
DOI: 10.1515/bile-2016-0008

Biometrical Letters
Vol. 53 (2016), No. 2, 105-118

Use of α-resolvable designs in the construction of two-factor
experiments of split-plot type

Kazuhiro Ozawa1, Shinji Kuriki2, Stanisław Mejza3

1Department of Nursing, Gifu College of Nursing, Hashima, Gifu, 501-6295, Japan,
e-mail: ozawa@gifu-cn.ac.jp

2Department of Mathematical Sciences, Graduate School of Engineering, Osaka
Prefecture University, Naka-ku, Sakai, Osaka, 599-8531, Japan,

e-mail: kuriki@ms.osakafu-u.ac.jp
3Department of Mathematical and Statistical Methods, Poznań University of Life

Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland, e-mail: smejza@up.poznan.pl

Summary

We consider an incomplete split-plot design (ISPD) with two factors
generated by the semi-Kronecker product of two α-resolvable designs. We
use an α-resolvable design for the whole plot treatments and an affine
α-resolvable design for the subplot treatments. We characterize the ISPDs
with respect to the general balance property, and we give the stratum
efficiency factors for the ISPDs.
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1. Introduction

We consider a two-factor experiment of split-plot type. The first factor
A has v1 levels A1, A2, . . . , Av1 , and the second factor B has v2 levels
B1, B2, . . . , Bv2 . In a split-plot design, each of b blocks is divided into k1
whole plots, and each whole plot is divided into k2 subplots. The levels of
factors A andB are applied to the whole plots (called whole plot treatments)
and the subplots (called subplot treatments), respectively. We consider an
incomplete split-plot design (ISPD) such that k1 < v1 or k2 < v2.

ISPDs are used in biological, agricultural and environmental sciences,
and the analysis of data and the constructions of the ISPDs have been stud-
ied by Bhargava and Shah (1975), Rees (1969), Robinson (1967a, 1967b),
Mejza and Mejza (1984, 1996), Mejza (1987), and others. In Mejza (1987)
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and Mejza and Mejza (1996), a mixed linear model with fixed treatment
effects and random block, whole plot and subplot effects was given. The
hth factorial treatment combination effect τh is defined by

τh = µ+ αi + γj + (αγ)ij

for h = (i − 1)v2 + j, i = 1, 2, . . . , v1 and j = 1, 2, . . . , v2, where µ is the
overall mean, αi denotes the main effect of the level Ai of the factor A,
γj denotes the main effect of the level Bj of the factor B and (αγ)ij de-
notes the interaction effect of Ai and Bj . Here Σv1

i=1αi = 0, Σv2
j=1γj = 0,

Σv1
i=1(αγ)ij = 0 for j = 1, 2, . . . , v2 and Σv2

j=1(αγ)ij = 0 for i = 1, 2, . . . , v1.
The mixed linear model results from a three-step randomization, i.e., the
randomization of blocks, the randomization of whole plots within each block
and the randomization of subplots within each whole plot. This kind of ran-
domization leads us to the experiments with orthogonal block structure as
defined by Nelder (1965a, 1965b), and the multistratum analysis proposed
by Nelder (1965a, 1965b) and Houtman and Speed (1983) can be applied
to the analysis of the experiments. In the case of the ISPD, we have three
strata, apart from the zero stratum connected with the overall mean only:
(I) the inter-block stratum, (II) the inter-whole plot stratum and (III) the
intra-unit stratum. The statistical properties of the ISPD are strongly re-
lated to the eigenvalues and the eigenvectors of the stratum information
matrices for the treatment combinations. Here, we assume that every treat-
ment combination AiBj (i = 1, 2, . . . , v1, j = 1, 2, . . . , v2) occurs in precisely
r blocks and the treatment combinations are arranged in the lexicographic
order. The stratum information matrices are

A1 =
1

k1k2
N1N

′
1 −

r

v
Jv, A2 =

1
k2
N2N

′
2 −

1
k1k2

N1N
′
1

and A3 = rIv −
1
k2
N2N

′
2,

(1)

where v = v1v2, N1 and N2 are the incidence matrices for treatment combi-
nations vs. blocks and treatment combinations vs. whole plots, respectively,
Iv is the identity matrix of order v and Jv is a v× v matrix whose elements
are all unity. The eigenvalues of a matrix A∗f = r−1Af can be identified
as the stratum efficiency factors of the design for f = 1, 2, 3 (see Houtman
and Speed, 1983). Moreover, the eigenvectors define contrasts of treatment
effects, which are called the basic contrasts (see Pearce, Caliński and Mar-
shall, 1974).
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Mejza (1987) and Mejza and Mejza (1996) considered the constructions
of ISPDs by the Kronecker product of the incidence matrices of two designs.
Ozawa et al. (2004), Ozawa and Kuriki (2006) and Kuriki and Nakajima
(2007) considered the constructions of ISPDs by a modified Kronecker prod-
uct (called the semi-Kronecker product) of the incidence matrices of two
resolvable designs. In this paper, we construct a new ISPD by the semi-
Kronecker product of the incidence matrices of an α-resolvable design for
the whole plot treatments and an affine α-resolvable design for the subplot
treatments, and these new ISPDs also include those obtained by Ozawa et
al. (2004), Ozawa and Kuriki (2006) and Kuriki and Nakajima (2007). We
characterize the ISPDs with respect to the general balance property and we
give the stratum efficiency factors for the ISPDs. These ISPDs have smaller
numbers of blocks than those designs constructed by the Kronecker product
of two designs, and they would be useful in many practical situations.

2. Method of construction of ISPDs

Firstly, we need the semi-Kronecker product of two matrices in order to
construct ISPDs (see Mejza, Kuriki and Mejza, 2001). Suppose that two
matrices E and F are divided into the same number t of submatrices as
follows:

E = (E1 : E2 : · · · : Et) and F = (F1 : F2 : · · · : Ft).

Then, the semi-Kronecker product E ⊗̃F is given by

E ⊗̃F = (E1 ⊗ F1 : E2 ⊗ F2 : · · · : Et ⊗ Ft),

where ⊗ denotes the usual Kronecker product. This type of Kronecker prod-
uct was first considered by Khatri and Rao (1968).

Next, we need an α-resolvable design and an affine α-resolvable design.
A design with v treatments, r replications of each treatment and k plots
within each block is denoted by D(v, r, k). If the collection of blocks of
a D(v, r, k) can be partitioned into classes (called resolution classes) such
that every treatment occurs precisely α times in every class, the design is
said to be α-resolvable (resolvable for brevity, if α = 1) and it is denoted
by α-RD(v, r, k). The parameters of an α-RD(v, r, k) satisfy the following
conditions:

αv = kβ, b = tβ and r = αt,
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where β is the number of blocks within each resolution class, b is the total
number of blocks and t is the number of resolution classes. Moreover, an
α-resolvable design is called an affine α-resolvable design if the number of
common treatments appearing in two distinct blocks in the same resolution
class is q1, and if the number of common treatments appearing in two dis-
tinct blocks belonging to different resolution classes is q2. The parameters
of an affine α-RD(v, r, k) satisfy the additional following conditions:

q1 =
α− 1
β − 1

k, q2 =
k2

v
, β > 1 and k > q1.

Many authors have given constructions of α-resolvable and affine α-resolvable
balanced and partially balanced incomplete block designs (see, for example,
Kageyama, 1973, Bailey, Monod and Morgan, 1995, Caliński and Kageyama,
2003, Kadowaki and Kageyama, 2009). By taking some resolution classes
of these designs, we can obtain α-resolvable and affine α-resolvable designs
considered above. In particular, an affine α-resolvable design with α = 1,
q1 = 0 and q2 = 1 is called a square lattice design.

We construct an ISPD from an α-resolvable design and an affine α-
resolvable design. Let

NA = (NA1 : NA2 : · · · : NAt) and NB = (NB1 : NB2 : · · · : NBt)

be the incidence matrices of an α1-RD(v1, r1, k1) with β1 = α1v1/k1 and
b1 = tβ1, and an affine α2-RD(v2, r2, k2) with β2 = α2v2/k2 and b2 = tβ2,
respectively, where the designs have the same number t of resolution classes,
and NAi and NBi correspond to the ith resolution class. By the definition
of the affine α-resolvable design,

N′BiNBi = (k2 − q21)Iβ2 + q21Jβ2 and N′BiNBj = q22Jβ2 (2)

hold for i, j = 1, 2, . . . , t, i 6= j, where q21 = k2(α2 − 1)/(β2 − 1) and
q22 = k22/v2. Now we construct an ISPD, say D̃, such that its incidence
matrix N1 is obtained by the semi-Kronecker product of NA and NB, i.e.,

N1 = NA ⊗̃NB = (NA1 ⊗NB1 : NA2 ⊗NB2 : · · · : NAt ⊗NBt). (3)

Here, we use the α-resolvable design for whole plot treatments and the affine
α-resolvable design for subplot treatments, respectively, and we arrange the
same treatments of the affine α-resolvable design on the subplots in each
whole plot within each block. The ISPD D̃ has v1 whole plot treatments, v2
subplot treatments and tβ1β2 blocks with k1 whole plots and k2 subplots in
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each whole plot. For D̃, we can express N2 as

N2 = (1′α1 ⊗ Iv1 ⊗NB1 : 1′α1 ⊗ Iv1 ⊗NB2 : · · · : 1′α1 ⊗ Iv1 ⊗NBt), (4)

arranging the whole plots in a suitable order, where 1v is a v × 1 vector
whose elements are all unity. Therefore, from (3) and (4), we have

N1N
′
1 =

∑t
i=1(NAiN

′
Ai ⊗NBiN

′
Bi) and

N2N
′
2 =

∑t
i=1(α1Iv1 ⊗NBiN

′
Bi) = α1Iv1 ⊗NBN

′
B.

(5)

Note that D̃ is also an α-resolvable design with α = α1α2 when the treat-
ment combinations are regarded as the usual treatments.
Example 1. We consider a 2-RD(6,4,4) and an affine 2-RD(9,4,6) with
β1 = β2 = 3, b1 = b2 = 6, t = 2, q21 = 3, q22 = 4 and the incidence matrices
NA = (NA1 : NA2) and NB = (NB1 : NB2), where

NA1 =



1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1


, NA2 =



1 0 1
1 1 0
0 1 1
0 1 1
1 0 1
1 1 0


,

NB1 =



1 0 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0
0 1 1
0 1 1
0 1 1


, NB2 =



1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1
1 0 1
1 1 0
0 1 1


.

The ISPD D̃ constructed by the semi-Kronecker product has 18 blocks with
4 whole plots and 6 subplots in each whole plot. The ISPD can be expressed
by the following way:

{A1, A2, A3, A4 |B1, B2, B3, B4, B5, B6}, {A1, A2, A3, A4 |B4, B5, B6, B7, B8, B9},

{A1, A2, A3, A4 |B1, B2, B3, B7, B8, B9}, {A1, A2, A5, A6 |B1, B2, B3, B4, B5, B6},

{A1, A2, A5, A6 |B4, B5, B6, B7, B8, B9}, {A1, A2, A5, A6 |B1, B2, B3, B7, B8, B9},
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{A3, A4, A5, A6 |B1, B2, B3, B4, B5, B6}, {A3, A4, A5, A6 |B4, B5, B6, B7, B8, B9},

{A3, A4, A5, A6 |B1, B2, B3, B7, B8, B9}, {A1, A2, A5, A6 |B1, B2, B4, B5, B7, B8},

{A1, A2, A5, A6 |B2, B3, B5, B6, B8, B9}, {A1, A2, A5, A6 |B1, B3, B4, B6, B7, B9},

{A2, A3, A4, A6 |B1, B2, B4, B5, B7, B8}, {A2, A3, A4, A6 |B2, B3, B5, B6, B8, B9},

{A2, A3, A4, A6 |B1, B3, B4, B6, B7, B9}, {A1, A3, A4, A5 |B1, B2, B4, B5, B7, B8},

{A1, A3, A4, A5 |B2, B3, B5, B6, B8, B9}, {A1, A3, A4, A5 |B1, B3, B4, B6, B7, B9},

where {Ai1 , Ai2 , Ai3 , Ai4 |Bj1 , Bj2 , Bj3 , Bj4 , Bj5 , Bj6} denotes a block such
that Ai1 ,Ai2 , Ai3 ,Ai4 are whole plot treatments and Bj1 , Bj2 , Bj3 , Bj4 , Bj5 ,
Bj6 are subplot treatments in each whole plot. We note that if the ISPD is
constructed by the usual Kronecker product of the incidence matrices, then
the number of blocks becomes 36. Generally, the number of blocks of an
ISPD constructed by the Kronecker product is t times larger than those of
an ISPD constructed by the semi-Kronecker product.

3. Stratum efficiency factors for the ISPD D̃

In this section, we consider the stratum efficiency factors for the ISPD D̃
constructed by the semi-Kronecker product of two α-resolvable designs. To
find the stratum efficiency factors, we need the eigenvalues of the stratum
information matrices A1, A2 and A3 of D̃. If the stratum information ma-
trices A1, A2 and A3 have common eigenvectors, i.e., if D̃ is generally
balanced, then we can easily find the eigenvalues of the matrices. From (2),

NBiN
′
BiNBjN

′
Bj = α22q22Jv2 (6)

holds for i, j = 1, 2, . . . , t, i 6= j. From (5) and (6), we see that the con-
currence matrices N1N′1 and N2N′2 are commutative, which implies, by
(1), that the stratum information matrices A1, A2 and A3 are mutually
commutative. Therefore D̃ is generally balanced.

We consider the eigenvectors of the concurrence matrices in the α1-
RD(v1, r1, k1) and the affine α2-RD(v2, r2, k2) in order to find the common
eigenvectors of N1N′1 and N2N′2.

Let θ(i)j and xij (j = 0, 1, . . . , v1 − 1) be the eigenvalues and the corre-
sponding mutually orthonormal eigenvectors ofNAiN

′
Ai for each i = 1, 2, . . .,

t. In particular, the eigenvalue of NAiN
′
Ai corresponding to the eigenvector
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xi0 = (
√
v1)−11v1 is given by θ

(i)
0 = α1k1 for each i = 1, 2, . . . , t. In Ta-

ble 1, we see the eigenvalues and the eigenvectors of the concurrence matrix
NAiN

′
Ai for each i = 1, 2, . . . , t in the α1-RD(v1, r1, k1). Furthermore, the

Table 1. Eigenvalues and eigenvectors of NAiN
′
Ai in α1-RD(v1, r1, k1)

Eigenvalues Eigenvectors
α1k1 xi0 = (

√
v1)−11v1

θ
(i)
j xij (j = 1, 2, . . . , v1 − 1)

eigenvalues and the corresponding mutually orthonormal eigenvectors of
NAN

′
A are denoted by θj and dj for j = 0, 1, . . . , v1 − 1. In particular,

θ0 = tα1k1 and d0 = (
√
v1)−11v1 .

For the incidence matrix of the affine α2-RD(v2, r2, k2), by (2), NBiN
′
Bi

has the eigenvalues α2k2, k2 − q21 and 0 with multiplicities 1, β2 − 1 and
v2 −β2, respectively, for each i = 1, 2, . . . , t. From (6),NB1N

′
B1,NB2N

′
B2, . . .,

NBtN
′
Bt are mutually commutative, so these concurrence matrices have

common eigenvectors. Let Q = (q0, q1, . . . , qβ2−1) be an orthogonal matrix
of order β2 with q0 = (

√
β2)−11β2 . For the ith resolution class, by (2), the

mutually orthonormal eigenvectors of NBiN
′
Bi corresponding to the eigen-

values α2k2 and k2 − q21 are given by

zi0 =
1√
α2k2

NBiq0 and zip =
1√

k2 − q21
NBiqp

for p = 1, 2, . . . , β2 − 1, respectively. In particular, zi0 = (
√
v2)−11v2 . By

(2), the eigenvectors zip (p = 0, 1, . . . , β2 − 1) are also the eigenvectors of
the concurrence matrix NBhN

′
Bh (h 6= i) for the other resolution class,

and the eigenvalues of NBhN
′
Bh corresponding to zi0 and zip (p 6= 0) are

α2k2 and 0, respectively. The mutually orthonormal common eigenvectors
of NB1N

′
B1,NB2N

′
B2, . . . ,NBtN

′
Bt corresponding to the eigenvalue 0 are

denoted by z∗q for q = 1, 2, . . . , v2 − t(β2 − 1) − 1. These eigenvalues and
eigenvectors are summarized in the following table:
The common eigenvectors in Table 2 are mutually orthogonal, and these
eigenvectors play an important role in the succeeding argument.

Combining the eigenvectors of Table 1 and Table 2, we consider the fol-
lowing six sets of vectors:

(i)
1
√
v1
1v1 ⊗

1
√
v2
1v2 , (ii) dj ⊗

1
√
v2
1v2 , (iii)

1
√
v1
1v1 ⊗ zip,

(iv)
1
√
v1
1v1 ⊗ z∗q , (v) xij ⊗ zip, (vi) dj ⊗ z∗q ,
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Table 2. Eigenvalues and common eigenvectors of NBiN
′
Bi

in affine α2-RD(v2, r2, k2)
Eigenvalues

Common eigenvectorsNB1N
′
B1 NB2N

′
B2 · · · NBtN′Bt

α2k2 α2k2 · · · α2k2 zi0 = (
√
v2)−11v2

k2 − q21 0 · · · 0 z1p (p = 1, 2, . . . , β2 − 1)
0 k2 − q21 · · · 0 z2p (p = 1, 2, . . . , β2 − 1)
...

...
...

...
...

0 0 · · · k2 − q21 ztp (p = 1, 2, . . . , β2 − 1)
0 0 · · · 0 z∗q (q = 1, 2, . . . , v2 − t(β2 − 1)− 1)

for i = 1, 2, . . . , t, j = 1, 2, . . . , v1− 1, p = 1, 2, . . . , β2− 1 and q = 1, 2, . . .,
v2− t(β2− 1)− 1. The vectors of (i)–(vi) are mutually orthonormal and the
total number of vectors is v1v2. We show that the vectors of (i)–(vi) are the
common eigenvectors of N1N

′
1 and N2N

′
2 and we find the corresponding

eigenvalues of N1N
′
1 and N2N

′
2.

Firstly, we consider the matrixN1N
′
1. For (i), we have, from (5), Table 1

and Table 2,

N1N
′
1

(
1
√
v1
1v1 ⊗

1
√
v2
1v2

)
=

=
∑t
i=1(NAiN

′
Ai ⊗NBiN

′
Bi)
(
1√
v1
1v1 ⊗ 1√

v2
1v2
)

=

=
∑t
i=1

(
NAiN

′
Ai
1√
v1
1v1 ⊗NBiN

′
Bi

1√
v2
1v2
)

=

=
∑t
i=1

(
α1k1

1√
v1
1v1 ⊗ α2k2 1√v21v2

)
= tα1k1α2k2

(
1√
v1
1v1 ⊗ 1√

v2
1v2
)
.

The corresponding eigenvalue is tα1k1α2k2.
For (ii), we have

N1N
′
1

(
dj ⊗

1
√
v2
1v2

)
=
∑t
i=1

(
NAiN

′
Aidj ⊗NBiN

′
Bi

1√
v2
1v2
)

=

=
∑t
i=1

(
NAiN

′
Aidj ⊗ α2k2 1√v21v2

)
= NAN

′
Adj ⊗ α2k2 1√v21v2 =

= θjα2k2

(
dj ⊗

1
√
v2
1v2

)
.

The corresponding eigenvalue is θjα2k2 for j = 1, 2, . . . , v1 − 1.
For (iii), we have

N1N
′
1

(
1√
v1
1v1 ⊗ zip

)
=
∑t
i′=1

(
NAi′N

′
Ai′

1√
v1
1v1 ⊗NBi′N

′
Bi′zip

)
=

= α1k1(k2 − q21)
(
1√
v1
1v1 ⊗ zip

)
.
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The corresponding eigenvalue is α1k1(k2 − q21) for i = 1, 2, . . . , t and p =
1, 2, . . . , β2 − 1.

For (iv), we have

N1N
′
1

(
1
√
v1
1v1 ⊗ z∗q

)
=
∑t
i=1

(
NAiN

′
Ai
1√
v1
1v1 ⊗NBiN

′
Biz
∗
q

)
= 0.

The corresponding eigenvalue is zero for q = 1, 2, . . . , v2 − t(β2 − 1) − 1.
Similarly, for (vi), the eigenvalue is also zero.

For (v), we have

N1N
′
1 (xij ⊗ zip) =

∑t
i′=1(NAi′N

′
Ai′xij ⊗NBi′N

′
Bi′zip) =

= NAiN
′
Aixij ⊗NBiN

′
Bizip = θ

(i)
j (k2 − q21) (xij ⊗ zip) .

The corresponding eigenvalue is θ(i)j (k2−q21) for i = 1, 2, . . . , t, j = 1, 2, . . . ,
v1 − 1 and p = 1, 2, . . . , β2 − 1.

Next, we consider the matrix N2N
′
2. For (i), we have, from (5), Table 1

and Table 2,

N2N
′
2

(
1√
v1
1v1 ⊗ 1√

v2
1v2
)

=
(
α1Iv1 ⊗NBN

′
B

) ( 1√
v1
1v1 ⊗ 1√

v2
1v2
)

=

=
(
α1

1√
v1
1v1
)
⊗
(
NBN

′
B
1√
v2
1v2
)

= tα1α2k2
(
1√
v1
1v1 ⊗ 1√

v2
1v2
)
.

The corresponding eigenvalue is tα1α2k2.
For (ii), we have

N2N
′
2

(
dj ⊗ 1√

v2
1v2
)

= (α1dj)⊗
(
NBN

′
B
1√
v2
1v2
)

=

= tα1α2k2
(
dj ⊗ 1√

v2
1v2
)
.

The corresponding eigenvalue is tα1α2k2 for j = 1, 2, . . . , v1 − 1.
For (iii), we have

N2N
′
2

(
1√
v1
1v1 ⊗ zip

)
=
(
α1

1√
v1
1v1
)
⊗
(
NBN

′
Bzip

)
=

= α1(k2 − q21)
(
1√
v1
1v1 ⊗ zip

)
.

The corresponding eigenvalue is α1(k2 − q21) for i = 1, 2, . . . , t and p =
1, 2, . . . , β2 − 1.

For (iv), we have

N2N
′
2

(
1√
v1
1v1 ⊗ z∗q

)
=
(
α1

1√
v1
1v1
)
⊗
(
NBN

′
Bz
∗
q

)
= 0.
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The corresponding eigenvalue is zero for q = 1, 2, . . . , v2 − t(β2 − 1) − 1.
Similarly, for (vi), the eigenvalue is also zero.

For (v), we have

N2N
′
2 (xij ⊗ zip) = (α1xij)⊗

(
NBN

′
Bzip

)
= α1(k2 − q21) (xij ⊗ zip) .

The corresponding eigenvalue is α1(k2−q21) for i = 1, 2, . . . , t, j = 1, 2, . . . , v1−
1 and p = 1, 2, . . . , β2−1. The corresponding eigenvalues ofN1N

′
1 andN2N

′
2

are summarized in the table below:

Table 3. Eigenvalues and common eigenvectors of N1N
′
1 and N2N

′
2

Eigenvalues
Common eigenvectorsN1N

′
1 N2N

′
2

tα1k1α2k2 tα1α2k2 (i)
θjα2k2 tα1α2k2 (ii)

α1k1(k2 − q21) α1(k2 − q21) (iii)
θ
(i)
j (k2 − q21) α1(k2 − q21) (v)

0 0 (iv), (vi)

Here i = 1, 2, . . . , t and j = 1, 2, . . . , v1 − 1.
The vectors of (i)–(vi) are also the common eigenvectors of the stratum

information matrices A1, A2 and A3. Using (1) and Table 3, we give the
stratum efficiency factors for D̃ in the following table:

Table 4. Stratum efficiency factors for the ISPD D̃
Type of

No. I II IIIcontrasts
A v1 − 1 ξj 1− ξj 0
B t(β2 − 1) ω 0 1− ω

v2 − t(β2 − 1)− 1 0 0 1
A×B t(v1 − 1)(β2 − 1) tωξ

(i)
j ω(1− tξ(i)j ) 1− ω

(v1 − 1){v2 − t(β2 − 1)− 1} 0 0 1

Here ξj = θj/(tα1k1), ξ
(i)
j = θ

(i)
j /(tα1k1) for i = 1, 2, . . . , t and j =

1, 2, . . . , v1 − 1, ω = (k2 − q21)/(tα2k2), A and B denote the basic con-
trasts among the main effects of whole plot and subplot treatments and
A×B denotes the basic contrasts among the interaction effects. The eigen-
vectors of (ii), (iii)–(iv) and (v)–(vi) define the basic contrasts A, B and
A×B, respectively. We use Table 4 to improve the estimators for the basic
contrasts of the treatment effects combining the estimators obtained from
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the strata I, II and III. This procedure was proposed by Nelder (1965a,
1965b) and Houtman and Speed (1983). In particular, we see that some
basic contrasts of B and A×B are estimable with full efficiency in stratum
III. For a special case where the α-resolvable design is a resolvable design
for whole plot treatments and the affine α-resolvable design is a square lat-
tice design for subplot treatments, the stratum efficiency factors are given
in Kuriki and Nakajima (2007).
Example 2. For the ISPD D̃ given in Example 1, ω = 1/8, θ1 = 4, θ2 =
θ3 = 2, θ4 = θ5 = 0, θ(i)1 = θ

(i)
2 = 2 and θ(i)3 = θ

(i)
4 = θ

(i)
5 = 0 for i = 1, 2.

Thus, using Table 4, the stratum efficiency factors can be calculated as in
the following table:

Type of contrasts No. I II III
A 1 1/4 3/4 0

2 1/8 7/8 0
2 0 1 0

B 4 1/8 0 7/8
4 0 0 1

A×B 8 1/32 3/32 7/8
12 0 1/8 7/8
20 0 0 1

4. Applications

The paper deals with a few aspects of optimal (statistical and practical) properties
of experimental designs. One of the aspects relates to the proper use of the avail-
able structure of experimental units. This is very important in agricultural field
experiments. The units (field plots) are natural and there is no way of changing
them to a structure appriopriate to a theoretical (master) optimal design. The
split-plot design, considered here, is one of the most utilized designs in agricul-
tural field experiments (see, for example, Gomez and Gomez, 1984, Little and
Hills, 1978). This results from statistical as well as practical considerations (ease
of mechanically carrying out the experiment). Incomplete non-orthogonal designs
(as considered here) have a much wider scope for optimal use in practice.

The second aspect concerns statistical properties of designs. Statistical proper-
ties depend on a linear model of observations. In this work we examine statistical
properties of designs under a randomization-derived linear model of observations
(random block effects describing the structure of units) with treatment (combina-
tion) effects being fixed (cf. Caliński and Kageyama, 2000, 2003, Hinkelmann and
Kempthorne, 2005, 2007, Hinkelmann, 2012). The experimenter usually makes a
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ranking of factors as well as linear functions of level effects (contrasts) with re-
spect to the scientific interest and aim of the experiment. Then the property called
general balance plays a crucial role (see, for example, Mejza, 1992, Bailey, 1994)
in satisfying the experimenter’s wishes as regards the estimability and efficiency of
the treatment contrasts. In the generally balanced design we know the efficiencies
of all estimable treatment effect functions. Hence this property is examined here
in the detail. General balance aids interpretation; the design which is generally
balanced with respect to meaningful contrasts may be superior to a technically
optimal design. Another problem concerns choosing an incomplete design that fits
the structure of experimental units, is optimal for the most interesting treatment
effect functions, and is not too expensive (it utilizes as small as possible a number
of units of proper size). In the worst case we can use any incomplete design. Then
it is difficult to describe the statistical properties of the proposed design.

Additionally, we seek methods enabling the generation of new incomplete split-
plot designs by using some known incomplete block designs. The use of resolvable
designs and affine α-resolvable designs for the construction of new designs was not
a random choice. These designs are often used in series of experiments over many
environments in variety testing (see, for example, Caliński et al. 2005, 2009a, 2009b,
2015). The Kronecker product of component incomplete block designs is often used
for constructing new designs with split units. The final design possesses optimal
properties, but it utilizes many experimental units (high cost of the experiment).
To overcome this problem (the size of the experiment) we have proposed the use
of the semi-Kronecker product as defined in section 2, instead of the ordinary
Kronecker product. The final design is much smaller and also possesses desirable
statistical properties. Moreover, using the semi-Kronecker product to generate new
designs leads to designs that use a much smaller number of units (see section 2).
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