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SUMMARY

The continual reassessment method is a model-based procedure, described
in the literature, used to determine the maximum tolerated dose in phase
I clinical trials. The maximum tolerated dose can also be found under
the framework of D-optimum design, where information is gathered in
such a way so that asymptotic variability in the parameter estimates in
minimised. This paper investigates the two methods under some realistic
settings to explore any potential differences between them. Simulation
studies for six plausible dose-response scenarios show that D-optimum
design can work well in comparison with the continual reassessment
method in many cases. The D-optimum design is also found to allocate
doses from the extremes of the design region to the patients in a trial.
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Continual reassessment method; D-optimum design.

1. Introduction

The goal of a phase I trial is to identify the safety, tolerability and phar-
macokinetics of a drug. For nontoxic agents, phase I trials are often con-
ducted with healthy volunteers. But for toxic agents, such as those for cancer
treatments, phase I trials are conducted among cancer patients in the final
stage, for whom standard treatments have failed. Since the benefits from
such agents are believed to increase with dose, the highest possible dose
is searched for during the development of an agent. However, toxicity also
increases with dose. Therefore, the main challenge for those trials is to find
a dose with a low chance of causing toxicity to patients. This dose is usually
referred to as the maximum tolerated dose (MTD).

Phase I designs can be classified into two broad categories: rule-based
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and model-based. Many rule-based designs only utilise only information
from the current cohort in allocating a dose to the next cohort. O’Quigley
and Zohar (2006) call these memoryless designs, as the previous informa-
tion is completely ignored. On the other hand, there are designs which carry
information throughout the trial. Designs with memory are mostly model-
based. The essence of the rule-based designs is that they do not assume
any parametric dose-response model, but they use instead use pre-specified
rules. Some of these designs are based on the up-and-down rule (Dixon
and Mood, 1948), where escalation or de-escalation of dose depends on the
occurrences of toxicity in the previous cohort. Commonly used rule-based
designs include the 343 design, Storer’s up-and-down designs (Storer, 1989),
pharmacologically-guided dose-escalation design (Collins et al., 1990), ac-
celerated titration designs (Simon et al., 1997) and designs using isotonic
regression (Leung and Wang, 2001).

Le Tourneau et al. (2009) report that although several improved statis-
tical methods have been developed in recent years, many current studies
still use a traditional 3+3 design because of its simplicity. The 343 design
is often used since the specific issues to be achieved in phase I trials are not
stated clearly. According to O’Quigley et al. (1990), a phase I design should
aim to: (1) minimise the number of under-treated patients and the num-
ber of over-treated patients; (2) minimise the number of patients needed
to complete the study; and (3) rapidly escalate the dose in the absence of
toxicity or rapidly de-escalate the dose in the presence of an unacceptable
level of toxicity. It is possible in a 343 design to come to a conclusion by
using only a few patients, but Reiner et al. (1999) and Lévy et al. (2001)
have shown that the probability of an incorrect recommendation for the
MTD is very high for this design.

Model-based designs are alternatives to rule-based designs. They assume
a parametric model to establish the dose-response relationship. Such designs
select a dose level that produces a target probability of toxicity using all of
the accrued data in a trial. These designs are usually implemented under
the Bayesian framework, as the sample size remains small at the early stages
of a trial. Common model-based designs include the continual reassessment
method (O’Quigley et al., 1990), escalation with overdose control (Babb
et al., 1998) and others. At each stage of an adaptive trial, the continual
reassessment method (CRM) allocates a dose to a patient such that the
estimate of probability of toxicity at that dose is closest to a target toxicity
rate.
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The theory of optimal design can also help in the search for the MTD.
For instance, we may allocate doses to the patients in such a way that
the determinant of the Fisher information matrix (FIM) is maximised. The
maximisation is carried out over a set of available doses and this criterion of
design optimality is known as the D-criterion in the literature. The Cramér-
Rao inequality tells us that the covariance matrix of the parameter esti-
mators is greater than, and asymptotically approaches, the inverse of the
FIM. Therefore, by maximising the determinant of the FIM through the
D-criterion, we can minimise the asymptotic lower bound for the variance
of the estimated model parameters. This paper investigates the properties
of the two designs under the same settings.

The organisation of the paper is as follows. Section 2 describes the two
dose finding methods to be compared. The settings of the simulation and
the major findings are discussed in Sections 3 and 4, respectively. Finally,
the conclusions are stated in Section 5.

2. Methods

Assume that d ordered doses X = {l‘(l), e ,x(d)} are available for an ex-
perimental drug based on preclinical studies, and we want to determine the
MTD to be used in the next phase. A good design should be able to identify
the MTD accurately without exposing many patients to either subtherapeu-
tic or toxic doses. The following sections describe the continual reassessment
method and the D-optimum design apprach to find the MTD.

2.1. Continual Reassessment Method

The continual reassessment method is a model-based procedure for finding
the MTD in phase I clinical trials (O’Quigley et al., 1990). The design aims
to reduce the number of patients at subtherapeutic doses and to obtain a
more accurate estimate of the MTD. The method employs parametric mod-
els, such as the hyperbolic tangent model, logistic model or power model
to characterise the dose-response relationship. Investigators sometimes use
a one-parameter logistic model with the idea that it would require fewer
patients to obtain a precise estimate of the unknown parameter. However,
such a model may not be flexible enough to depict the dose-response re-
lationship accurately. Therefore, we plan to use a two-parameter logistic
model, as shown below, so that the relationship can be established more
accurately.
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where ¥ = (91,72) is the vector of dose-response parameters and x is the
dose given to a patient. If we are at the kth stage in a trial, this means that
k patients have been treated with different doses from X. Let ® be a k x 1
dose vector with components x; and let  be a k x 1 outcome vector with 7y
as the Ith row (I = 1,..., k) representing the toxic outcomes obtained from
a patient. Then the likelihood function at stage k can be written as

k
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Since maximum likelihood estimates are not possible until sufficient
information is available, we employ a Bayesian approach to estimate the
dose-response parameters 9. The posterior means of the components of
¥ = (¥1,72) at the kth stage are obtained as
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where © is the parameter space and g(1) is the prior distribution of the
parameters. A bivariate uniform density is assumed for the parameters. The
choice of u; < 91 < ug and us < Y9 < uy gives a restricted parameter space
asC:):{i‘}: up < ¥ < ug, ug <y < ug}sothat
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Then the probability of toxicity at the end of stage k is updated at each
dose as

~

e = V(D D), i=1,2,...,d.

That dose chosen for the next patient is such that the absolute difference
between the updated estimate of the probability of toxicity and the target
toxicity rate 7 is minimum. That is,

- i D) — .
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The trial continues until a fixed sample size n is achieved and the MTD
is determined as the dose that would be allocated to patient n + 1 if he
were in the trial. The typical values for v are 0.2, 0.25, 0.3, or 0.33. There
were some difficulties perceived by clinicians regarding the original version
of the CRM. These include starting with the dose which is the best prior
guess of the MTD, incorporating prior information regarding the model
parameters and the numerical integration necessary in the implementation
of the method.

O’Quigley and Shen (1996) proposed a new version of the CRM based
on the classical likelihood approach of parameter estimation known as the
continual reassessment maximum likelihood (CRML) method. The CRML
appears to deal with the above three difficulties. Since initially the new
design uses an up-and-down design which starts with the lowest dose, it
does not require the best prior guess of the MTD to start with. Also, as the
design is based on the frequentist approach, it ignores any prior information
regarding the parameters. The operating characteristics of the two methods
are very similar. Although simulation studies show some minor differences
in dose allocation during the trials, the final recommendations are almost
the same. As the likelihood equation has no solution until a toxic outcome
is observed, the CRML can be applied only after the occurrence of such an
outcome. To overcome this, a suggestion is to use initially either a standard
up-and-down procedure or the CRM until a toxic outcome is observed, after
which dose allocation can be based on the CRML.

In the original version of the CRM, many patients are likely to be ex-
posed to high toxicity because of dose skipping dose. Various modifications
have been suggested to make it safer, as detailed in Le Tourneau et al.
(2009). Two of these are considered in this paper: (1) treating the first pa-
tient at the lowest dose level (Korn et al., 1994); and (2) increasing the dose
by only one pre-specified level at a time (Goodman et al., 1995).

2.2. D-optimum Design

The D-optimum design approach allocates to the patients in a trial those
doses which contribute most to the efficient estimation of the dose-response
parameters. If the dose-response model is non-linear in the parameters, the
FIM will depend on the unknown parameters. Therefore, in searching for
the optimal dose, we need to assume prior values of the model parameters,
and consequently the design is known as locally optimal (Chernoff, 1953).
The estimates of the parameters obtained at each stage of an adaptive trial
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can serve as prior for the next stage. As more accurate estimates of the pa-
rameters are expected as a trial progresses, we can expect more appropriate
doses to be allocated to the patients as well.

Assume that we are at the kth stage in a trial. The k patients have then
received doses from X and are represented as &, = {1, z2,...,x}. Also,
based on the dose-response outcomes so far, the posterior estimate 9y, of
the parameters is available in the way explained earlier. Now let us define

5 k A 1 A
M ) = —— M (&, 9 ——I(z,9 2
(@l€k On) = 7= M (& Op) + 77 L, D), (2)
where M (&, 91) = Y8, I(z;,9) and I(2;,9},) is the Fisher information
matrix for a patient who received the dose x;. For the dose-response model
introduced in (1), the likelihood function for a single patient at dose z; is

L(Ozy, ) = ()™ (L =)',

and so the log-likelihood function can be written as

U(O]xy, ) = 7y log(y) + (1 — 1) log(1 — vy).

Then the Fisher information matrix for a patient can be obtained as

ey = | PUTH melimw (3)
: (1 — ) zih(1 — ) ‘

Atkinson et al. (2014) discuss the construction of optimal experimental
designs based on augmented FIMs. We can select the dose xj11 for the next
patient such that

Tpe1 = argmax ®p{ M ([, Dr)}, (4)

where ®p{M} = |M|. A trial is continued until the fixed sample size n
is achieved. Here the estimated dose-toxicity curve based on the parameter
estimates at the last stage are used to find the MTD. The dose for which
the absolute difference between the estimated probability of toxicity and
the target toxicity rate is minimum is taken as the MTD. That is, the same
rule is followed for MTD selection in both of the designs.
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3. Setup for Simulations

Six plausible dose-response scenarios are assumed for the simulation study:
see Figure 1. The set of six available doses in each scenario is X = {1, 3,5,...,
11}. The scenarios differ only in shape, with a sharp increase of toxicity in
Scenario 1 and a slow increase in Scenario 6. It is assumed that the target
toxicity rate v is 0.33. Doses 3, 5, 7 and 11 are the respective true MTDs
in the first four scenarios. These are the doses at which the probability of
toxicities is less than or equal to the target rate. More specifically, the prob-
ability of toxicities at these doses are 0.32, 0.32, 0.33 and 0.32, respectively.
The last two scenarios are slightly different from the first four in the sense
that the target toxicity rate corresponds to a dose that lies in between two
available doses. The true MTD is 6 in Scenario 5, and it lies between the
available doses 5 and 7, which have respective probabilities of toxicity of 0.24
and 0.43. Since dose 6 is not available in X', we assume 5 as the true MTD.
Similarly, in Scenario 6, the true MTD 10 lies between 9 and 11. These doses
have respective probabilities of toxicity of 0.28 and 0.39. Here we treat dose
9 as the true M'TD. In real trials, we may start with a set of doses where none
of the doses have a probability of toxicity exactly or approximately equal
to the target. The last two scenarios are considered in order to observe the
behaviour of the designs in such situations. For the Bayesian estimation, we
consider a bivariate uniform distribution for the dose-response parameters
9. We consider © = {9:-43 <9 <-23,0< 9y <1}, a single parame-
ter space for all of the scenarios. The parameter space has been found to
allow a wide range of dose-response scenarios, including those assumed for
the simulation study. The response after receipt of a dose by a patient is
generated from the binomial distribution.

Each trial starts with the lowest dose of 1 mg/kg-body weight applied
to a patient. After the outcomes are received, the dose-response parameters
are estimated, as described in Section 2.1.. Then we select a dose following
the dose-optimisation criterion either in the CRM or in D. The selected dose
is applied to a new patient. After the outcomes from the second patient are
received, the dose-response parameters are estimated and a dose is chosen
for the third patient. The process continues until the trial reaches the maxi-
mum number of patients n, after which the MTD is determined. The designs
are investigated for various values of n, including 15, 20, 25 and 30. Each of
the scenarios is investigated through 2000 simulated trials using self-written
code in R. The program takes on average 30 minutes to run the simulations
for a scenario on a computer with Core i3 processor and 4 GB RAM.
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Figure 1. Dose-response scenarios for simulation study. The respective parame-
ter values are: Scenario 1, ¥ = (—3.3,0.85); Scenario 2, ¥ = (—3.3,0.51); Scena-
rio 3, 9 = (—3.3,0.37); Scenario 4, 9 = (—3.3,0.23); Scenario 5, ¥ = (—3.3,0.43);
and Scenario 6, 9 = (—3.3,0.26). The dotted horizontal line indicates the target
toxicity rate.
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4. Simulation Findings

Scenario 1 has the dose 3 as the true MTD and it is selected in 92.6% of the
trials by the CRM: see Table 1. This dose is selected in 96.0% of the trials
by D-optimum design. As n increases, the correct identification of the MTD
improves for both of the designs. As a whole, D-optimum design identifies
the MTD more accurately than the CRM in this scenario. However, the
percentage of patients that receive the true MTD during the trials is much
greater in the case of CRM than in that of D-optimum design. For instance,
when n = 20, the CRM treats 80.3% of the patients at the MTD, compared
with 23.7% for D-optimum design. Many patients are treated at the higher
doses during the trials with D-optimum design. A smaller number of trials
recommend a highly toxic dose as the MTD in D-optimum design. Note
that the row sums in the tables may not be exactly equal to 100, due to
rounding.

Table 1. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 1.

30 CRM  0.6(3.7) 98.0(86.3
D 0.6(26.7)  99.0(22.1

n Design Dose
1 5 7 9 11
15 CRM 0.8(6.8) 92. 6(75 3) 6.7(15.7) 0.0(2.1) 0.0(0.0)  0.0(0.1)
D 0.1(24.1) 96.0(24.2) 3.9(21.6) 0.0(25.1) 0.0(4.4) 0.0(0.5)
20 CRM 0.5(5.3) 96.2(80.3)  3.3(12.6) 0.1(1.7) 0.0(0.0)  0.0(0.1)
D 0.4(24.8) 97.5(23.7) 2.1(23.0) 0.0(24.8) 0.0(3.4) 0.0(0.4)
25 CRM 0.5(4.3) 96.7(84.1)  2.9(10.4) 0.0(1.2) 0.0(0.0)  0.0(0.1
D 0.3(25.5) 98.5(23.5) 1.3(23.4) 0.0(24.5) 0.0(2.
(86.3) (
(22.1) (

(
1.5(8.9)  0.0(1.0)  0.0(0.0) 0.0(
0.5(25.1) 0.0(23.4) 0.0(2.4) 0.0(

Dose 5 is the true MTD in Scenario 2 and it lies towards the middle
of the dose region. Notice that D-optimum design outperforms the CRM
in MTD selection, as shown in Table 2. Unlike the previous scenario, here
appreciable differences exist in the MTD selection by the designs. On most
occasions D-optimum design reduces the occurrence of highly toxic doses
as the MTD. The design also limits the appearance of lower doses as the
MTD. Although many patients are exposed to the highly toxic doses during
the progress of trials in D-optimum design, this is not the case in the other
design.

Scenario 3 has dose 7 as the true MTD. D-optimum design selects this
dose more accurately than the CRM. Identification of the MTD increases
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Table 2. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 2.

n  Design Dose
1 3 5 7 9 11
15 CRM 0.0(6.7) 24.0(28.0) 63.0(45.4) 11.9(16.1) 1.1(1.7)  0.2(2.3)
D 0.0(8.2) 17.0(29.8)  73.4(8.1) 9.0(26.8)  0.6(12.5) 0.0(14.6)
20 CRM 0.0(5.0) 21.7(25.8) 67.3(50.4) 10.9(15.6)  0.3(1.5) 0.0(1.8)
D 0.0(6.3) 12.7(31.8)  77.4(6.2)  9.9(28.7)  0.1(11.9)  0.0(15.1)
25 CRM  0.0(4.0) 21.0(27.1) 70.7(52.9) 8.3(13.6) 0.1(1.1) 0.0(1.3)
D 0.0(5.2) 10.2(33.0)  81.9(5.1) 7.9(29.1)  0.0(11.5) 0.0(16.0)
30 CRM 0.0(3.3) 17.7(24.3) 75.1(56.3)  7.2(13.8) 0.0(1.0) 0.0(1.3)
) (29.8)

D 0.0(4.4) 85(33.9) 84.2(4.4)  7.4(29.8) 0.0(11.3) 0.0(16.2)

as n increases: see Table 3. Not many trials recommend either a lower or
higher dose as the MTD in D-optimum design, compared with the case of
the CRM. However, many patients are exposed to toxic doses during the
trials with D-optimum design.

Table 3. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 3.

12.5(9.1)  1.4(33.6)
12.1(12.7)  0.3(5.5)
10.3(8.1)  0.7(35.0)

30 CRM  0.0(3.3
D 0.0(6.5

1.9(7.3)  26.6(30.2) 59.1(40.9
0.0(23.6) 18.3(6.2)  70.7(20.7

n  Design Dose
1 3 5 11
15 CRM 0.0(6.7) 5.1(10.4) 31.3(31.7) 41. 3(29 8) 19. 0(11 2)  3.5(10.3)
D 0.0(10.7)  0.9(19.6) 37.0(10.1) 45.5(17.5) 14.3(12.6) 2.4(29.6)
20 CRM 3.6(5.0) 3.6(9.8) 30.2(31.4) 50.3(33.8) 14.3(11.8) 1.7(8.1)
D 0.0(8.7 0.1(21.6) 27.0(8.3) 58.5(18.8)  12.7(10.6)  1.8(32.0)
25 CRM 0.0(4.0 2.4(8.7) 26.9(30.2) 54.7(37.3) 15.3(13.1)  0.8(6.7)
(20.1)
(40.9)
(20.7)

)
)
D 0.0(7.3)  0.2(22.8) 22.6(7.0)  63.4(20.1
)
)

As presented in Table 4, the true MTD is selected in 59.1% of the trials
by the CRM in Scenario 4. The corresponding figure for D-optimum design
is 23%. As in the previous scenarios, the percentage of correct identification
increases as n increases. Here the CRM performs well in comparison with
the other design.

In Scenario 5, the target toxicity rate lies midway between two available
doses. Dose 5 has a probability of toxicity less than the target and dose 7 has
a probability of toxicity greater than the target. As a consequence, a dose-
finding algorithm will tend to select these doses as the MTD. As indicated
in Table 5, dose 5 is selected in the majority of the trials. This is due to
the fact that the toxicity rate at dose 5 is closer to the target than that of
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Table 4. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 4.

n  Design Dose
1 3 5 7 11
15 CRM 0.0(6.7) 0.9(4.4)  4.7(15.5) 12.0(17.3)  23. 3(12 4)  59.1(43.7)
D 0.0(22.1)  0.0(5.0) 24.1(19.4) 10.4(5.0) 42.6(18.3)  23.0(30.2)
20 CRM 0.0(5.0)  0.5(3.7)  3.0(12.0) 10.6(15.7)  21.3(14.2) 64.8(49.4)
D 0.0(21.6) 0.0(4.8) 15.8(19.3) 9.8(4.7) 32.6(19.0) 41.9(30.5)
25 ~CRM 0.0(5.0)  0.5(3.7)  3.0(12.0) 10.6(15.7)  21.3(14.2) 64.8(49.4)
D 0.0(21.3)  0.0(4.9) 17 4(18.9)  6.9(4.9)  32.6(18.6) 43.2(31.3)
30 CRM 0.0(3.3)  0.1(2.7) .5(9.4) 6.4(13.5)  23.8(17.8) 68.4(53.2)
D 0.0(21.3)  0.0(4.8) 18 9(18.9)  65(47)  30.8(18.7) 43.8(31.7)

at dose 7. Notice that D-optimum design performs well in comparison with
the other design in this scenario.

Table 5. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 5.

n Design Dose
1 3 5 7 9 11
15 CRM 0.0(6.7) 11.5(16.8) 50.1(39.4) 32.4(26.8) 5.6(5.5) 0.5(4.9)
D 0.0(8.5) 4.5(25.0) 57.2(8.3) 34.0(22.1) 4.0(12.1) 0.5(24.1)
20 CRM 0.0(5.0) 9.6(16.1) 51.9(42.6) 35.1(27.9) 3.4(4.9) 0.1(3.6)
D 0.0(6.5) 2.0(27.0) 55.8(6.4) 40.1(23.5)  2.0(10.5) 0.1(26.2)
25 CRM 0.0(4.0) 6.4(13.8) 55.9(45.2)  35.8(29.3) 2.0(4.7) 0.0(3.0)
D 0.0(5.2) 1.5(28.1) 57.1(5.1) 39.9(24.6) 1.6(9.0) 0.0(28.0)
30 CRM 0.0(3.3) 5.1(12.6) 55.8(45.6)  37.9(31.3) 1.3(4.5) 0.0(2.7)
D 0.0(4.6) 0.9(28.6) 56.8(4.6) 41.4(24.8) 1.0(8.5) 0.0(29.0)

Unlike Scenario 5, where the true MTD lies in the middle of the dose
region, in Scenario 6 it lies in the upper part of the dose region. The MTD
lies midway between doses 9 and 11. Most of the trials recommend these
doses as the MTD in the simulations: see Table 6. The CRM performs well
in comparison with D-optimum design. The CRM works well in Scenario 4
as well. These two scenarios are similar; the only difference is that in one
we have a dose in the set of available doses with probability of toxicity very
close to the target, while in the other, we do not have such a dose - instead
it lies between two available doses.

Table 7 shows the downward biases in the estimation of probability of
toxicity at the MTD. These indicate that apart from the correct identifi-
cation, the designs choose lower doses as the MTD more often than unac-
ceptably toxic doses. Apart from a few exceptions, bias decreases for the
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Table 6. The percentage of times the doses are identified as the MTD and the
percentage of patients treated at those doses during the trials (in parentheses)
for Scenario 6.

n  Design Dose
1 3 5 7 11
15 CRM 0.0(6.7) 1.6(5.5 7.6(17.4)  20.0(20.9) 30.0(15.1 40.9(34.5)
D 0.0(19.9) 0.1(7.4 22.8(17.5)  20.0(7.3)  39.7(16.9 17.5(31.0)
20 CRM 0.0(5.0) 0.9(4.6 6.1(15.4)  17.7(20.6) 35.3(19.0 40.2(35.4)
D 0.0(18.8)  0.0(8.3 15.3(16.6)  21.8(7.6)  34.2(16.8 28.8(31.9)

25 CRM  0.0(4.0) 0.6(35
D 0.00(18.4)  0.0(8.3
30 CRM  0.0(3.3) 0.2(3.0
D 0.0(18.2)  0.0(8.3

15.7(16.3)  16.0(7.9) 37.6(16.3) 29.8(32.9)
3.0(11.9)  15.0(19.2) 38.6(23.6) 43.6(39.1)
15.5(16.1)  14.7(7.9) 38.8(16.2) 31.1(33.3)

NSNS AN

( )
(16.9)
(163)
50(13.4)  16.3(20.2) 35.7(21.0)  42.3(38.0)
(16.3)
(23.6)
(16.2)

designs as n increases. D-optimal design produces less bias than the CRM
in Scenarios 1, 2 and 5. The designs are quite comparable in terms of bias
in Scenario 3. These are the scenarios where the D-optimal design performs
better than the other design. It was noted above that the CRM performs
well in Scenarios 4 and 6, and this is again supported by the estimates of
bias.

Table 7. Bias in the estimation of probability of toxicity at the recommended

MTD.
Scenario  Design n
15 20 25 30
1 CRM -0.02218  -0.02337  -0.01907 -0.02387
D -0.00619  -0.00693  -0.00790 -0.00599
2 CRM -0.07610  -0.02097 -0.01972  -0.02038
D -0.00997 -0.00371  -0.00478 -0.00239
3 CRM -0.01266  -0.01387 -0.01049 -0.01481
D -0.02755 -0.01842  -0.01304 -0.01002
4 CRM -0.06304  -0.05949 -0.05259 -0.04559
D -0.13567 -0.11881 -0.11019 -0.10865
5 CRM -0.01695 -0.01691 -0.01829 -0.01738
D -0.01541  -0.00799 -0.01058 -0.01029
6 CRM -0.03746  -0.03007 -0.02715 -0.02185
D -0.10741  -0.08984  -0.07872 -0.07496

5. Conclusion

This paper attempts to explore the behaviour of the CRM and D-optimum
design under some realistic settings. D-optimum design often fails to attract
interest due to the fear that efficiency in parameter estimation may not be
achieved at early stages of a trial, as a small number of patients are usually
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engaged. But we have seen that D-optimum design can identify the MTD
more accurately than the CRM in many of the scenarios. The design cannot
identity the MTD as accurately as the CRM when the MTD lies in the
upper dose region. This is perhaps due to the fact that the design cannot
learn much about the dose-response relationship, as it fails to allocate much
higher doses to the patients due to the lack of availability of such doses.
As indicated by the dose allocation, we have found D-optimum design to
allocate doses from the extremes of the design region. Although the results
are produced here for the logistic model, we believe that use of other models
will produce similar results. As a whole, the findings from the simulation
study have the potential to motivate clinical investigators to consider the
use of D-optimum design in phase I clinical trials.
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