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SUMMARY 

Kernel principal components (KPC) and kernel discriminant coordinates (KDC), which 

are the extensions of principal components and discriminant coordinates, respectively, 

from a linear domain to a nonlinear domain via the kernel trick, are two very popular 

nonlinear feature extraction methods. The kernel discriminant coordinates space has 

proven to be a very powerful space for pattern recognition. However, further study 

shows that there are still drawbacks in this method. To improve the performance of 

pattern recognition, we propose a new learning algorithm combining the advantages of 

KPC and KDC. 

Key words: kernel principal components, kernel discriminant coordinates 

1. Introduction 

Classical principal component analysis (PCA) (Hotelling, 1933) was introduced 

as a technique for deriving a reduced set of orthogonal linear projections of a 

single collection of correlated variables X = (X1, X2,…, Xp)
T
, where the 

projections are ordered by decreasing variance. Principal component analysis is 

used, for example, in lossy data compression, pattern recognition, and image 

analysis. In addition to reducing dimensionality, principal component analysis 

can be used to discover important features of the data. Discovery in principal 

component analysis takes the form of graphical displays of the principal 

component scores. The first few principal component scores can reveal  

whether most of the data actually live on a linear subspace of R
p
, and can  
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be used to identify outliers, distributional peculiarities, and clusters of points. 

The last few principal component scores show those linear projections of  

X = (X1, X2,…, Xp)
T
 that have the smallest variance; any principal component 

with zero or near-zero variance is virtually constant, and hence can be used to 

detect collinearity, as well as outliers that affect the perceived dimensionality of 

the data.  

When we have samples originating from c groups, we would often like to 

present them graphically, to see their configuration or to eliminate outlying 

observations. However it may be difficult to produce such a presentation even if 

only three features are observed, and with a higher number of features it 

becomes impossible. A different method must therefore be sought for 

presenting multidimensional data originating from multiple groups. To make 

the task easier, in the first step every p-dimensional observation  

X = (X1, X2,…, Xp)
T
 can be transformed into a one-dimensional observation 

u1 = a1
T
X = a11X1 + a12X2 +…+ a1pXp, and the resulting one-dimensional 

observations can be presented graphically as points on a line. In the second step 

we can define a second linear combination u2= a2
T
X= a21X1 + a22X2 +…+ a2pXp, 

not correlated with the first, and present the observations graphically as points 

on a plane. 

Generally, the aim is to construct new uncorrelated variables u1, u2,…, us,  

s ≤ p, which will be linear combinations of the original observations 

X1, X2,…, Xp and which will discriminate the c groups to a maximum degree; 

that is to say, in the new system the centres of the c groups will be maximally 

spaced, and the observations from a given group will be maximally 

concentrated around its centre. These new variables are called discriminant 

coordinates (see Seber, 1984, p. 270). They are also sometimes called canonical 

variates, but this name is misleading, because canonical variables with 

completely different properties occur in canonical correlation analysis. Another 

name used is “discriminant functions” – this is inappropriate because 

discriminant functions are surfaces that separate the c groups from one another. 

The space of discriminant coordinates is a space which is convenient for the 
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application of various classification methods (methods of discriminant 

analysis). In the case c = 2 we obtain only one discriminant coordinate, 

coinciding with the well-known linear discriminant function of Fisher (1936). 

The linear projection method can be extremely useful in discovering low-

dimensional structure when the data actually lie in a linear (or approximately 

linear) lower-dimensional subspace (called a manifold) M of the input space R
p
. 

But what can we do if we know or suspect that the data actually lie on a low-

dimensional nonlinear manifold, whose structure and dimensionality are both 

assumed unknown? We can then construct the nonlinear principal components 

and nonlinear discriminant coordinates. 

Kernel principal components (KPC) and kernel discriminant coordinates 

(KDC), which are the extensions of principal components and discriminant 

coordinates, respectively, from a linear domain to a nonlinear domain via the 

kernel trick, are two very popular nonlinear feature extraction methods. The 

kernel discriminant coordinates space has proven to be a very powerful space 

for pattern recognition. However, further study shows that there are still 

drawbacks in this method. One of the major drawbacks of the kernel 

discriminant coordinate method is that it will lose the within-class scatter 

information, as for so-called “small sample size” problems, because all of the 

optimal discriminant vectors in this case are limited to the null space of the 

within-class scatter matrix  and this information is also important for pattern 

recognition. To improve the performance of pattern recognition, we propose 

another learning algorithm combining the advantages of KPC and KDC. Our 

proposed algorithm can be divided into three steps: 

(1) compute the optimal discriminant vectors of KDC; 

(2) compute the optimal vectors of KPC;  

(3) use the two kinds of features for recognition. 

The paper is organized as follows. In section 2, classical principal 

components are presented. Kernel principal components are presented in 

section 3. In section 4, classical discriminant coordinates are presented, and 

kernel discriminant coordinates are described in section 5. The discriminant 
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algorithm based on a combination of features from the kernel discriminant 

coordinates space and kernel principal components space is described in 

section 6. Finally, section 7 examines the quality of the new discriminant 

algorithm presented in this paper.  

2. Classical principal component analysis 

Assume that the random p-vector X = (X1, X2,…, Xp)
T
 has mean  and the 

(p×p) covariance matrix . PCA seeks to replace the set of p (unordered and 

correlated) input variables, X1, X2,…, Xp by a (potentially smaller) set of t 

(ordered and uncorrelated) linear projections, 1,…, t (t  p), of the input 

variables,  

j = bj
T
 X = bj1X1 +…+ bjpXp , j = 1, 2,…, t;        (2.1) 

where we minimize the loss of information due to the replacement. 

In PCA, “information” is interpreted as the “total variation” of the original 

input variables,  

  )tr(XVar
1

Σ 


p

j
j . 

From the spectral decomposition theorem, we can write  = UU
T
,  U

T
U  = Ip, 

where the diagonal matrix  has as diagonal elements the eigenvalues {j} of , 

and the columns of U are the eigenvectors of . Thus the total variation is tr() 

= tr() =  
p
j j1λ . 

The jth coefficient vector, bj = (bj1,…,bjp)
T
, is chosen so that: 

 The first t linear projections j, j = 1, 2,…, t, of X are ranked in importance 

according to their variances {Var(j)}, which are listed in decreasing order 

of magnitude:  

Var(1)  Var(2)  …  Var(t). 

 j is uncorrelated with all k, k < j. 
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The linear projections (1) are then known as the first t principal components 

of X.  

In practice, we estimate the principal components using N independent 

observations, {Xi, i =1, 2,…, N}, on X. We estimate  and  by 

 
 N

i iN 1
1ˆ XXμ  and  

,))(()1(ˆ

1

1
 



N

i

T
iiN XXXXS                      (2.2) 

respectively. 

The ordered eigenvalues of ̂  are denoted by 0ˆ...ˆˆ
21  p , and the 

eigenvector associated with the jth largest sample eigenvalue ĵ is the jth 

sample eigenvector jv̂ , j = 1, 2,…, p.   

The coordinates of the projection of the ith observation Xi on the jth 

principal components are equal to: 

i
T
jij Xv̂ˆ  ,            (2.3) 

i = 1, 2,…, N, j = 1, 2,…, p. 

A sample measure of how well the first t principal components represent the 

p original variables is given by the statistic 

p

t





ˆ...ˆ

ˆ...ˆ

1

1  

which is the proportion of the total sample variation that is explained by the first 

t sample principal components. 

It is hoped that the sample variances of the first few sample PCs will be 

large, and that the remainder will be small enough for the corresponding set of 

sample PCs to be omitted. A variable that does not change much (relative to 

other variables) in independent measurements may be treated approximately as 

a constant, and so omitting such low-variance sample PCs and focusing 

exclusively on the high-variance sample PCs is a convenient way of reducing 

the dimensionality of the data set. For diagnostic and data analytic purposes, it 
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is usual to plot the first sample PC scores against the second sample PC scores, 

)ˆ,ˆ( 2i1i  , where iĵ  is given by (2.3), for i = 1,…, N, j = 1, 2. 

3. Kernel principal component analysis 

An approach that generalizes linear PCA is that of kernel PCA (Schölkopf et al., 

1998). This is an application of what are called kernel methods. 

Let Xi R
p
, i = 1, 2,…, N, be the input data points. We can think of kernel 

PCA as a two-step process: 

 Nonlinearly transform the ith input data point Xi  R
p
 into a point (Xi) in 

an NH-dimensional feature space H (the Hilbert space), where  

(Xi) = (1(Xi),…,
HN

 (Xi))
T
  H, i = 1, 2,…, N. 

 The transformation  : R
p
  H is called a feature transformation, and each 

{j} is a nonlinear transformation. 

 Given (X1) ,…, (XN)  H, solve a linear PCA problem in the feature 

space H, which has a higher dimensionality than that of the input space (i.e. 

NH > p). 

Consider the data presented in Figure 1. Let Xi = (Xi1, Xi2)
T
, and define  

 : R
2
  R

3
 by (Xi) = (Xi1, Xi2) = (

2
2i2i1i

2
1i X,XX2,X ) = (zi1, zi2, zi3)

T
. 

 
Figure 1. Original data in the plane. The data cannot be separated linearly 
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With this , a difficult nonlinear classification problem in R
2
 is converted to 

a standard linear classification task in R
3
 (see Figure 2). 

 

Figure 2. A three-dimensional representation of the pluses and minuses 

 

Let Xi = (Xi1, Xi2)
T
 and Yi = (Yi1, Yi2)

T
 be two vectors in the input space R

2
, 

and consider the transformation to R
3
 used earlier. Let (Xi) and (Yi) be two 

feature vectors generated by Xi and Yi. Now consider the inner product 


T
(Xi) (Yi) in the feature space. It takes the form  


T
(Xi) (Yi) = ( 2

2i2i1i
2
1i X,XX2,X )( 2

2i2i1i
2
1i Y,YY2,Y )

T
 = 

(Xi1Yi1 + Xi2Yi2)
2
 = ( i

T
i YX )

2
 = k(Xi, Yi).         (3.1) 

Equation (4) shows how an inner product based on  converts to a function 

of the two inputs. Since choosing an inner product and performing 

computations with it in the feature space can quickly become computationally 

infeasible, it would be desirable to choose a function k, called a kernel, so as to 

summarize the geometry of the feature space vectors and ignore  entirely. 

Now the kernel trick can be applied. Suppose a function k(,) : R
p
×R

p
  R 

operating on the input space can be found such that the feature space inner 

products are computed directly through k as in (4). Then explicit use of   has 

been avoided, and yet results can be obtained as if  were used. This direct 
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computation of feature space inner products without explicitly manipulating the 

feature space vectors themselves is known as the kernel trick. 

The existence of the transformation  : R
p
  H such that  


T
(Xi)(Yi) = k(Xi, Yi) 

is guaranteed by the following theorem. 

Theorem 3.1 (Moore–Aronszajn) (Aronszajn, 1950). Let k : R
p
×R

p
  R be a 

bivariate symmetric continuous real-valued function and Hk be a reproducing 

kernel Hilbert space (RKHS). Then there exists a transformation  

 : R
p
  Hk such that  

k(Xi
 
,Yi) = 

T
(Xi)(Yi) 

if and only if the matrix K = (kij) is nonnegative definite, where kij = k(Xi
 
, Xj), 

i, j = 1,…,N. 

The matrix K is known as the kernel matrix. For a given bivariate function 

k, verifying the above conditions might not be easy. In practice, there exist 

many functions that have been shown to be valid kernels, and fortunately many 

of them deliver good performance on real-world data. 

A short annotated list is presented in Table 1. 

 
Table 1. Kernel functions 

Kernel k(x, y) 

Homogeneous polynomial kernel (x
T
 y)

d
, d is an integer 

Inhomogeneous polynomial kernel (x
T
 y + c)

d
, c > 0 

Gaussian radial basis function )cexp(
2

yx  , c > 0 

Laplacian )cexp( yx  , c > 0 

 

In order to carry out linear PCA in the feature space so that it mimics the 

standard treatment of PCA (as carried out in the input space), we have to find 

eigenvalues   0 and nonzero eigenvectors u  H of the estimated covariance 

matrix 
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C = )()(
1N

1
i

T
N

1i
i XX 

 

          (3.2) 

of the centred and nonlinearly transformed input vectors. The eigenequation 

Cu = u, where u is the eigenvector corresponding to the eigenvalue   0 of C, 

can be written in the equivalent form  


T
(Xi) Cu =  

T
(Xi)u , i = 1, 2,…, N.         (3.3) 

Because 

Cu = )()(
1N

1
i

T
N

1i
i XX 

 

u 

all solutions u with nonzero eigenvalue  are contained in the span of  

(X1),…, (XN). Hence there exist coefficients k, k = 1, 2,…, N, such that  

u =  


N

1k
kk )(α X .           (3.4) 

Substituting (3.4) for u in (3.3), we obtain that  

  
 

N

1k
ki

T
kjk

T
N

1k
k

N

1j
i

T
j )()(αγ)()()()(α

1N

1
XXXXXX ,     (3.5) 

for all i = 1, 2,…, N. 

The eigenequation (3.5) can be written as K
2
  = N  K , where  

 = (1,…, N)
T
, or as  

K
2
  = ~ K ,            (3.6) 

where ~ = (N–1) , K = (kij) and kij = k(Xi, Xj) = 
T
(Xi) (Xj), i, j = 1, 2,…, N. 

To find solutions of (3.6), we solve the eigenvalue problem  

αKα ~             (3.7) 

for nonzero eigenvalues. Clearly, all solutions of (3.7) also satisfy (3.6). 

Moreover, it can be shown that any additional solutions of (3.7) do not make a 

difference in the expansion (3.4) and thus are not of interest to us. 
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We assumed earlier that the vectors {(Xi)}, i = 1, 2,…, N, are centred. In 

the general case we cannot centre the vectors {(Xi)}, because we do not know 

the form of the function . Let 




N

1k
kii )(

N

1
)()(

~
XXX  

and  

))(
~
),(

~
()),(k

~
(

~
jiji  XXXXK  

i, j = 1, 2,…, N. We cannot compute the matrix K
~

 directly, but we can express 

it in terms of the matrix K: K
~

= PKP, where T
NNN N 11IP

1 is the 

centring matrix. 

Hence in the general case the construction of kernel principal components 

must be based on the matrix K
~

. Because the kernel matrix K is nonnegative 

definite, K
~

 is nonnegative define also. This results from the fact (Seber, 1984, 

p. 521) that if A  0, then CAC
T
  0. In our case C = P, where P is a symmetric 

matrix, i.e. P = P
T
. Hence, all eigenvalues of K

~
 are nonnegative. 

The coordinates of the projection of the data matrix 



















)(

)( 1

N
T

T

XΦ

XΦ

   

on the jth kernel principal components are equal to jαK ˆ
~

, j = 1, 2,…, N. 

 

4. Classical discriminant coordinates 

Consider a set of N p-dimensional observations X1, X2,…, XN, where the 

vectors Xi R
p
 are grouped in c disjoint classes, and every Xi belongs to one 

and only one class.  

Let V = {1, 2,…, N} be the set of indices of the set of observations  

X1, X2,…, XN, and let V be partitioned into c disjoint subsets Vi such that  
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Vi  Vj =  for i ≠ j, ,
1

VV
c

j
j 


  and each Vj contains nj elements such that 

.1 Nnc
j j  

 

Let  
 N

i iN 1
1

XX be the sample mean, and let  


jVi ijj n XX
1 be the 

mean of the jth class, for j =1, 2,…, c. 

We denote by St the total scatter matrix, and by Sb the between-class scatter 

matrix. We have 

 


N

1i

T
iit ,))(( XXXXS  

 


c

1j

T
jjjb .))((n XXXXS  

We seek a set of vectors ai R
p
 which maximize the measure of separation of 

the c classes 

,)(J

t
T
b

T

aSa

aSa
a   

subject to the additional restriction ijjt
T
i aSa  (Kronecker delta), which 

means that the variables ,u T
ii Xa called discriminant coordinates, are 

uncorrelated. The ai are called directional vectors. Finding the directional 

vectors reduces to solving the following generalized eigenvalue problem: 

,itiib aSaS  i =1, 2,…, s,           (4.1) 

where  1  2  …  s  s+1 = 0 and s = rank(Sb) ≤ min{p, c–1}. 

Because St = Sb + Sw, where Sw is the pooled within-class scatter matrix, 

finding classical discriminant coordinates is equivalent to finding a solution to 

the generalized eigenvalue problem in the form Sba = /(1 - )Swa. 

Using matrix notation, the generalized problem (4.1) can be given in the 

form  

SbA = StA,             (4.2) 

where A = (a1,…, as) and  = diag(1,…, s). 
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If St is a non-singular matrix, we obtain St
-1

SbA = A, which is an ordinary 

eigenvalue problem. 

Hence the pair (i, ai), where i is an eigenvalue of the matrix St
-1

Sb and ai is 

the corresponding eigenvector, can be used to construct discriminant 

coordinates. Because rank(Sb) ≤ c–1, we obtain a discriminant coordinate space 

with dimension at least c–1. 

5. Kernel discriminant coordinates 

Kernel discriminant coordinates were introduced independently by Mika et al. 

(1999) and by Baudat and Anouar (2000). The method is described in a book by 

Shawe-Taylor and Cristianini (2004). 

The original space R
p
 is transformed non-linearly into a feature space Hk 

 : R
p
  Hk, 

where  is a vector-valued function, and Hk is a reproducing kernel Hilbert 

space (RKHS). 

The vector ( Xi) = i
~
X  is called the feature vector corresponding to the 

observation Xi  R
p
, i = 1, 2,…, N. The non-linear transformation  is in 

general not known; however we select a known form of the non-negative 

definite kernel function 

.
~~

)(Φ)(Φ),(k TT
YXYXYX   

Let b

~
S

 
and t

~
S denote respectively the between-class and total scatter 

matrices in the feature space. We have 

 


N

1i

T
iit ,)
~~

)(
~~

(
~

XXXXS  

 


c

1j

T
jjjb ,)
~~

)(
~~

(n
~

XXXXS  
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where k

~
X  and X

~
 are respectively the mean of the kth class and total mean in 

the feature space. Finding discriminant coordinates in the feature space reduces 

to solving the following optimization problem: 

.
~

,~

~

maxarg ijjb
T
i

t
T
b

T

i  bSb
bSb

bSb
b                (5.3) 

We know that there exist coefficients bij such that .
~

bn
1j jiji  
Xb  Hence 

the optimization problem (5.3) is equivalent to the problem  

ijj
T
iT

T

i
~~

,~~

~~

maxarg  bKKb
bKKb

bKDKb
b  

and the optimum vectors b1,…, bs are equal to the eigenvectors corresponding 

to the maximum eigenvalues in the generalized problem 

,
~

,
~~~~

PKPKbKKbKDK             (5.4) 

where K = (kij) (kij = k(Xi, Xj)) is the kernel matrix, T
NN

1
N N 11IP

  is the 

centring matrix, and the matrix D is defined by 










.otherwise,0

,classkththetobelongandif,
n

1

D ji
kij

XX
 

Let B = [b1,…, bs] and  = diag(1,…, s). In matrix notation the problem 

of (5.4) has the form  

.
~~~~
BΛKKBKDK              (5.5) 

Solving the generalized eigenvalue problem presents certain difficulties, 

because both matrices are non-negative definite. 

One of the ways of obtaining an approximate solution to (5.5), also used in 

ridge regression, is to regularize the matrix ,
~~
KK  that is to replace KK

~~
 with a 

new non-singular matrix IKK 
~~

 (Friedman, 1989; Mika et al., 1999). We 

then solve the new generalized eigenvalue problem 

.)
~~

(
~~

BΛIKKBKDK   
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Because the matrix IKK 
~~

 is non-singular, the above problem can be 

reduced to the classical eigenvalue problem 

,
~~

)
~~

( 1
BΛBKDKIKK    

whose solution has the form 

].
~~

)
~~

[(eig 1
KDKIKKB

  

Hence the pair (i, bi), where i is an eigenvalue of the matrix 

KDKIKK
~~

)
~~

( 1  and bi is the corresponding eigenvector, can be used to 

construct kernel discriminant coordinates. Because rank ( KDK
~~

) ≤ c–1, we 

obtain a discriminant coordinate space with dimension at least c–1. The 

coordinates of the projection of the data matrix  



















)(
~

)(
~

N
T

1
T

XΦ

XΦ

    

on the jth kernel principal components are equal to jˆ
~
αK , j = 1, 2,…, c–1.  

6. A new discriminant space 

Consider the (c–1)-dimensional space of the first kernel discriminant variables. 

The training sample {X1, X2,…, XN} transformed into this space will be denoted 

by {Y1, Y2,…, YN}, where Yi  R
c–1

. We then further consider the (c–1)-

dimensional space of the first kernel principal components. The training sample 

transformed into this space will be denoted by {Z1, Z2,…, ZN}, where Zi  R
c–1

. 

We will create a new 2(c–1)-dimensional space determined by the first  

(c–1) kernel discriminant variables and the first (c–1) kernel principal 

components. The directional vectors determining this new space are normed so 

that their length is equal to 1. The new space combines the advantages of the 

space of kernel discriminant coordinates and the space of kernel principal 

components. In this space it is possible to apply a variety of classification 

algorithms, obtaining an improvement in classification quality. 
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7. Example 

Three types of discriminant spaces were considered: the (c–1)-dimensional 

space of kernel principal components described in section 3, the (c–1)-

dimensional space of kernel discriminant coordinates described in section 5, and 

the combined 2(c–1)-dimensional space of kernel discriminant coordinates and 

kernel principal components. 

The kernel spaces were built using the Gaussian kernel  

),dexp(),(k
2

yxyx    

where d is a positive constant. We consider the lower triangle in the table of 

squared distances between elements of the training sample {X1, X2,…, XN}. The 

value of d was taken to be the reciprocal of the arithmetic mean of the elements 

of the lower triangle. The matrix IKK 
~~

 was taken with  = 10
–5

. 

To check the usefulness of the three aforementioned discriminant spaces in 

the process of classification, each space was used to classify objects belonging 

to 25 different training samples from the University of California database 

(Bache and Lichman, 2013).  

Classification was performed by the method of linear discriminant 

functions. Table 2 shows that the largest percentage of correct classifications is 

achieved in the combined space of kernel discriminant coordinates and kernel 

principal components. This is the case for 23 of the training samples. For one 

training sample (Ring) we have the same percentage of correct classifications in 

the kernel discriminant coordinate space as in the combined space of kernel 

discriminant coordinates and kernel principal components. For one training 

sample (Hayes-Roth) the kernel discriminant coordinate space gives better 

results than the combined space. The results imply that the combined space 

should be chosen as the best discriminant space. 
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Table 2. Comparison of percentages of correct classification 

Data N c p Percentage of correct classification 

Balance 625 3 4 87.36 (546/625) 89.12 (557/625) 90.88 (568/625) 

Car 1728 4 6 
69.56 (1202/1728)  83.33 (1440/1728)  86.46 

(1494/1728) 

Choice 1473 3 9 45.76 (674/1473) 45.96 (677/1473) 54.11 (797/1473) 

Danesym 300 3 2 67.33 (202/300) 68.33 (205/300) 71.00 (213/300) 

Danford 45 4 3 42.22 (19/45) 44.44 (20/45) 53.33 (24/45) 

Dermatology 358 6 34 75.14 (269/358) 83.80 (300/358) 95.25 (341/358) 

EnVowel 990 11 10 75.96 (752/990) 93.84 (929/990) 95.86 (949/990) 

Glass 214 6 9 62.15 (133/214) 64.49 (138/214) 73.83 (158/214) 

HayesRoth 132 3 3 56.82 (75/132) 85.61 (113/132) 80.30 (106/132) 

Image 2310 7 19 
76.84 (1637/2310) 78.40 (1811/2310) 87.06 

(2011/2310) 

Lenses 24 3 4 70.83 (17/24) 62.50 (15/24) 75.00 (18/24) 

Oil 56 3 5 76.79 (40/56) 76.79 (40/56) 80.36 (45/56) 

PlVowel 1130 6 5 62.74 (709/1130) 63.98 (723/1130) 73.45 (830/1130) 

Ring 1000 2 2 65,90 (659/1000) 71,70 (717/1000) 71,70 (717/1000) 

Risk 87 3 2 97.70 (85/87) 97.70 (85/87) 100.00 (87/87) 

Smith 45 4 3 55.56 (25/45) 60.00 (27/45) 66.67 (30/45) 

Soybean 47 4 35 85.11(40/47) 87.23(41/47) 95.74(45/47) 

Tae 151 3 5 41.72 (63/151) 45.70 (69/151) 46.36 (70/151) 

Three-class 300 3 2 90.00 (270/300) 91.33 (274/300) 92.67 (278/300) 

Thyroid 215 3 5 86.51 (186/215) 85.58 (184/215) 93.49 (201/215) 

Wale-form 900 3 21 85.11 (766/900) 88.33 (795/900) 93.67 (843/900) 

Wine 178 3 13 70.22 (125/178) 71.34 (127/178) 71.91 (128/178) 

WineQuality 1599 6 11 49.22 (787/1599) 49.53 (792/1599) 51.34 (821/1599) 

Vehicle 846 4 18 43.38 (367/846) 47.28 (400/846) 47.75 (404/846) 

Zoo  101 7 16 96.04 (97/101) 96.04 (97/101) 99.01 (100/101) 
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