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SUMMARY

A common problem in multi-environment trials arises when some genotype-
by-environment combinations are missing. In Arciniegas-Alarcén et al.
(2010) we outlined a method of data imputation to estimate the missing
values, the computational algorithm for which was a mixture of regression
and lower-rank approximation of a matrix based on its singular value
decomposition (SVD). In the present paper we provide two extensions
to this methodology, by including weights chosen by cross-validation and
allowing multiple as well as simple imputation. The three methods are
assessed and compared in a simulation study, using a complete set of real
data in which values are deleted randomly at different rates. The quality of
the imputations is evaluated using three measures: the Procrustes statistic,
the squared correlation between matrices and the normalised root mean
squared error between these estimates and the true observed values. None
of the methods makes any distributional or structural assumptions, and
all of them can be used for any pattern or mechanism of the missing values.
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1. Introduction

In plant breeding, multi-environment trials are important for testing ge-
neral and specific cultivar adaptation. A cultivar grown in different envi-
ronments will show significant fluctuations in yield performance relative to
other cultivars. These changes are influenced by the different environmental
conditions and are referred to as genotype-by-environment interaction or
GxE (Dias and Krzanowski, 2003; Gauch, 2013).
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Multi-environment trials usually give rise to incomplete data sets (Ro-
drigues et al., 2011; Bergamo et al., 2008). Possible ways of analysing such
trials are: (i) extracting a balanced subset of data by deleting those geno-
types or environments that contain missing values (Yan et al., 2011); (ii)
filling the missing cells with environmental means; or (iii) filling the missing
cells with estimated values obtained from fitted multiplicative or mixed li-
near models (Kumar et al., 2012; Arciniegas-Alarcon et al., 2011). These
strategies may overcome the lack of balance in the data, but none of them
is both simple and effective (Yan, 2013). The first strategy does not make
use of all available information, the second one may have problems when
too many values are missing, and the third one involves multiple steps and
complicated procedures (Yan, 2013).

Following Little and Rubin (2002) and Di Ciaccio (2011) we can distin-
guish between three missing data mechanisms in GxE trials. Data are said
to be “missing at random” (MAR) if the mechanism causing the omissi-
ons is independent of the unobserved data values. If the omissions are also
independent of the observed data values, then the data are said to be “mis-
sing completely at random” (MCAR). Finally, if the mechanism causing
the omissions depends on the unobserved values, the data are said to be
“missing not at random” (MNAR).

Piepho and Méhring (2006) note that in a cultivar testing program, whe-
re cultivars are selected each year on the basis of the data thus far collected
but not on unobserved data, the missing-data mechanism is clearly MAR.
On the other hand, Rodrigues et al. (2011) state that MCAR occurs when
the plants may be destroyed by animals, floods or during harvesting, and
the yield measurements may be erroneously performed and inadequately
introduced into the data base. The third mechanism, MNAR, is considered
by some researchers to be the most common one, because in the trials a
clear pattern in the shape of the missing values can be found (Paderewski
and Rodrigues, 2014). According to Piepho (1995), MNAR occurs when
the same subset of genotypes may be missing in a number of environments
of the same subregion, because of local growers dislike of those genotypes.
Similarly, a genotype missing in one place is likely to be missing in other
places as well. In these cases, the mechanism that leads to the missing data
is clearly not a random one.

A new distribution-free imputation method was recently proposed for
GxE trials using a mixture of regression and lower-rank approximation
of a matrix by Arciniegas-Alarcén et al. (2010), who called this method
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GabrielEigen. In the present paper we first describe a modification of this
method that uses weights chosen by cross-validation, and then go on to
provide an extension to the case of multiple imputation.

2. Material and methods

2.1. Data imputation using GabrielEigen

Suppose that the (n x p) matrix X contains elements x;; (i =1,...,n;j =
1,...,p), some of which are missing. The rows represent genotypes and the
columns the environments.

Step 1.

Step 2.

Step 3.

Step 4.

Start by inserting into each missing entry the mean of its column,
thereby obtaining a completed matrix X.

Standardise the columns of X by subtracting m; from each ele-
ment and dividing the result by s; (where m; and s; are respec-
tively the mean and the standard deviation of the jth column).

Using the standardised matrix, replace each original missing
entry x;; by fgjm) = X,{:VD+UTX_1. Here the vectors x{, X1
and the matrices V, D and U are obtained from the partition
T m
_ | T X1 : _ T _ T
X = l x1 Xii 1 with X1 = kz_:lu(k)dkv(k) = UDV", where
U=uy,...,unl, V=1[vi,...,vn], D = diag(dy,...,dy) and

m < min{n — 1,p — 1} is chosen to be the smallest value sa-

tistying (3 d2)/(X " @) &~ 0.75. Thus UDVT s

the singular value decomposition (SVD) of Xj; and DT is the
Moore-Penrose generalised inverse of D. Also, for each missing
observation the components of the considered partition will be
different, and this partition is obtained through elementary ope-
rations on the rows and columns of X.

Finally, return the imputed values to their original scale, x;; =

(m)

mj + sj:?ij , replacing them in the matrix X.

Steps 2 to 4 are iterated until the imputations achieve stability. This
process assumes that n > p, so if this is not the case the matrix should first
be transposed before conducting the iterations.
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2.2. Proposed modifications

(m) py (@M
ij ij

w (X{VD+UTX_1). Here the weight w is obtained by cross-validation,

Our first proposal is to include weights in Step 3, replacing .’ by &

using as the predictive criterion the root mean squared predictive diffe-
rence (RMSPD) from the observed data in the incomplete matrix (Gauch
and Zobel, 1990; Sabaghnia et al., 2012). The modified algorithm, with the
new Step 3 but keeping the other steps of GabrielEigen the same, will be
called WGabriel.

To see how the weight w is chosen, consider a GxE trial arranged in a
table with missing values. From the observed values, and for any specific
value of w, delete one cell at a time, impute the deleted value with WGabri-
el, and record the difference between the estimated and actual data for the
cell under consideration. Do this for all observed cells, and take the average
of the squared differences. Denote this quantity by D. The square root of
D is the RMSPD based on the observed values, namely RMSPD(obs) for
that value of w.

Because the matrix X is standardised by columns in step 3 of WGabriel,
it makes sense to allow the value of w to be positive, negative or zero. Nega-
tive w represents a change in the magnitude and direction of the imputation,
which means a change from a positive to a negative value, or vice versa,
in the standardized scale with the objective of minimising RMSPD(obs).
However, the chosen value of w should be such that on returning to the
original scale (Step 4), the imputed values x;; = m; + sj@(;”’m) do not lie
outside the range of existing values. To achieve this, we suggest that all
w values in the interval [-2,2] should be tested at steps of 0.005 or 0.01,
i.e. testing a total of either 801 or 401 weights respectively (larger intervals
could be considered, but the risk of convergence failures in the algorithm
will be increased). The value of RMSPD(obs) is obtained for each of these
weights, and the value of w which gives the minimum of this statistic is
chosen for analysis. This weight will be denoted w*.

Josse and Husson (2012) and van Buuren (2012) have warned that sim-
ple imputation systems such as WGabriel do not take into account the
uncertainty produced by the imputations, and if later parameters are esti-
mated from augmented data that includes the imputed values, the standard
error will be underestimated. It is well known that this problem can be sol-
ved by the use of multiple imputation (MI) (Rubin, 1978; Josse et al., 2011).
MI involves three distinct steps (Bergamo et al., 2008): 1. Imputation:
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The missing values are estimated M times, generating M completed data
sets; 2. Analysis: The M completed data sets are analysed, using appro-
priate statistical procedures for the problem under study; 3. Combinati-
on: The M separate sets of results are combined into one single inference.
In many practical applications it has been found that a high statistical
efficiency can be achieved by using M=20 (Schafer and Graham, 2002).

The WGabriel method can be extended to allow distribution-free mul-
tiple imputation in the following way. w* is the weight that provides the
best predictive difference, i.e. minimum RMSPD(obs), using all the availa-
ble information in an incomplete matrix. So to produce 20 or more different
completed data sets we could use 20 or more different weights in WGabriel.
These weights should all be close to w*, as otherwise RMSPD may be far
from minimum for some of them. Thus, for example, if w*=0.7 and the
previously chosen step was 0.01, we suggest a range for w between 0.6 and
0.8, giving a total of 21 completed data sets. This imputation method will
be called MIWG(0.01).

In the following we compare the three imputation methods: GabrielEi-
gen, WGabriel and MIWG(0.01). As MIWG(0.01) is a method that produ-
ces multiple completed sets, the mean of the imputed values will be used
(Kroonenberg, 2008) so that this method can be compared with the simple
deterministic imputation algorithms.

2.3. The data

We consider two data sets, the “Denis-Baril Matrix” and the “Calinski Ma-
trix”. The former is a complete G xE trial with 26 wheat genotypes evalua-
ted in 5 French environments, which was subjected to the arbitrary deletion
of 37% of the entries, giving 48 missing values (Denis and Baril, 1992). This
data set, available in the free statistical software R (Wright, 2012), is used
here only illustratively, to show values of RMSPD for the observed data
and for missing values with different weights in WGabriel. The second data
set is complete, and will be used to compare the imputation algorithms.
It is a matrix of size 18x9, for 18 pea varieties evaluated in 9 different lo-
cations in Poland. The experiment was conducted by the Research Centre
for Cultivar Testing, Stupia Wielka, and the variable of interest was mean
yield in dt/ha (Calinski et al., 2009).
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2.4. Simulation study

The “Calinski Matrix” was submitted to random deletion of values at dif-
ferent percentages, namely 10%, 20% and 30%. The process was repeated
100 times for each percentage of missing values, giving a total of 300 in-
complete data sets, and in each set the missing values were imputed in turn
with the three algorithms described above using code in R (R Development
Core Team, 2013). The R code is available from the authors on request.

The random deletion process for a matrix X(,x,) was conducted as
follows. Random numbers between 0 and 1 were generated in R with the
runif function. For a fixed value of r (0 < r < 1), if the (pi + j)-th random
number was lower than 7, then the element in position (i + 1, j) in position
of the matrix was deleted (i = 0,1,...,n—1;j = 1,...,p). The expected
proportion of missing values in the matrix is thus r (Krzanowski, 1988).
This technique was used with r» =0.1, 0.2 and 0.3.

2.5. Comparison criteria

Three criteria were used to compare the actual data with the simulation
results: the M? Procrustes statistic (Krzanowski, 2000); the squared cor-
relation between matrices, corr? (Gabriel, 2002); and the normalised root
mean squared error, NRMSE (Ching et al., 2010). The computational de-
tails for each of these criteria now follow.

First, each completed data matrix containing observed+imputed va-
lues, Y, , was compared with the original matrix X,.;, using M 2 —
trace(Xoring;i g+YimpY;‘Cnp—2XoMgQY;‘Cnp) where Q = VUT is the rota-
tion matrix calculated from elements of the SVD of the matrix X . g Yimp =
UXVT. The M? statistic measures the difference between two configura-
tions of points, so the imputation method that minimises this difference
indicates the method that yields the closest match between the original
data values and the corresponding imputed ones after deletion.

Similarly, M? was used to compare the matrices of interactions GEoig
and GE;;,, where GE,.;; and GE;,;, are the residual matrices after fitting
the main effects by ANOVA in the matrices X,jy and Y, respectively
(Garcia-Pefia and Dias, 2009). However, the matrices GE,ig and GE;p,,

trz{BT]/?;}
tr{BTB}tr{BTB}’
where B and B represent respectively the matrices GEqrig and GE;p,),
centered by columns. The best imputation algorithm with this criterion is

the one with highest corr?.

were also compared using the coefficient coer(B,E) =
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The third criterion used was NRMSE= |/mean(aimp — aorig)?/sd(aorig)
where a;y,, and a,.;y are vectors containing respectively the predicted and
the true values of the simulated missing observation, and sd(ayig) is the
standard deviation of the values contained in the vector a,.i;. The best
imputation method with this criterion is the one with minimum NRMSE.

3. Results and discussion

3.1. Denis-Baril matrix

The complete matrix was subjected to arbitrary deletion of 48 values, from
which we can obtain the RMSPD for the observed and the missing values.
Figure 1 shows the two RMSPD curves over different weights. All weights
in the interval [-2,2] were considered, but only the weights in the interval
[0.5, 1.2] are shown here, because this is where the curves were minimised.
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Figure 1. Root mean squared predictive difference (RMSPD) in the Denis-Baril
Matrix

The distance between the two curves can be interpreted as the dis-
crepancy between the imputation using RMSPD(obs) and the real RMSPD
of the missing values - RMSPD(miss). There is a point of intersection of the
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two curves, but at this point neither RMSPD (miss) nor RMSPD(obs) is mi-
nimised; RMSPD(miss) and RMSPD(obs) are minimised at w = 1.08 and
w = 0.935 respectively. An important conclusion, therefore, is that since
the curves are minimised when w # 1, the WGabriel method is appropriate.

3.2. Calinski matrix

In the previous matrix it was possible to calculate RMSPD(miss) for com-
parison, but in practical applications this is impossible. For this reason,
the simulation study in the “Calinski matrix” takes into account only
RMSPD(obs) as the criterion of choice for the weights. Figure 2 pres-
ents the M? distributions when each completed matrix (i.e. containing
observed+imputed values) was compared with the original matrix. Recall
that the best imputation method is the one minimising M?2. For 10% de-
letion the three methods have similar results, but when the imputation
percentage increases, M? for the GabrielEigen method also increases so
IMWG(0.01) and WGabriel are the better methods.

Percentage of missing values
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Figure 2. Procrustes statistic (M?) distribution between imputed values
matrices and the Calinski matrix

Figure 3 shows the M? values when comparing the GE;n,, ANOVA
residual matrices obtained from the completed matrices with the GEgig
original matrix. Very similar behaviour to that of Figure 2 is evident: when
the percentage of random deletions increases the best imputation methods
are MIWG(0.01) and WGabriel. An approximately symmetric distribution
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is observed at 10% and 20% deletion for all methods. With 30% deletion, the
symmetry remains for the M? distributions in WGabriel and MIWG(0.01),
but the GabrielEigen method has a right-asymmetric distribution.
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Figure 3. Procrustes statistic (M?) distribution between the matrices GE;p,
and GE,4

The (squared) correlation distributions between the different GEjyy,),
matrices and GE,.;; are presented in Figure 4. High correlations with a
median of approximately 0.87 were obtained for all three imputation algo-
rithms at 10% deletion. When the deletion percentage increases, the cor-
relation decreases faster for the GabrielEigen method than for the others.
At 20% deletion, the corr? median for GabrielEigen was 0.7174, while for
WGabriel it was 0.7632 and for IMWG(0.01) it was 0.7649.

At 30%, the median corr? in the GabrielEigen algorithm decreases
to 0.5528, while for WGabriel and IMWG(0.01) the median has values
of 0.6292 and 0.6297 respectively. In general, all methods show moderate
and high positive correlations. At 10% deletion all methods show sym-
metric distributions, but at 20% WGabriel and IMWG(0.01) have a left-
asymmetric distribution. According to corr?, therefore, the best method is
IMWG(0.01), with WGabriel second and GabrielEigen last.

The third comparison criterion was NRMSE, and the means and me-
dians of this statistic for the three imputation methods are shown in Ta-
ble 1. The best method is the one that minimises the value of the statistic.
For all deletion percentages the two proposed methods were better than
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Figure 4. Squared correlation (corr?) distribution between the matrices GE;y,y
and GE,.¢

GabrielEigen. At 10% deletion WGabriel was the best method followed
by IMWG(0.01). For 20% deletion the ranking was the same but the two
mean values were very close. At 30% deletion the mean of IMWG(0.01) is
the lowest but the mean of WGabriel is again very close.

Table 1. Mean and median for normalised root mean squared error in the
Calinski matrix

Percentages of values deleted randomly
10% 20% 30%
Method Mean Median Mean Median Mean  Median
GabrielEigen  0.3512 0.3382  0.3538 0.3510  0.3709 0.3660
IMWG(0.01)  0.3426 0.3375  0.3293 0.3215 0.3345 0.3277
WGabriel 0.3419 0.3376  0.3292 0.3252  0.3346 0.3289

Finally, an important aspect is that of the weights used in the “Calinski
matrix”, which were found by cross-validation for WGabriel, because the
distribution-free multiple imputation by MIWG(0.01) method depends on
these weights.

Figure 5 shows the weight distributions for WGabriel. When the missing
values percentage increases, the weight distribution is more strongly left-
asymmetric with a median close to 0.4. In this case the basic statistics of
the weight could be of interest in order to assess the centrality parameters
and the variability, so these are presented in Table 2.
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Figure 5. Weight distribution for WGabriel in the Calinski matrix

Table 2.Weight statistics for WGabriel

Percentages of values
deleted randomly
10% 20% 30%

Mean 0.3649 0.2734 0.1152
Median 0.4200 0.4000 0.3600
Standard Dev. 0.3103 0.4837 0.6350
Q3-Q1(*) 0.3100 0.3900 1.1000

(*)Q3-Ql=interquartile distance

The suggestion to apply cross-validation in the interval [-2,2] was cer-
tainly justified in this data set, because the values of the weights fell inside
it. More specifically, from the box plot for 10% imputation we see that the
weights lay in the interval [-1.3, 0.9], while for 20% and 30% they were in
[-1.3, 0.97] and [-1.27, 0.96] respectively.

4. Conclusions

The WGabriel and MIWG(0.01) imputation procedures proposed here give
the best results for the data matrix in the simulation study. These methods
minimise both M? and NRMSE, and maximise corr? for all percentages of
deleted values values. For situations with a high missing value percentage
(>10%) the most favourable method is MIWG(0.01), because with such a
distribution-free multiple imputation method it is also possible to obtain a
variance estimate among the imputations which quantifies the uncertainty
about the real values to be imputed. This possibility does not arise with the
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other two methods, so for these methods it would be necessary to use extra
resampling techniques such as proportional bootstrap in order to obtain
variance estimates.

In this study the process used to artificially introduce missing values
into the matrix was MCAR. However, that is not to say of course that the
methods cannot be used when the missing values in a practical application
are MAR or MNAR,; for instance, when the data have a clear pattern. The
only requirement for application of the methods is that the data set can be
arranged in matrix form.

The three methods presented do not make any distributional or struc-
tural assumptions, and do not have any restrictions regarding the pattern
or mechanism of missing data. However, more extensive evaluation of all
the methods will be necessary before definitive conclusions can be reached.
A good practical way forward would be to build further simulations around
other complete sets of real data.
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