The distribution of males in the new
therapy and conventional therapy groups is 10(19.2%) and 40(64.5%) re-
spectively. Accordingly, the distribution of females in the new therapy and
conventional therapy groups is 42(88.8%) and 22(35.5%) respectively. The
mean height of liver cirrhosis patients in the treatment group is 164.9 with
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Table 1. Classification of dropouts in MELD scores obtained from liver cirrhosis

patients
visit dropout(1=Available ~Conventional New

0=Missing) Therapy Therapy
Baseline 1 62(54.4%)  52(45.6%)
Month 3 0 10(90.9%)  01(09.1%)
Month 3 1 52(50.5%)  51(49.5%)
Month 6 0 17(85%) 3(15%)
Month 6 1 45(47.9%)  49(52.1%)
Month 9 0 24(85.7%)  4(14.3%)
Month 9 1 38(44.2%)  48(55.8%)
Month 12 0 34(72.3%)  13(27.7%)
Month 12 1 28(41.8%)  39(58.2%)
Month 24 0 55(55.6%)  44(44.4%)
Month 24 1 7(46.7%) 8(53.3%)
Month 36 0 62(55.9%)  49(44.1%)
Month 36 1 0 3(100%)

Table 2. Descriptive statistics on baseline observations of liver cirrhosis patients

Parameters Treatment Group Control Group
Mean (SD) Mean (SD)
Age 48.6(9.38) 49.9(11.06)
Gender
Male 10(19.2%) 40(64.5%)
Female 42(88.8%) 22(35.5%)
Height 164.9(4.46) 165.4(5.84)
Weight 65.7(5.24) 69.5(8.78)
Respiratory rate (RR) 25.9(16.59) 21.5(1.62)
Heart Rate 72.9(15.61) 77.2(2.08)

SD 4.46, whereas in the conventional therapy group the mean height is 165.4
with SD 5.84. The mean weight of liver cirrhosis patients in the treatment
group is 65.7 with SD 5.24, whereas in the conventional therapy group, the
mean weight is 69.5 with SD 8.87. The mean respiratory rate (RR) of liver
cirrhosis patients in the treatment group is 25.9 with SD 16.59, whereas
in the conventional therapy group the mean RR is 21.4 with SD 1.62. The
mean heart rate (HR) of liver cirrhosis patients in the treatment group is
72.9 with SD 15.61, whereas in the conventional therapy group the mean
HR is 77.2 with SD 2.08. The parameter estimates obtained from mixed
models for the MCAR, MAR, complete cases and all cases approaches are
summarised in Table 3. The all cases and complete case approaches have
the same stimates for parameters, because the mixed-effect model by de-
fault ignores missing values at the time of analysis. In the MCAR approach,
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Table 3. Parameter estimates for liver cirrhosis patients from mixed-effects
models for various techniques
Analysis for all cases

Effect Estimate SE t-Value P-Value
Intercept -0.9297 0.7385 -1.26 0.2129
TRT (1) 0.5343 0.4658 1.15 0.2578
baseline 0.05143  0.02605 1.97 0.0492

visit*TRT (0) 0.8324 0.1286 6.47 <.0001
visit*TRT (1) 1.3233 0.1125 11.77 <.0001
Analysis for Complete cases

Intercept -0.9297 0.7385 -1.26 0.2129
TRT (1) 0.5343 0.4658 1.15 0.2578
baseline 0.05143  0.02605 1.97 0.0492

visit*TRT (0)  0.8324  0.1286  6.47  <.0001
visit*TRT (1) 1.3233 0.1125 11.77 <.0001
Analysis with MCAR

Intercept 4.8597 0.5906 8.23 <.0001
TRT (1) -0.2906 0.4166 -0.7 0.4886
baseline -0.1337  0.02021 -6.62 <.0001

visit*TRT (0) 0.4977 0.07222 6.89 <.0001
visit*TRT (1) 0.6769 0.07886 8.58 <.0001
Analysis with MAR

Intercept 6.4382 0.4637 13.89 <.0001
TRT (1) -0.5767 0.3425 -1.69 0.3386
baseline -0.2375 0.0192 -12.36 <.0001

visit*TRT (0) 0.8764 0.0546 16.05 <.0001
visit*TRT (1)  0.78653 0.0566 13.89 <.0001

the effects of estimates are reduced as compared to the all cases and com-
plete case approaches. The MAR approach also gives a lower effect of esti-
mates as compared to the all cases, complete case and MCAR approaches.
The intercept terms are not significant in the all cases and complete case
approaches. Table 4 summarises the parameter estimates obtained from se-
lection modelling. Figure 2 describes the distribution of residuals for change
from baseline when data are considered for all cases.

The B parameters indicate approximately the same declining rate from
the base MELD score values up to month 12. The 3 parameters are show-
ing increasing trend after month 12 for MELD scores from the base value.
The treatment effects are declining from month 3 to month 12. However,
they show a positive trend from month 24 onwards, indicating that the
therapy was effective in the long term. The posterior mean estimates for
(Pmonth3) and (P1onth3g) are -1.32 and -4.81, respectively. The negative
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Table 4. Parameter estimates of liver cirrhosis patients from the selection model

Parameter Mean Standard Percentiles HPD Interval
Deviation 25%,50%,75%
Bmonth3 0.3371 0.2269 0.0737 ,0.3536 ,0.5552 0.0119; 0.6427
Bmonths 0.2670 0.1656 0.1255,0.2405,0.4309 -0.00412; 0.5340
Bmontho -0.0593 0.1265 -0.1631,-0.0319,0.0303 -0.2880; 0.1540
Bmonth12 -0.1142 0.1463 -0.2152,-0.0557,-0.0109 -0.3955; 0.0764
Bmonth2a -0.0026 0.0291 -0.0248,-0.00879,0.0122 -0.0411; 0.0602
Bmonth3e 0.3513 0.2226 0.1004,0.4245,0.5706 0.0130; 0.6266

Treatment effect:
month 3 5.7152 4.5286 0.9329 ,6.0906 ,10.0488  -1.2996; 11.7930

month 6 4.7060 3.4095 2.0542,4.2195,8.0191 -1.5188; 9.7635
month 9 -0.9578 2.5164 -3.0633, -0.7817,0.8800 -5.2739; 3.2363
month 12 -1.3984 2.6968 -3.1089 ,-0.3197,0.5414 -6.9806; 1.9360

month 24 3.3286 1.1697 2.5464 ,3.2672 ,4.0799 0.6804; 5.5004
month 36  14.7254 4.6324 11.0381,14.9410 ,18.3104  6.8502; 23.2434
Dropout Model Process
Gmonth3 -1.3169 0.4087 -1.5806 -1.3014,-1.0353 -2.1341; -0.5361
Dmonthe 21.483 25.808 5.48441,1.87045,3.44980  -2.858; -0.81183
Dmonth9 40.038 75.886 -7.1619,3.29607,8.52209  -1.089; -0.20873
Pmonth9 50.180 12.344 -2.6232,3.60305,1.32451  -1.944; -0.29778
Dmonth12 3.7124 0.5388 3.3332,3.6766, 4.0474 2.7117; 4.7995
Dmonth24 -4.8126 0.6746 -5.2229 -4.7514,-4.3364  -6.1498; -3.5620

values suggest that patients felt worse (increase in MELD score) at their
previous visit because they were more likely to drop out. Figure 1 shows
line plots for mean with SE from the calculated data for various approaches.
Figure 3 shows the distribution of residuals for change from baseline with
the complete case approach. Figure 4 provides the distribution of residuals
for change from baseline with the MCAR, approach. It is clear from Figure
3 and Figure 4 that the residual distributions are similar for the complete
case and all cases approaches. The plots of the posterior densities of treat-
ment and dropout variables are displayed in Figure 5 and Figure 6. The
trace plot shows the values of parameters considered during a runtime of
500000 iterations. The marginal density plot is the (smoothened) histogram
of the values in the trace-plot, i.e. the distribution of the values of the treat-
ment effect and dropout variable in the chain. The marginal density plot in
Figure 5 indicates that the higher posterior densities of treatment effect lie
between the differences of treatment effects from new therapy and conven-
tional therapy, of -6 and -4. However, in Figure 6, the plot indicates that
the higher posterior densities of the dropout variable lie between visits 3
and 4.
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Figure 1. Line plot for mean with SE of MELD scores obtained from liver
cirrhosis patients’ data, for various approaches.

5. Discussion

The limitation of missing data analysis is that the true model and mecha-
nism for measurements and missingness are usually unverifiable (Graham,
2012). Thus, in many settings, the selection model should be viewed as
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Figure 2. Distribution of residuals for change from baseline for MELD score
when liver cirrhosis data are considered for all cases.

10.0 - o
7.5 o
5.0
E )
2 25 5 2 *
2 o #
@
0.0 & * Y
P
2.5 = ¢ *& *‘
=50+

1 1 1 1 1 1 T 1
MR R R CE R B AR R R SR U

Figure 3. Distribution of residuals for change from baseline for MELD score
when liver cirrhosis data are considered under the complete case approach.
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Figure 4. Distribution of residuals for change from baseline for MELD score
when liver cirrhosis data are considered under the MCAR approach

a model with rich assumptions. The guideline is to always to investigate
the sensitivity of the inferences on fixed parameters to varying assumptions.
However, extending the use of a specific model beyond its assumptions might
not be supported by the practical data. This is especially true in phase I,
II, and III clinical trials, where sample sizes are usually not large enough to
support overfitting of the model. Selection models are generalised versions
of standard longitudinal models (marginal models using GEE, mixed-effects
models, and transition models). For example, the mixed-effects model ignor-
ing missing values is nothing but a selection model with ignorable missing-
ness mechanisms (Daniels and Hogan, 2008). We applied selection models
to liver cirrhosis patient data to analyse the effectiveness of treatment, com-
paring the surgery of liver cirrhosis patients receiving HFLPC (Human Fatal
Liver Progenitor Cells) infusion against a group receiving surgery alone. In
this study, we have illustrated an application to analysing incomplete follow
up data, where the response variable is missing throughout visits. We gave
attention to the situation in which responses are continuous. The model
considered was the selection model. The study focused on specific cases of
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Figure 5. Plots for diagnostics of the treatment effect from liver cirrhosis
patients’ data.

selection model; that is, a Diggle and Kenward (1994) model. In the context
of the selection model, we used logistic regression for modelling dropout.
However, a number of various probabilities can be used, for instance, using
the survival analysis approach, the span of duration of treatment or placebo
before dropout can also be modelled. However, in our study, the survival
model for dropout cannot be used because the time to event is not exactly
decided by design. For example, if any patient is not seen at month 12, the
exact time to dropout could hypothetically be any time between month 6
and 12. The aim was to investigate the possible influence of dropout on
the response measurement on the liver cirrhosis data and also to deal with
incomplete sequences. The selection model implied that the dropout mech-
anisms were not completely at random. In other words, in the context of
the implicit model, there was much indication of the prevalence of an MAR
rather than an MCAR dropout process. However, many authors (Diggle
and Kenward 1994; Molenbergh and Verbeke 2005; Williamson 2006) have
stated that caution is necessary when drawing such a conclusion only from
the data under analysis. A problem arises when dealing with dropout that
is MNAR. Given this difficulty, in a longitudinal study, it is important to
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Figure 6. Plots for diagnostics of the dropout variables from liver cirrhosis
patients’ data.

understand that this assumption gives rise to dropout that is not likely to be
known in the application setting. Therefore, the different proposed applica-
tion methods to address dropout that are MNAR cannot easily be verified.
For example, one often does not know if the dropout process is precisely
captured by a particular method used. Molenbergh and Kenward (2007) sug-
gested that one should apply several approaches to the same data problem.
According to Xu and Blozi (2011), if parameter estimates are comparable
under different methods, this can indicate that the dropout process may be
ignored. However, if different methods give different estimates of the param-
eters of the longitudinal model, this can indicate that the dropout process
can be considered as an important element for the description of the data
in the analysis.

6. Conclusion

The measurement process and dropout process are often unverifiable. Sup-
port has been found for the recommendation that in many settings, multiple
strategies or models such as selection and other models, e.g. pattern-mixture
models, should be applied to the same data set in order to investigate the
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impact of the assumption on dropout or missingness. The most notable
limitation with practical data analysis with missing values is that the true
model and mechanism for measurements and missingness are usually unver-
ifiable. Thus, in many settings, selection model should be viewed as models
with rich assumptions. In the future, we also need to study the models for
categorical data, which are also very common in practice. We should ex-
tend our methods to be able to also handle missingness in covariates. We
should also try to handle functional analysis on the response variables (e.g.
power spectra density responses) which is part of multivariate response lon-
gitudinal data analysis. Finally, in addition to parametric models, we shall
also study non-parametric and semi-parametric models for incomplete lon-
gitudinal data analysis. In our study the selection model implied that the
dropout mechanisms were not completely at random. In other words, in the
context of the implicit model, there was much indication of the prevalence
of an MAR rather than an MCAR dropout process.
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