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SUMMARY 

A nonlinear statistical approach was used to evaluate the efficiency of plant protection 

products. The methodology presented can be implemented when the observations in an 

experiment are recorded as success or failure. This occurs, for example, when following 

the application of a herbicide or pesticide, a single weed or insect is classified as alive 

(failure) or dead (success). Then a higher probability of success means a higher 

efficiency of the tested product. Using simulated data sets, a comparison was made of 

three methods based on the logit, probit and threshold models, with special attention to 

the effect of sample size and number of replications on the accuracy of the estimation of 

probabilities. 
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1. Introduction 

Evaluation of the efficiency of an experimental factor is an important element of 

agricultural research. It is essential to know what level of implemented 

treatment ensures the optimal gain. The observations collected in plant 

protection experiments are various in nature, and can be measured as 

quantitative traits and analyzed using linear statistical methodology, where the 

effect of using a herbicide is expressed for example as plant biomass or height 

(Finney, 1979). However, the observed response can also be coded on a 

discontinuous scale, or on a time scale when the data are treated as event times 

(Burgos et al., 2013, Ritz et al., 2013). A special case is where observations are 

collected in a binary manner, i.e. as a sequence of failures and successes. For 
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example, an individual weed may be evaluated as destroyed or not, and 

similarly, an individual insect may be classified as alive or not. Although 

nonlinear statistical methods have been widely developed over recent decades, 

the analysis of such data sets is not easy.   

The aim of this paper is to compare some of the nonlinear statistical 

approaches used in evaluating the efficiency of plant protection products, with 

special attention to planning a proper experimental design. The essential 

assumption in these methods, based on a generalized linear model and threshold 

model, is the existence of an unobservable and continuous variable, named 

liability, whose values determine the observed categorical trait. It is supposed 

that the efficiency is influenced by many unknown factors, similar to disease-

resistance, but their effect is observed on a binary scale. The compared methods 

are illustrated using simulated data sets.  

2. Material  

Let us assume that four plant protection products were evaluated according to 

the following schema: each product was applied in the same dose to 100 (or 

1000) individuals, and only two types of result were observed: the individual 

weed or insect was destroyed (this observation was recorded as a success and 

coded as 1) or it was still alive (recorded as a failure and coded as 0).  

To simulate the successes and failures we used a standard normal random 

variable z. To model the differences between products we interpreted a result 

with z less than fixed ci (i = 1,2,3,4) as representing a success (coded as 1) of 

the i-th product. This procedure was repeated n = 100 (or n = 1000) times, and 

the obtained sequence of ones and zeros was treated as one replication or as a 

series of k replications, k = 2,4,5 (or k = 2,5,10), each of size 100/k (1000/k). 

The data were simulated for two sets of parameters ci. The first was more 

compact, while the other was more widely spread. The assumed values of 

parameters in these two sets and the numbers of successes obtained are 

presented in Tables 1 and 2 respectively.   
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Table1. True values of parameters and numbers of successes in a simulation  

of 100 observations per treatment 

Sample 

size 

Assumed parameter – first set Assumed parameter – second set 

0.5 -0.3 0.7 -0.2 -1.7 -0.6 0.9 1.5 

100 74 47 71 40 6 35 81 94 

50 

50 

38 

36 

24 

23 

38 

33 

25 

15 

4 

2 

16 

19 

42 

39 

49 

45 

25 

25 

25 

25 

19 

19 

17 

19 

9 

15 

9 

14 

17 

21 

16 

17 

11 

14 

9 

6 

1 

3 

2 

0 

7 

9 

8 

11 

19 

23 

19 

20 

25 

24 

22 

23 

20 

20 

20 

20 

20 

15 

16 

11 

16 

16 

7 

12 

20 

8 

13 

14 

14 

15 

15 

13 

7 

14 

6 

8 

5 

1 

3 

1 

1 

0 

5 

9 

4 

7 

10 

15 

17 

15 

18 

16 

20 

20 

17 

18 

19 

 

Table 2. True values of parameters and numbers of successes in a simulation  

of 1000 observations per treatment 

Sample 

size 

Assumed parameter – first set Assumed parameter – second set 

0.5 -0.3 0.7 -0.2 -1.7 -0.6 0.9 1.5 

1000 686 378 752 406 33 258 808 944 

500 

500 

349 

337 

191 

187 

366 

386 

202 

204 

23 

10 

131 

127 

401 

407 

473 

471 

200 

200 

200 

200 

200 

148 

129 

138 

141 

130 

80 

75 

75 

70 

79 

145 

149 

146 

156 

156 

78 

82 

88 

77 

81 

15 

4 

5 

4 

5 

58 

49 

55 

51 

45 

165 

156 

158 

164 

165 

190 

190 

187 

188 

189 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

74 

74 

64 

65 

72 

66 

69 

72 

65 

65 

41 

38 

38 

37 

37 

38 

33 

37 

38 

41 

74 

71 

73 

76 

72 

74 

79 

77 

76 

80 

41 

37 

45 

37 

42 

46 

36 

41 

38 

43 

6 

9 

1 

3 

4 

1 

2 

3 

2 

2 

26 

32 

27 

22 

24 

31 

26 

25 

18 

27 

85 

80 

77 

79 

80 

78 

82 

82 

83 

82 

94 

96 

93 

97 

93 

94 

92 

96 

95 

94 
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From a practical point of view, the logit, probit and threshold models differ 

in terms of the input data representation. In the logit and probit models the input 

data are the frequencies (empirical probabilities of success), while in the 

threshold approach there is a sequence of zeros and ones. An interesting 

question is whether the final results depend on the number of replications. 

Therefore several variants of the data were analyzed.  

3. Methods 

The generated data sets were analyzed using the generalized linear model with 

logit and probit link functions, and the threshold model. The implemented 

methods are well-known in the literature, and so only some essential points will 

be noted here.  

The generalized linear model used in this study can be written as 

kjifη jiij  ..., ,1,4 ,3 ,2 ,1,))((E                      (1) 

where E denotes the expectation operator, )( ijfη  is a (so-called) link function, 

ijf  is the observed probability of success of the i-th product in the j-th 

replication, and i  and j  are unknown parameters representing products 

(treatments) and replications respectively (McCullagh and Nelder, 1989, 

Agresti, 1984).  

If the link function has the form:  

ij

ij

ijη








1
log)( ,              (2) 

where ij  is a probability of success corresponding to the i-th treatment 

(herbicide or pesticide) in the j-th replication, the equality (1) with ij  replaced 

by ijf  is called the logit model (Rao and Toutenburg, 1999; Bakinowska and 

Kala, 2007, McCullagh and Nelder, 1989). 

If the link function in the model (1) is of the form:  

)()( 1
ijijη   ,                       (3) 
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where 1  denotes the inverse of the standard normal cumulative distribution 

function (and 
ijij f ), then equality (1) is called the probit model (Rao and 

Toutenburg, 1999).  

In the threshold model it is supposed that the effects of treatments are 

related to some unobservable continuous random variable w. The comparison of 

its values with a given threshold leads to dichotomous events or a threshold 

trait. The threshold model can be written as 

,ew i      i = 1, 2, 3, 4,             (4) 

where i  is a fixed threshold corresponding to the i-th treatment (product), and 

e is the error standard normal random variable. This means that the standard 

deviation of e is the unit of the random variable w. Therefore the effectiveness 

of the treatments is here considered as the threshold trait with two categories of 

observed values (Falconer, 1960). 

The computations were performed in SAS (Statistical Analysis System, 

SAS Inst. 1997) using the logistic glm procedure (with the logit link function 

for the logit model, and with the probit link function for the probit model), and 

using a program developed by authors for the threshold model. In this latter 

case, Bayesian methods with the Gibbs sampling algorithm were used for the 

estimation of model parameters. In the animal science literature there are well-

known formulae for the ordinary threshold model with repeated observations for 

one treatment (Sørensen et al., 1995, Moliński et al., 2003). This approach was 

implemented here. In the Gibbs sampling procedure, the prior distributions were 

assumed to be an improper distribution for fixed effects and standard normal 

distribution for errors. The estimation was performed based on the conditional 

posterior distribution, which for the parameter i  was normal with mean equal 

to the solution of the appropriate mixed model equations (Sørensen and 

Gianola, 2002).  

In each analysis, the Gibbs sampler generated 10 000 runs. The first 2000 

were discarded as a burn-in period. Moreover, to avoid autocorrelation within 

the generated sequences, only every tenth result was used.  



 

 

 

 
E. Skotarczak, E. Bakinowska, K. Tomaszyk 

 

 

 

 

176 

4. Results 

Using the results of estimation from the logit, probit and threshold models, 

estimates of probability of success for each product can be established. In the 

case of the logit model 

,

)exp(1

)exp(

^

^

^

ij

ij

ij








  

where 
^

ij  is the best linear unbiased estimator of 
ji   . Under the probit 

model 

)(
^^

ijij   , 

while for the threshold model 

)(
^^

ijij   , 

where   is the cumulative distribution function of the standard normal random 

variable. 

By means of a similar formula, 

)( ii c , 

the true probabilities of success, characterizing the products, can also be 

calculated. The true and estimated probabilities derived from the simulated data 

are presented in Tables 3 and 4. 

From a practical point of view, one of the most interesting results of the 

statistical analysis is the decision as to which product is the most effective. This 

information follows directly from the estimated probabilities. Since in our study 

the theoretical (true) probabilities are known, the main question concerns 

consistency between the estimated and true probabilities. 
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Table 3. True and estimated probabilities of success for the case with 100 

observations per treatment 

Model 
Treatments  Treatments 

1 2 3 4  1 2 3 4 

 1 x 100  1 x 100 

threshold 0.740 0.471 0.709 0.401 threshold 0.059 0.349 0.811 0.942 

logit 0.739 0.469 0.709 0.400 logit 0.060 0.350 0.810 0.940 

probit 0.740 0.470 0.710 0.400 probit 0.060 0.350 0.810 0.940 

 2 x 50  2 x 50 

logit 0.701 0.419 0.668 0.351 logit 0.053 0.322 0.791 0.933 

probit 0.699 0.421 0.668 0.352 probit 0.050 0.320 0.788 0.931 

 4 x 25  4 x 25 

logit 0.725 0.446 0.694 0.375 logit 0.058 0.348 0.813 0.941 

probit 0.723 0.447 0.694 0.376 probit 0.054 0.339 0.806 0.938 

 5 x 20  5 x 20 

logit 0.750 0.476 0.720 0.404 logit 0.066 0.387 0.844 0.953 

probit 0.750 0.477 0.717 0.405 probit 0.064 0.374 0.835 0.954 

true 0.691 0.382 0.758 0.421 true 0.044 0.274 0.816 0.933 

 

Table 4. True and estimated probabilities of success for the case with 1000 

observations per treatment 

Model 
Treatments  Treatments 

1 2 3 4  1 2 3 4 

 1 x 1000  1 x 1000 

threshold 0.686 0.378 0.752 0.406 threshold 0.033 0.258 0.808 0.944 

logit 0.686 0.378 0.752 0.406 logit 0.033 0.258 0.808 0.944 

probit 0.686 0.378 0.752 0.406 probit 0.033 0.258 0.808 0.944 

 2 x 500  2 x 500 

logit 0.687 0.380 0.753 0.408 logit 0.032 0.252 0.803 0.942 

probit 0.688 0.380 0.753 0.408 probit 0.031 0.251 0.802 0.942 

 5 x 200  5 x 200 

logit 0.688 0.380 0.754 0.408 logit 0.031 0.247 0.800 0.941 

probit 0.688 0.380 0.754 0.408 probit 0.030 0.248 0.800 0.941 

 10 x 100  10 x 100 

logit 0.703 0.396 0.766 0.425 logit 0.033 0.260 0.811 0.945 

probit 0.703 0.396 0.767 0.425 probit 0.032 0.258 0.809 0.945 

true 0.691 0.382 0.758 0.421 true 0.044 0.274 0.816 0.933 
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5. Conclusions and discussion 

Before analyzing the results, let us note the differences between the sets of 

initial parameters which determine the true probabilities. In the first set (0.5, -

0.3, 0.7, -0.2) the range R = |0.5-(-0.2)| = 0.7, while in the set (-1.7, -0.6, 0.9, 

1.5) the range is more than four times larger. In consequence, drawing 

inferences with respect to the first set is much more difficult. This observation 

is confirmed by the fact that in the case n = 100 the estimated probabilities 

differ significantly from their true counterparts, irrespective of the method used. 

The differences were so great that even the ranking of products based on the 

estimated probabilities differs from that based on true probabilities. This does 

not occur in the case n = 1000 or for the second set of initial parameters.  

To draw more precise conclusions, the absolute values of the differences 

between true and estimated probabilities were calculated. As expected, better 

accuracy of estimation was achieved for data with n = 1000 individuals per 

treatment. Moreover, in the logit and probit approaches, replications can 

improve the results. The best estimates were obtained for two and four 

replications in the case n = 100 and for two and five replications in the case n = 

1000, but only in the first set of initial parameters. When the parameters were 

taken from the second set, the best results were obtained for ten replicates 

(almost the same results were also obtained for one replicate in the probit 

method). 

The above considerations lead to the conclusion that the method based on a 

generalized linear model with two, three or four replications of size n = 100 will 

produce satisfactory results. 

The proposed methodology can be easily expanded to situations with more 

than two categories. One advantage here is the avoidance of frequency 

transformation to normal distribution. Similar modeling (a threshold model) has 

previously been used to analyze the efficiency of herbicides based on real data 

(Skotarczak et al., 2002), to research the lodging of cereals (Bakinowska and 

Kala, 2007), and to analyze downy mildew infection of field pea varieties 
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(Bakinowska et al., 2012). The results obtained following the Bliss 

transformation of data, when compared with those obtained from the threshold 

model analysis, showed consistency and produced the same ranking of 

herbicides (Skotarczak et al., 2002). 
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