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Summary

This paper considers main effects plans used to study m two-level
factors using n runs which are partitioned into b blocks of equal size
k = n/b. The assumptions are adopted that n ≡ 2 (mod 8) and
k > 2 is even. Certain designs not having all main effects orthogo-
nal to blocks were shown by Jacroux (2011a) to be D-optimal when
(m− 2)(k − 2) + 2 ¬ n ¬ (m− 1)(k − 2) + 2. Here, we extend that result.
For (m− 3)(k− 2) + 2 ¬ n < (m− 2)(k− 2) + 2, the D-optimality of those
designs is proved. Moreover, their D-efficiency is shown to be close to one
for 2(m+ 1) ¬ n < (m− 3)(k − 2) + 2, indicating their good performance
under the criterion of D-optimality.

Key words: blocked main effects plan; D-efficiency; D-optimality;
Fischer’s inequality; Hadamard’s inequality; nonorthogonality.

1. Introduction

Due to the expensive and time-consuming nature of experiments planned
with a complete factorial design, optimal fractional factorial plans are widely
applied in diverse fields such as agriculture, industry, and medical research.
For example, they are commonly used in industrial research (Bose and
Bagchi, 2007; Davies and Hay, 1950; Jacroux, 2009), where an important
application is the improvement of manufacturing processes (e.g. chemical
and biological processes or formulation of pharmaceutical preparations) and
of product quality. In chemical research, optimal fractional factorial plans
help to determine the effect of some changes in reaction conditions (e.g.
temperature or time of reaction) or methods of manufacture (e.g. fermen-
tation processes). In such research it is usually sufficient to use two-level
factorial designs, to examine one change in each of the factors under inves-
tigation, e.g. an increase or decrease in the concentration and amounts of
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one or more of the various constituents of the medium. Much of the work
on optimal fractional factorial plans is valid in the absence of blocks, al-
though the importance of blocking is emphasized by many researchers (see,
for example, Cheng et al., 2004, and the references therein). A practical
example of using fractional factorial design with blocks has already been
given in section 7 of Davies and Hay (1950), where the effect of various fac-
tors on the yield of penicillin is investigated. Recently, interesting results on
optimal main effect plans with blocking have been obtained (see references
given below). Some of them are extended in the following sections.

In this paper, we consider experimental situations in which m two-level
factors are to be studied in n runs, which are partitioned into b blocks of
size k = n/b, where k is even, and where a main effects only design is to be
used. By Jacroux (2011a), we use d to denote a design and the model for
analyzing the data under this design is of the form

Y = Xdβ +Bdα+ ε, (1)

where Y is an n × 1 vector of observations, Xd = (Xd1 , . . . , Xdm) = (xdij)
is an n ×m design matrix, β = (β1, . . . , βm)′ is the vector of main effects
parameters, Bd is an n×b zero-one block design matrix with entries bdij = 1
if and only if the ith run occurs in the jth block, α = (α1, . . . , αb)′ is the
vector of block parameters and ε is a vector of random error components,
which are assumed to be uncorrelated with zero mean and constant variance
σ2. We interchangeably represent a design d by its design matrix Xd, whose
ith row corresponds to run i and whose jth column corresponds to factor j,
where xdij = 1,−1 depending on whether factor j occurs at a high or low
level during run i. We use D(n,m, b) to denote the class of two-level main
effects designs available where m two-level factors occur in n runs arranged
in b blocks of size k = n/b, and D̄(n,m, b) to denote the subclass of designs
within D(n,m, b) having each factor occur at its high and low levels equally
often within each block. We also use D(n,m) to denote the entire class of
two-level main effects plans having m factors occurring in n runs.

Under the model (1), the least squares estimate for β is any solution to
the reduced normal equations for main effects given by Mdβ̂ = Q, where
Md = X ′dXd − (1/k)X ′dBdB

′
dXd, Q = X ′d(In − (1/k)BdB′d)Y and In is the

identity matrix of size n. The matrix Md is called the information matrix
of design d.

Among all designs d in the class D(n,m, b), we often wish to choose
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the best one with respect to some criterion. Many criteria are considered
in the literature, we shell be interested in one of the most popular, namely
the D-optimality criterion. We say a design d is D-optimal in D(n,m, b)
if det(Md) is maximal. The other optimality criteria are also expressed
in terms of the information matrix. Some results concerning such issues
are found, among others, Bose and Bagchi (2007), Jacroux (2009, 2011a,b,
2013), Jacroux and Kealy-Dichone (2014, 2015) and Mukerjee et al. (2002).
It is worth mentioning, that there are also many other considerations for
optimal designs described in the literature (see, for example, Cheng and
Tsai, 2009; Cheng et al., 2004; Das and Dey, 2004).

In this paper, we expand the results of the three papers by Jacroux
(2011a,b, 2013), which concern the case when n ≡ 2 (mod 8) and k is
even (more precisely k ≡ 2 (mod 4)). Jacroux (2013) proved that a design
d∗ ∈ D̄(n,m, n/2) having

Md∗ = (n− 2)Im + 2Jmm, (2)

where Jmm is them×mmatrix of ones, is optimal inD(n,m, n/2) under the
D-optimality criterion as well as most other widely used optimality criteria.
When n ­ (m − 1)(k − 2) + 2 and k > 2, Jacroux (2011a) showed that a
design d∗ ∈ D̄(n,m, b) with Md∗ of the form (2) is D-optimal in D(n,m, b).
However, Jacroux (2011b) proved that a D-optimal design does not always
belong to D̄(n,m, b), when n ¬ (m−1)(k−2)+2 and k > 2. In that paper,
the following construction is considered.
1. Let d1 ∈ D((n − 2)/2,m) have Xd1 which consists of m columns from

an (n− 2)/2× (n− 2)/2 Hadamard matrix.

2. Let d2 ∈ D(n−2,m, (n−2)/2) have (⊗ denotes the Kronecker product)

Xd2 = Xd1 ⊗
(

1
−1

)
(3)

and where blocks of size two are obtained by taking successive pairs of
“foldover” runs in Xd2 .

3. Form d3 ∈ D(n,m, n/2) by adding a single block to d2 consisting of one
run of all 1’s followed by another run consisting of m1 1’s followed by
n−m1 −1’s where m1 > 0.

4. Form d4 ∈ D(n,m, b) by combining k/2 successive runs of blocks of size
two in Xd3 to form blocks of size k in d4.
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Jacroux (2011b) showed that a design d4 obtained via (3) is D-better than
the best design in D̄(n,m, b) provided that n < (m−1)(k−2)+2, whereas d4
is D-equivalent to the best design in D̄(n,m, b) when n = (m−1)(k−2)+2.
He also noted that for n ¬ (m − 2)(k − 2) + 2, the best design obtainable
via (3) has m1 which is closest to m̂1 = (m(k − 2)− n+ 2)/2(k − 2) where
as if 1 ¬ (m(k − 2)− n+ 2)/(k − 2) < 2, the best design will have m1 = 1.
From now on, we assume that d4 is the best design under the D-optimality
criterion obtained via (3), i.e. it has m1 which is closest to m̂1.

In Jacroux (2011a), the D-optimality of a design d4 constructed as in (3)
is proved, when (m−2)(k−2)+2 ¬ n ¬ (m−1)(k−2)+2. Jacroux (2011b)
also mentioned that designs d4 obtained via (3) seem to be D-optimal when
n < (m − 2)(k − 2) + 2. In section 2, we prove that d4 is D-optimal when
(m−3)(k−2)+2 ¬ n < (m−2)(k−2)+2, extending the result of Jacroux
(2011a). For n < (m− 3)(k − 2) + 2, it seems to be more difficult to prove
the D-optimality of d4, but in section 3 we show that the D-efficiency of
designs d4 is close to one, indicating their very good behavior under the
D-optimality criterion and their practical usefulness.

2. D-optimal designs when
(m− 3)(k − 2) + 2 ¬ n < (m− 2)(k − 2) + 2

In this section, we prove the D-optimality of designs d4 obtained via (3) for
(m − 3)(k − 2) + 2 ¬ n < (m − 2)(k − 2) + 2. In this way, we extend the
results of Jacroux (2011a) and partially confirm the conjecture of Jacroux
(2011b), as mentioned in the last paragraph of section 1.

Assume that n ≡ 2 (mod 8), k = n/b > 2, k is even and (m − 3)(k −
2) + 2 ¬ n < (m − 2)(k − 2) + 2. Then, for (m − 3)(k − 2) + 2 < n <
(m−2)(k−2)+2, m̂1 ∈ (1, 3/2), so m1 = 1, but for n = (m−3)(k−2)+2,
we have m̂1 = 3/2, and hence m1 equals 1 or 2. By the proof of Theorem
3.1 in Jacroux (2011b), we see that the eigenvalues of the matrix Md4 are
equal to zd4,1 = · · · = zd4,m−2 = n − 2, zd4,m−1 = n + 2(m1 − 1) − 4m1/k,
zd4,m = n+ 2(m−m1 − 1). Thus for m1 = 1, we have

det(Md4) = (n− 2)m−2(n− 4
k

)(n+ 2(m− 2)). (4)

Since, for n = (m− 3)(k − 2) + 2, we can take m1 = 2, in this case we also
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have

det(Md4) = (n− 2)m−2(n+ 2− 8
k

)(n+ 2(m− 3)). (5)

In the following theorem, the D-optimality of the design d4 in the class
D(n,m, b) is proven.

Theorem 2.1. Let n ≡ 2 (mod 8), k = n/b > 2, let k be even and let
d4 ∈ D(n,m, b) be constructed as in (3). If (m − 3)(k − 2) + 2 ¬ n <
(m− 2)(k − 2) + 2, then d4 is D-optimal in the class D(n,m, b).

The proof of Theorem 2.1 is quite long and so we present it in the
Appendix.

Remark 2.1. When n ≡ 2 (mod 8), k = n/b > 2 and k is even, Theorem
2.1 and Theorem 4.1 of Jacroux (2011a) show that the designs d4 obtained
as in (3) are D-optimal in D(n,m, b) for (m − 3)(k − 2) + 2 ¬ n ¬ (m −
1)(k − 2) + 2.

Perhaps the technique presented in the proof of Theorem 2.1 can be
used to show the D-optimality of the designs d4 for 2(m + 1) ¬ n < (m −
3)(k−2)+2, but this would certainly be quite difficult. However, in the next
section, we show the very satisfactory behavior of these designs in terms of
D-efficiency.

3. Highly D-efficient designs for
2(m+ 1) ¬ n < (m− 3)(k − 2) + 2

In this section, we investigate the efficiency of designs d4 constructed as
in (3) under the D-optimality criterion, i.e. D-efficiency as defined below.
In the cases where a D-optimal design is not known (see Remark 2.1), we
indicate that the D-efficiency of d4 is very high and close to one.

Following the definition of Bulutoglu and Ryan (2009), the D-efficiency
of a design d in the class D(n,m, b) is

D-eff(d) =

(
det(Md)

maxd∗∈D(n,m,b) det(Md∗)

) 1
m

. (6)

Unfortunately, maxd∗∈D(n,m,b) det(Md∗) is not known. Thus, we can not
calculate the D-efficiency of designs. However, when we know an upper
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bound UB for maxd∗∈D(n,m,b) det(Md∗), we can approach D-eff(d) by a
lower bound of the form [det(Md)/UB]1/m. Here we will proceed in this
manner. Namely, in the following lemma we prove an upper bound for
maxd∗∈D(n,m,b) det(Md∗), which we will use to approximate the D-efficiency
of a design d ∈ D(n,m, b) as described above.

Lemma 3.1. Assume that n ≡ 2 (mod 8), k = n/b > 2 and k is even. If
2(m+ 1) ¬ n < (m− 1)(k − 2) + 2 and d ∈ D(n,m, b), then

det(Md) ¬ (n− 2)m−l−1(n+ 2
⌊
n− 2
k − 2

⌋
)l · (n− 2 + 2(m− l

⌊
n− 2
k − 2

⌋
− l)), (7)

where l ∈ N is such that l(b(n− 2)/(k− 2)c+ 1) ¬ m and (l+ 1)(b(n− 2)/
(k − 2)c+ 1) > m, and bxc is the integral part of x.

Proof. Since m > (n−2)/(k−2)+1 ­ b(n−2)/(k−2)c+1, the number l is
correctly defined. Partition Xd so that Xd = (Xd1 , . . . , Xd(l+1)), where Xdi
is n× (b(n−2)/(k−2)c+ 1) for i = 1, . . . , l, and Xd(l+1) is n× (m− l(b(n−
2)/(k− 2)c+ 1)). Fischer’s inequality (see, for example, Radhakrishna Rao
and Bhaskara Rao, 1998, p. 453) implies

det(Md) ¬ det(Md1) . . . det(Md(l+1)), (8)

whereMdi is the information matrix of the design di with the design matrix
Xdi , i = 1, . . . , l+1. Since di ∈ D(n, b(n−2)/(k−2)c+1, b) for i = 1, . . . , l,
and d(l+1) ∈ D(n,m− l(b(n− 2)/(k − 2)c+ 1), b), Theorem 3.1 in Jacroux
(2011a) shows that

det(Mdi) ¬ (n− 2)b
n−2
k−2 c

(
n+ 2

⌊
n− 2
k − 2

⌋)
, i = 1, . . . , l, (9)

det(Md(l+1)) ¬ (n− 2)m−l(b
n−2
k−2 c+1)−1 · (n− 2 + 2(m− l

⌊
n− 2
k − 2

⌋
− l)). (10)

Therefore, inequalities (8), (9) and (10) imply (7).

By (6) and Lemma 3.1, we conclude immediately the following corollary,
which presents the lower bound for the D-efficiency of a design d in the class
D(n,m, b).

Corollary 3.1. Under the assumptions of Lemma 3.1, if d ∈ D(n,m, b),

D-eff(d) ­

 det(Md)

(n− 2)m−l−1
[
n+ 2

⌊
n−2
k−2

⌋]l [
n− 2 + 2

(
m− l

⌊
n−2
k−2

⌋
− l
)]

1
m

.
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Using Corollary 3.1, we can examine the D-efficiency of the designs d4
for 2(m+1) ¬ n < (m−3)(k−2)+2. The eigenvalues of the matrixMd4 are
n−2, n+2(m1−1)−4m1/k, n+2(m−m1−1) with multiplicities m−2, 1
and 1, respectively (see the proof of Theorem 3.1 in Jacroux, 2011b). Hence,
by Corollary 3.1, it follows that

D-eff(d4) ­

(
(n− 2)l−1

[
n+ 2(m1 − 1)− 4m1

k

]
(n+ 2(m−m1 − 1))[

n+ 2
⌊
n−2
k−2

⌋]l [
n− 2 + 2

(
m− l

⌊
n−2
k−2

⌋
− l
)] ) 1

m

, (11)

where l is as in Lemma 3.1. We have calculated the values of the right
hand side of (11) for many values of n,m, k, and we conclude that the lower
bound for the D-efficiency of the designs d4 is close to one. As an example we
present values of this lower bound for some n,m and k in Table 1. We also
observed that the lower bound for the D-efficiency of d4 decreases when m
increases for fixed n and k, which was to be expected. In Table 1 we present
only its values for m = n/2 − 1, the largest number of factors for which
we can construct the designs d4. So the smallest values of D-efficiency of
designs d4 are given among all possible values for different m. Fortunately,
for given k, this lower bound increases when n increases, which is also to
be expected.

We see that the designs d4 have D-efficiency close to one. This indicates
that these designs perform very well under the D-optimality criterion and
seem to be close to D-optimal. Since the D-efficiency of designs d4 is so close
to one, it seems that there do not exist designs better than them with respect
to the D-optimality criterion, i.e. they are D-optimal. We do not know how
to prove this, but we have confirmed it numerically. More precisely, we
conducted a numerical search based on the tabu-search algorithm (Harman
et al., 2016; Jung and Yum, 1996) to find the D-optimal designs inD(n,m, b)
for certain n,m and k. We used a modification of the R code of a tabu-
search-based approach for chemical balance weighing designs by Katulska
and Smaga (2016) (Domijan, 2012; R Core Team, 2015). It is significant that
we did not find D-better designs than d4. Summarizing, even if the designs
d4 obtained via (3) are not D-optimal, which seems to be impossible, they
are the best known designs under the criterion of D-optimality, having D-
efficiency very close to one. Therefore, they can be safely used in practice.

Although we have considered particular designs and a particular opti-
mality criterion, the idea of approaching the efficiency of a design under
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Table 1. Lower bound for the D-efficiency of designs d4.
k = 6 k = 10 k = 14

n m D-eff(d4) ­ n m D-eff(d4) ­ n m D-eff(d4) ­
18 8 0.9887 50 24 0.9942 42 20 0.9926
42 20 0.9952 90 44 0.9967 98 48 0.9967
66 32 0.9969 130 64 0.9977 154 76 0.9978
90 44 0.9977 170 84 0.9982 210 104 0.9984

114 56 0.9982 210 104 0.9986 266 132 0.9987

a chosen criterion of optimality, as used in this paper is widely applicable.
It can be modified for other experimental designs and other optimality cri-
teria, since it is usually quite easy to obtain a lower or upper (depending on
the criterion) bound for the value of a criterion (see, for example, Katulska
and Smaga, 2016). Studying efficiency in this way, may help to indicate very
good or even optimal designs under a given optimality criterion.
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Appendix

Proof of Theorem 2.1. Theorem 3.1 in Jacroux (2011b) implies that d4 is
D-better than any design d ∈ D̄(n,m, b). So let d ∈ D(n,m, b), but d /∈
D̄(n,m, b). Then, d has at least one factor that is non-orthogonal to blocks.
So partition the factors in d so that factors 1, . . . , p are not orthogonal to
blocks whereas factors p+1, . . . ,m are orthogonal to blocks. We correspon-
dingly partition Xd so that Xd = (Xd1 , Xd2), where Xd1 is n× p and Xd2 is
n× (m− p). First, let p = 1. Since a factor in Xd1 is non-orthogonal to at
least one block, the number X ′d1BdB

′
dXd1 is at least 4 (k is even) and hence

the first diagonal element of Md cannot exceed n − 4/k. From Fischer’s
inequality (see, for example, Radhakrishna Rao and Bhaskara Rao, 1998,
p. 453), it follows that

det(Md) ¬
(
X ′d1Xd1 −

1
k
X ′d1BdB

′
dXd1

)
· det

(
X ′d2Xd2 −

1
k
X ′d2BdB

′
dXd2

)
. (12)
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Corollary 3.2 in Jacroux (2013) shows that

det
(
X ′d2Xd2 −

1
k
X ′d2BdB

′
dXd2

)
¬ det((n− 2)Im−1 + 2J(m−1)(m−1)) =

= (n− 2)m−2(n+ 2(m− 2)). (13)

Since X ′d1Xd1 − (1/k)X ′d1BdB
′
dXd1 ¬ n− 4/k and by (4), (12) and (13), we

have

det(Md) ¬ (n− 2)m−2
(
n− 4

k

)
(n+ 2(m− 2)) = det(Md4).

We now assume that p ­ 2 and partitionXd1 so thatXd1 = (Xd11, . . . , Xd1p).
Fischer’s inequality implies

det(Md) ¬ det((Xd11, Xd12)
′
(
In −

1
k
BdB

′
d

)
(Xd11, Xd12))·

· det((Xd13, . . . , Xd1p, Xd2)
′
(
In −

1
k
BdB

′
d

)
(Xd13, . . . , Xd1p, Xd2)). (14)

Since n ­ ((m− 2)− 1)(k− 2) + 2, by Theorem 3.1 in Jacroux (2011a), we
conclude that

det((Xd13, . . . , Xd1p, Xd2)
′
(
In −

1
k
BdB

′
d

)
(Xd13, . . . , Xd1p, Xd2))

is less than or equal to (n − 2)m−3(n + 2(m − 3)). We first consider the
case n = (m − 3)(k − 2) + 2. From (5) and (14), it follows that to show
that det(Md) ¬ det(Md4), it is sufficient to prove that the difference (n −
2) (n+ 2− 8/k)−det((Xd11, Xd12)

′ (In − (1/k)BdB′d) (Xd11, Xd12)) is greater
than or equal to zero. Denote by Σij the sum of elements in Xd1i, which
corresponds to the j-th block, i = 1, 2, j = 1, . . . , b. Let

L = (Xd11, Xd12)
′
(
In −

1
k
BdB

′
d

)
(Xd11, Xd12).

Then,

L =

(
n− 1k

∑b
j=1Σ21j X ′d11Xd12 −

1
k

∑b
j=1Σ1jΣ2j

X ′d12Xd11 −
1
k

∑b
j=1Σ1jΣ2j n− 1k

∑b
j=1Σ22j

)
. (15)
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Since k is even, Σij can be equal to 0,±2,±4, . . . , ±k. However, there also

exist j and j∗ such that Σ1j 6= 0 and Σ2j∗ 6= 0, because factors in Xd11 and
Xd12 are non-orthogonal to at least one block. We have to consider four
cases.
Case 1. Let

• Σ21i ­ 4, Σ21j ­ 4 for some i, j, i 6= j and Σ21r ­ 0 for all r 6= i, r 6= j,
and Σ22s ­ 4 for some s and Σ22t ­ 0 for all t 6= s,

or

• Σ21i ­ 4 for some i and Σ21j ­ 0 for all j 6= i, and Σ22r ­ 4, Σ22s ­ 4 for
some r, s, r 6= s and Σ22t ­ 0 for all t 6= r, t 6= s.

Then, in both cases

(n− 1
k

b∑
j=1

Σ21j)(n−
1
k

b∑
j=1

Σ22j) ¬ (n− 8
k

)(n− 4
k

). (16)

By (15), (16) and Hadamard’s inequality (see, for example, Marshall et al.,
2011, p. 306), we obtain det(L) ¬ (n− 8/k)(n− 4/k). Since 2 < k < n, we
have

(n− 2)(n+ 2− 8
k

)− det(L) ­ (n− 2)(n+ 2− 8
k

)+

− (n− 8
k

)(n− 4
k

) =
4(k(n− k) + 4(k − 2))

k2
> 0.

Case 2. Let

• Σ21i ­ 4 for some i and Σ21j ­ 0 for all j 6= i, and Σ22r ­ 16 for some r
and Σ22s ­ 0 for all s 6= r,

or

• Σ21i ­ 16 for some i and Σ21j ­ 0 for all j 6= i, and Σ22r ­ 4 for some r
and Σ22s ­ 0 for all s 6= r.

In both of these cases, we have

(n− 1
k

b∑
j=1

Σ21j)(n−
1
k

b∑
j=1

Σ22j) ¬ (n− 16
k

)(n− 4
k

).
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But, (n− 16/k)(n− 4/k) ¬ (n− 8/k)(n− 4/k), so the same arguments as
in Case 1 show that (n− 2)(n+ 2− 8/k) > det(L).
Case 3. Let Σ21i = 4, Σ22j = 4 for some i, j, i 6= j, and Σ1r = 0 for all r 6= i,
and Σ2s = 0 for all s 6= j. Since b is odd and k ≡ 2 (mod 4), the number of
ones in Xd11 and in Xd12 is even. Thus, Lemma 2.2 in Jacroux et al. (1983)
implies |X ′d11Xd12| ­ 2. Therefore, by (15), we obtain

det(L) = det

(
n− 4k X ′d11Xd12

X ′d12Xd11 n− 4k

)
¬
(
n− 4

k

)2
− 4.

Hence

(n− 2)
(
n+ 2− 8

k

)
− det(L) ­ (n− 2)

(
n+ 2− 8

k

)
−
(
n− 4

k

)2
+ 4 =

=
16(k − 1)

k2
> 0.

Case 4. Let Σ21i = Σ22i = 4 for some i, and Σ1j = Σ2j = 0 for all j 6= i.
Hence, by (15), we have

det(L) = (n− 4
k

)2 − (X ′d11Xd12 ±
4
k

)2. (17)

As in Case 3, we conclude that |X ′d11Xd12| ­ 2. Since k ­ 6,

(X ′d11Xd12 ±
4
k

)2 ­ (2− 4
k

)2,

which together with (17) gives

det(L) ¬ (n− 4
k

)2 − (2− 4
k

)2 = (n− 2)(n+ 2− 8
k

).

Thus, we have proved that det(Md4) ­ det(Md) for arbitrary d ∈ D(n,m, b)
when n = (m− 3)(k − 2) + 2. Observe that

(n− 4
k

)(n+ 2(m− 2))− (n+ 2− 8
k

)(n+ 2(m− 3))

= 4k−1(n− ((m− 3)(k − 2) + 2)).
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So from (4), for (m− 3)(k− 2) + 2 < n < (m− 2)(k− 2) + 2, it follows that

det(Md4) > (n− 2)m−2(n+ 2− 8
k

)(n+ 2(m− 3)) ­ det(Md),

by the above considerations. This implies that the design d4 is D-optimal
in the class D(n,m, b).
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