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SUMMARY

The genotype by environment interaction (GEI)) has an influence on
the selection and recommendation of cultivars. The aim of this work is
to study the effect of GEI and evaluate the adaptability and stability
of productivity (kg/ha) of nine maize genotypes using AMMI model
(Additive Main effects and Multiplicative Interaction). The AMMI
model is one of the most widely used statistical tools in the analysis of
multiple-environment trials. It has two purposes, namely understanding
complex GEI and increasing accuracy. Nevertheless, the AMMI model is a
widely used tool for the analysis of multiple-environment trials, where the
data are represented by a two-way table of GEI means. In the complete
tables, least squares estimation for the AMMI model is equivalent to
fitting an additive two-way ANOVA model for the main effects and
applying a singular value decomposition to the interaction residuals. It
assumes equal weights for all GEI means implicitly. The experiments
were conducted in twenty environments, and the experimental design was
a randomized complete block design with four repetitions. The AMMI
model identified the best combinations of genotypes and environments
with respect to the response variable. This paper concerns a basic and a
common application of AMMI: yield-trial analysis without consideration
of special structure or additional data for either genotypes or environments.

Key words: genotype environment interaction (GEI), adaptability and
stability, additive main effects and multiplicative interaction model, multi-
environment trials
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1. Introduction

Genotype by environment interaction (GEI) reflects the different responses
of the genotypes to environment conditions, e.g., the best genotypes in an
specific environment could not be the best for others. It depends on the con-
sidered environment. Therefore, GEI can-not represent all genetic potential
environmental conditions, this makes difficult the recommendation of geno-
types by the breeder (Gauch, 1992; Falconer and Mackay, 1996; Arciniegas-
Alaren et al., 2011; Gauch et al., 2011; Gauch, 2013).

A differential response of genotypes across environments (often location—
by—year combinations) is frequent in multiple-environment trials (METS)
and is known as GEI (Rodrigues et al., 2014). MET data are often sum-
marized in two-way tables, which have rows with the means of genotypes
and columns with the environments. When the ranking of the genotypes
changes across environments, the GEI occurs in various forms. In has the
most extreme form it consists of crossover interactions. An example may
be a genotype which is superior under wet conditions but may yield poorly
under dry conditions (Rodrigues et al., 2014).

The additive main effects and multiplicative interaction (AMMI) model
(Gauch, 1992) is one of the most widely used statistical methods. It can
be used to understand and structure interactions between genotypes and
environments. In its essence, the AMMI model applies the singular value
decomposition (SVD) to the residuals of an additive two-way analysis of
variance (ANOVA) model as applied to the GEI table of means (Gauch,
2013; Rodrigues et al., 2014). The two main purposes of AMMI analysis of
a yield trial’s treatment design are: (i) understanding complex GEI, which
includes delineating mega-environments and selecting genotypes to exploit
narrow adaptations; and (ii) increasing accuracy to improve recommenda-
tions, repeatability, selections, and genetic gains. The main purposes of an
experimental design are assigning experimental units to treatments, quan-
tifying errors, and gaining accuracy (Gauch, 2013).

In breeding, the researcher is interested in choosing the genotypes with
superior performance in different environments. Poor efficiency in the geno-
type-by-environment interaction analysis of variance can represent a prob-
lem for breeders, who can take advantage of the interaction effect to choose
genotypes with high productivity.

By accessing the GEI, many statistical methods are available to try un-
derstand better this effect. The choice of an appropriate statistical method
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depends on the experimental data, the number of available environments,
and the accuracy of the information. Applications of the AMMI model
to yield trials have appeared frequently during the last two decades, and
there have been several recent review articles (Dias and Krzanowski, 2006;
Gauch, 2006; Yan et al., 2007; Gauch et al., 2008; Yan et al., 2009; Gauch,
2013; Rodrigues et al., 2014). This analysis can help in the identification of
genotypes which have high productivity and are well adapted to an agro-
nomic zone, with the aim of regionalised recommendation and selection of
test sites (Gauch and Zobel, 1996; Gauch et al., 2011; Gauch, 2013).

This basic AMMI analysis is important due to its common nature char-
acteristic and its basic case must be mastered as a foundation for any of the
more complicated applications (Gauch, 2013). For instance, a preliminary
AMMI analysis to gain accuracy can greatly improve subsequent analy-
ses for generating hierarchical classifications (Smith and Gauch, 1992) or
detecting quantitative trait loci (Gauch et al., 2011).

The objective of this work is to study the effect of GEI. By using the
AMMI model, it assesses the adaptability and stability of productivity of
nine maize genotypes in twenty environments.

2. Material and methods

The data used in this work are the same as in Cornelius and Crossa (1999).
The above outline of basic AMMI analysis can be illustrated using an in-
ternational trial for grain yield (kg/ha). The data were obtained by the
International Maize and Wheat Improvement Center (CIMMYT) in trials
conducted in 20 countries. This analysis used 9 genotypes of maize, and
each genotype was assessed in 20 environments. The experiment had an
RCB design with 4 replications, but only the averages over replications are
available from the publication, as well as the mean square error.

The data for production (kg/ha) are analysed with individual ANOVA
by location and by conjoint analysis. In order to assess the genetic vari-
ability between the treatments and the GEI, the data have to cover all the
loctions. After detection of the presence of the interaction, an adaptability
and phenotypic stability analysis were made using the AMMI model.

2.1. Analysis of variance

There are three numbers from the ANOVA which provide a preliminary
indication as to whether AMMI analysis will be worthwhile. These are the
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sum of squares (9.5) for genotypes (G), GEI signal (GEg), and GEI noise
(GEN). The SS values for G and GEI are direct outputs from ANOVA
(Gauch, 2013). To estimate the SS for GEy, simply multiply the error
mean square (from replication) by the number of degrees of freedom (df)
for GEI (Gauch, 1992). Then obtain GEg by subtracting GEy from GEL
AMMI analysis is appropriate for datasets that have substantial G and
substantial G Fg. Especially when the 5SS for GEg is at least as large as that
for GG, as happens frequently, AMMI analysis will probably be worthwhile
(Gauch, 1992; Gauch, 2013). On the other hand, occasionally GEI is buried
in noise, with the SS for GEy approximately equal to that for GEI. In that
case, GEI should be ignored, so AMMI analysis isinappropriate (Gauch,
2013).

2.2. Model diagnosis

AMMI is a model family rather than a single model. Consequently, model
diagnosis is required to determine which member of this model family is the
best for a given dataset and research purpose (Gauch, 2006; Gauch, 2013).
The AMMI model combines two methods: analysis of variance and singular
value decomposition in a unique model, additive components for the main
effects of genotypes (g;), environments (e;) and multiplicative components
for the interaction effect (ge);; (Gauch, 1992; Dias and Krzanowski, 2003;
Garcia-Pena and Dias, 2009; Arciniegas-Alarcn et al., 2011; Gauch et al.,
2011; Gauch, 2013).

Therefore, the model equation for the i-th genotype in the j-th envi-
ronment in 7 blocks (repetitions) is (Gauch, 1992):

n
Yijr =+ gi + e+ be(es) + D Mrainysn + pij + €35 (1)
k=1

where Yjj, is the phenotypic trait (e.g. yield) of genotype ¢ in environment
j for replicate r, u is the grand mean, g; are the genotype main effects as
deviations from p, e; are the environment main effects as deviations from g,
Ak is the singular value for the Interaction Principal Component (IPC) axis
k, i, and ;3 are the genotype and environment IPC scores (i.e. the left
and right singular vectors) for axis k, b, (e;) is the effect of the block r within
the environment j, r is the number of blocks, p;; is the residual containing
all multiplicative terms not included in the model (1); n is the number
of axes or principal components (PC) retained by the model, and e, is
the experimental error, assumed independent with identical distribution,
Ejj ~ N (0, 072)
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Successive IPCs are denoted by IPC1, IPC2, IPC3, and so on. The
number of these components is one less than the minimum of the number
of genotypes and number of environments. The member of the AMMI model
family retaining zero components is denoted by AMMIO0, and the successive
members which retain one or more components are denoted by AMMII,
AMMI2, AMMI3, and so on, up to the full model retaining all components
denoted by AMMIF (Gauch, 1992; Gauch, 2013). When the fitted values of
the full model automatically equal the raw data Y;;. exactly, the residual
term disappears. However, the reduced models leave a residual ¢;;, (Gauch,
2013).

In the first phase of the main effects in the additive part (mean, geno-
types and environments), they are fitted by a traditional AOV to the matrix
of means (Y (4x¢)) in the 7 blocks. The result is the nonadditivity residual
which means the GEI, (ge);;. This interaction is the multiplicative part
of the model. In the second phase, the interaction is analysed by singular
value decomposition (SVD) of the matrix (GE4x¢) = [(ge);]) or by princi-
pal component analysis (PCA) (Gauch, 1992; Dias and Krzanowski, 2003;
Dias and Krzanowski, 2006; Gauch et al., 2011; Gauch, 2013).

The GE matrix is the interaction matrix between genotypes and en-
vironments (residual of main effects), where each element (ge);; of GE is
given by

(ge)zj = }/;] - ?io - ?oj +?oo (2)

where Yj; is the mean of the repetitions of genotype 7 in environment j,
with i =1,2,...,g and j = 1,2,...,¢e; Yo is the mean of genotype i, Y,
is the mean of environment j and Y., is the global mean.

There are many techniques to assign degrees of freedom in a AMMI
model. One of them consists in determining the degrees of freedom asso-
ciated with each part of the interaction sum of squares SSgpr. It means,
associated to )\,QC. Each member of the AMMI model family is obtained from
the mean square (M S), and calculated by the F' test for each component to
assess the significance in relation to the M Sy,ean error- The process results
in variance analysis similar to the traditional one, unfolding the degrees of
freedom corresponding to the GEI (Gauch, 1992).

In this way, number of axes to explain the behaviour of the interaction
was determined by considering the proportion of the SSgr; accumulated
up to the n-th axis (37_; \2/SScrr) (Gauch, 1988). The stop point de-
termines the model selected (AMMIO, AMMIL,...,AMMIF) based on the
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significance of the F' test for the successive terms of the interaction. The
Gollob (1968) method is one of the most used to assign degrees of freedom to
the AMMI model. The expression for the method is: DFpc, = g+e—1-2k,
with £k = 1,2,...,p, p = min{g — 1,e — 1}, where PC}, is the k-th axis of
the principal component.

Piepho (1995) showed that the Fg, test proposed by Cornelius et al.
(1992) is more robust than that proposed by Gollob (1968); the statistic

is defined as Fr, = (SSger — ZZ—l A2)/(faM Spmean error), Where fo =

(9—1—mn)(e—1—mn) and n is the number of multiplicative terms in the
model. The Fg,, statistic with null hypothesis that there are no more than
n terms determining the interaction. It has an approximate F' distribution
with fo degrees of freedom and D Fean error-

The results were analysed by graphical representation in biplot, a tech-
nique which is useful in principal component analysis. The graphic is used
to represent simultaneously the rows and columns of a data matrix. It
indicates the existing groups in the observations and in this way shows
dispersions and correlations between the variables (Gauch, 1992).

The biplot was introduced by Gabriel (1971). It is based on the ap-
proximation of a matrix with rank 8 by the singular value decomposition
(SVD), and by another matrix with lower rank. In the analysis of AMMI,
the SVD is applied to the interaction matrix GE (matrix of rank p).

GE(xe) = >_Mmey = U 8 N (3)
k=1 (Pppr) (AY/2) (Ppip)

where ﬁ(gxe) has in its columns, the first p vectors y(yx1); g(n) is a
diagonal matrix with the first singular values A1, A2,..., A, with n < p and
V(gxe) has in its rows the first n vectors O‘/(1Xe)‘

Therefore, analysis of AMMI gives the decomposition GE gy = USV' =
USY/?281/2v’ = GH’ and the approximate decomposition by n compo-

ts GE(yue) = USV' = GH = 3" (A9 (W *p) where Gy |
nents (gxe) — - - Zk:l( k ’Yk)( k FYk;) Wwhere xgxe) 18
the genotype effect and Hy,.) the location effect(Gauch, 1992; Dias and
Krzanowski, 2006; Gauch, 2006).

All the analyses were implemented in SAS (SAS, 2004).

2.3. Mega-Environment Delineation

When there are crossovers between winning genotypes, subdivision of a
growing region into two or more mega-environments is necessary for exploit-
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ing the narrow adaptations that often provide a substantial opportunity to
increase yield. Sometimes there are more than the broad adaptations. There
are three important considerations (Gauch, 2013):

First, model diagnosis is essential because as the selected member of the
AMMI model family changes, the mega-environments also change, with
higher-order models tending to define a larger number of mega-environ-
ments. Consequently, mega-environments can-not be meaningfully or re-
liably delineated without first performing a model diagnosis to select the
best member of the AMMI model family for a given dataset. Model diagno-
sis enables researchers to distinguish between GEg causing actual narrow
adaptations and GEx generating spurious complexity (Gauch, 2013).

Second, it is important for mega-environments to have predictive poten-
tial for locations and years. This predictive role is greatly enhanced if the
mega-environments, initially delineated in terms of winning genotypes, have
an evidential and environmental interpretation in terms of environmental
gradients or geographical subregions (Gauch, 2013). Predictable environ-
mental factors associate with locations or management practices increase
the number of usable mega-environments, whereas unpredictable environ-
mental factors associated with years decrease the number and usefulness
of mega-environments (Gauch, 1992; Annicchiarico, 1997; Annicchiarico,
2002; Gauch, 2013).

Third, because of the subdivision of several mega-environments, it is
costly for breeding programmes and seed distributors alike unless a practical
portion GEp of the interaction signal GEg becomes available for exploiting
narrow adaptations to increase yields. This limitation makes it necessary
to select a low-order model such as AMMI1 for delineating a small and
manageable number of mega-environments, even though a higher model
such as AMMI3 may be selected for the different research purpose of op-
timizing predictive accuracy (Gauch, 2013). But fortunately, just 2 or 3
mega-environments are often sufficient to allow GEp to capture a sizable
portion of GEg.

2.4. Agricultural recommendations

A major purpose of yield-trial research is to select the best genotypes to
retain in a breeding programme or to recommend the best cultivars for a
growing region. But the tasks of selection are remarkably difficult, due to
the fact that their noise obscures true winners, generates spurious com-
plexity, and reduces genetic gains (Gauch, 1992).A common approach for
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genotype selection pursues both high yield and stability, but this approach
has five considerable problems (Gauch, 2013):

Firstly, there are dozens of stability parameters which make any partic-
ular choice difficult to justify, even though they can be organized into four
groups (Annicchiarico, 2002; Gauch, 2013). Secondly, there are manifold
ways to integrate high yield and stability, but many fail to optimize any
known and agriculturally significant outcome. Thirdly, stability is a mean-
ingful objective only within an individual mega-environment, not across
multiple mega-environments, and yet much of the literature ignores this
crucial requirement (Gauch, 2013). Fourthly, at least 8 trials within each
mega-environment are necessary for reasonably reliable estimates of sta-
bility (Annicchiarico, 2002; Gauch, 2013). Yet researchers often use fewer
trials. Fifthly and finally, regarding instability solely as a problem to be
minimized is a defective paradigm because the complete story is that insta-
bility (GEI) presents plant breeders with both problems and opportunities
(Gauch, 2013).

3. Results and discussion

The results of the joint analysis of variance for productivity of maize (kg/ha)
show that the genotype, environment and interaction effects are significant
(p < 0.01). That indicates that the genotypes present different behavior
in the environments. It justifies a study of the behaviour of the genotypes
in order to identify the magnitude of interaction with the environments
(Gauch, 1992).

Table 1 presents the ANOVA for AMMI 8. The sources listed in this
table correspond to the terms in Eq. (1) for the AMMI model applied to
a yield trial with an RCB experimental design. In the AMMI analysis the
square sum of the interaction (SSgpr = 249704162) corresponds to the
eigenvalues (371 A7) (Table 1). It can be inflated by the presence of noise
(inexplicable variation) in the response variable. It is necessary to make an
adjustment of the interaction by singular value decomposition of the GEI
matrix. The SS for G is 79828575, for GEy it is 91632744, and for GEg it is
249704162 — 91632744 = 158071418 and for the irrelevant E it is 989593772
(Table 1). This matrix has rank p = 8, therefore it can be decomposed into
eight principal components that correspond to the partial square sum in
the analysis of variance.

Model diagnosis for AMMI is routinely done using cross-validation of
experiments with replication. However, this is not an option for this wheat
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Table 1. Conjoint analysis of variance of the productivity of maize trials and
decomposition of the sum of squares of (GEI)

Source DFqg SS MS Fg p-value | DF¢ F¢o  p-value
Environment (E) 19 989593772 52083883 26.30 <0.01 - - -
Block/ 60 118813054 1980218 3.28 <0.01 - - -
Environment
Genotype (G) 8 79828575 9978572 16.55 <0.01 - - -
Interaction 152 249704162 1642791 2.73 <0.01 152 2.73 <0.01
(G X E)

PC1 26 140323418 5397054.5 8.95 <0.01 126 1.44 <0.01
PC2 24 37711634 1571318.1 2.61 <0.01 102 1.17 0.1487
PC3 22 26058572 1184480.6 1.96 <0.01 80 0.9457 0.6116
PC4 20 21533133 1076656.9 1.79 0.0192 60 0.6657 0.9739
PC5 18 12371704 687316.9 1.14 0.3093 42 0.4623 0.9986
PC6 16 6900236 431264.7 0.72 0.7744 26 0.307 0.9997
PC7 14 2513071 179505.1 0.30 0.9939 0 - -
PC8 12 2292394 191032.8 0.32 0.9858 0 - -
Residual 480 289366499 602847 — — - — —
Total 719 1727306061 - — — - - -
General mean  4858.139

CV(%) 15.982

G - Gollob; C - Cornelius

trial because the replicated data were not published (Gauch, 2013). How-
ever, the mean square error has been published. This guides model diagnosis
by retaining as many IPCs as needed for the sum of their eigenvalues to
approximate the SS for GEg, namely 158071418. From Table 1, the AMMI2
model captures 178035052, which is close (and it is better not to add IPC3
with its SS of 26058572). Hence, the model diagnosis for optimizing predic-
tive accuracy points to AMMI2.

Observing the decomposition of the genotype-by-environment interac-
tion through the AMMI model (Table 1), the first, second and third prin-
cipal components (PCs) are significant (p < 0.01) by Gollob (1968) F' test,
and explain 59.2%, 15.1% and 10.4% respectively of the variation of the
SSarr. These three principal components sum to 81.7% of the SSggr,
which is considered a pattern response present in the SSqgpr with 72 de-
grees of freedom (47.37% of the interaction degrees of freedom).

Another alternative to choose the AMMI model is the Fr test proposed
by Cornelius, described by Piepho (1995) as one of the most robust. AMMI1
was chosen by the criteria model, with a 1% level of significance. This axis
explained 56.2% of the SSgEr, while the other axes represent variations of
the SSgpr with a large amount of noise. In this way the model AMMI1
was the best to describe the pattern of the interaction (Table 1).

The results of unfolding the GEI correspond to each member of the
AMMI model family, it means the AMMIO model, all the GEI, with 152
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DF. After removing the 26 DF and the sum of squares assigned to the
first axis PC1, the AMMI1 model is the remainder of the interaction. After
removing the 24 DF and the sum of squares assigned to the second axis
PC2, AMMI2 is the remainder and so on for the AMMI3 up to the AMMIS
model (Table 1).

The last stage of the AMMI analysis is the graphical representation of
genotypes and environments in the biplot (Gabriel, 1971) and identifica-
tion of mega-environment. It is necessary to determine the position in the
interaction of singular axes. From the matrix U, S and V resulting from
the singular value decomposition (SVD) of the GE matrix, we obtain the
results of interest (Garcia-Pena and Dias, 2009).

In this case, it is possible to build up the biplot. The biplots are: i)
AMMI1 - Means vs PC1 (Fig. 1); ii) AMMI2 - PC1 vs PC2 (Fig. 2). The
biplot graphics are used to analyse the dispersion of genotypes, environ-
ments and the interaction between them. The AMMI1 biplot contains the
variation of the principal additive effects of genotypes and environments.
This is shown in the horizontal axis, while the variation of the multiplica-
tive effects of the GEI is shown in the vertical axis. In the biplot, AMMI2
is visualized by the multiplicative effects of the GEI contained in the first
two PCs.

The first singular axis of the AMMI analysis captures the highest per-
centage of the “pattern” of the data (Gauch, 1988). A high percentage of
the SSgpr is explained by the first two axes (71.2%), and the highest part
of the “pattern” of the GEI will be captured. In this way, the scores of the
genotypes and environments are plotted until the second axis corresponding
to each variable.

According to the values of the two first principal components (CP1
and CP2) or by Fig. 1, G6, G5 G4 and G9 are the genotypes with best
answers and more productive in the environmental conditions prevailing
during crop development. The genotypes are more stable in G7, G2, G3
and G6 (Fig. 1 and 2). These can be grown in all the localtions where
the study was carried out. Among them, the genotypes G6, G3 and G7
display a productivity above the general mean and are between the two
groups (productive and stable). They indicate that these genotypes are
associated with adaptability and stability. However, the genotypes with
high mean productivity can-not be stable. The case of the genotype G5
shows a specific adaptability to the environment E15 and the genotype G4
to the environment E11 (Fig. 1 and Fig. 2).
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Figure 1. Biplot AMMI1 (Means vs PC1) for the data of productivity of maize
(kg/ha) with nine genotypes (G) and twenty environments (E)

To determine if mega-environments can be observed, we consider Fig. 2.
Five mega-environments are observed, only two of them being considered of
importance. The first, called mega-environment A, is considered the most
appropriate, since it has the most productive and stable genotypes, also the
environments where these materials exhibit better behaviour. This mega-
environment is formed by genotypes G6 and G5. The second best, called
mega-environment B, is formed by genotypes G4 and G9.

The specific adaptation indicates a high mean productivity of a geno-
type in a selected environment. For example, genotype G4 and G9 are
adapted to the environments E11, E13 and E18, and the genotypes G5 and
G6 are adapted to the environment E15, etc. (Fig. 2).

As regards the environments, poor contributions were presented by the
environments E9, E16, E14, E4, E5, E19 and E7 (Fig. 2). The environments
more discrepant were E19, E10, E8, E13 and E11. E12 gives the highest
mean of productivity (7516.500 kg/ha) and E19 the lowest mean (4837.614
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Figure 2. AMMI2 biplot (PC1 vs PC2) for data on the productivity of maize
(kg/ha) with nine genotypes (G) and twenty environments (E)

kg/ha). These can be considered examples of favourable and unfavourable
environments, respectively (Fig. 1 and 2). The environments E20 and E17,
E9 and E5 are very similar. This information can be observed in Fig. 1. It
is possible to replace one of this locals by other more representative of the
region, where the cultivars will be recommended. The AMMI analysis can
be used efficiently in the identification of superior environmental conditions
for agricultural exploitation (selection of growing locations) and superior
mean performance genotypes (Gauch et al., 2008; Yan, 2010).

4. Conclusions

The genotypes G6, G3 and G7 display higher adaptability and stability.
Therefore they are recommended to be used in all environments included
in the study. The genotypes G5 and G4 present high mean productivity.
However, they were unstable and have a specific adaptation to the envi-
ronments of high quality. The environment E12 gives the highest mean
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productivity (7516.500 kg/ha) and environment E19 has the lowest mean
(4837.614 kg/ha). These can be considered examples of favourable and un-
favourable environments respectively.

Among SVD-based statistical analyses, AMMI is a unique analysis that
completely and always separates G, E, and GEI as required for most agricul-
tural research purposes. Furthermore, it separates signal from noise as well
as any other method for the purpose of gaining accuracy. AMMI analysis of
multi-environment yield trials serves two main purposes: (i) understanding
complex GEI, including delineating mega-environments and selecting geno-
types to exploit narrow adaptations, and (ii) gaining accuracy to improve
recommendations, repeatability, selections, and genetic gains.
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