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SUMMARY

In this paper we apply a parametric semi-Markovcpss to model the dynamic

evolution of HIV-1 infected patients. The seriousnef the infection is rendered by the
CD4+ T-lymphocyte counts. For this purpose we inticedthe main features of non-
homogeneous semi-Markov models. After determinimg transition probabilities and

the waiting time distributions in each state of ttisease, we solve the evolution
equations of the process in order to estimaterteval transition probabilities. These
guantities appear to be of fundamental importamrecfinical predictions. We also

estimate the survival probabilities for HIV infedtgatients and compare them with
respect to certain categories, such as gendegrage or type of antiretroviral therapy.

Finally we attach a reward structure to the aforgmeed semi-Markov processes in
order to estimate clinical costs. For this purpasegenerate random trajectories from
the semi-Markov processes through Monte Carlo sitrarl. The proposed model is
then applied to a large database provided by IS®utio Superiore di Sanita, Rome,
Italy), and all the quantities of interest are caiteol.

Keywords: semi-Markov process, HIV states, waiting time rifisttion, evolution
equation, survival probabilities, Monte Carlo sintida.

1. Introduction

Homogeneous semi-Markov processes (HSMP) weredinted in the 1950s,
independently by Levy (1954) and Smith (1955), withe objective of
generalizing Markov processes. Ina Markov processrenment, the waiting
time distribution functions in each state must kgomential, whereas in a semi-
Markov process environment these distributions lmamf any type. A detailed
theoretical analysis of semi-Markov processes canfdund in Howard
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(19714, b), and more recently in Janssen and ME&@@6). These processes
have been applied successfully in a wide rangeiehsfic fields.

In turn, non-homogeneous semi-Markov processes WIS were
introduced by losifescu Manu (1972).

We will deal here with semi-Markov stochastic madapplied in a clinical
field. These processes turn out to be a very efiictool for predicting the
dynamic evolution of human immunodeficiency virkl\() infection and the
probability of an infected patient’'s survival. Trapproach has the following
advantages with respect to traditional epidemi@alginodels (according to Di
Biase et al., 2007a):

* we can consider an arbitrary number of statesetinio the seriousness of
the infection;

« all transitions between states are allowed;

« we can consider the randomness of the evolutiondsst all states, as well
as the stochastic time spent in each state befibamsition occurs;

» model parameters are directly estimated from raa;da

« finally, conclusions consist in certain intervalarisition probabilities
obtained by solving the evolution equations ofgihacess.

We recall that stochastic tools have been widelgdug biomedical
applications.

As concerns applications of Markov models, we camntion the studies
carried out by Longini et al. (1991), Fischl et 1987), and Tsiatis et al.
(1992). Nevertheless, the Markov framework usedhiose papers leads to
excessively rigid conditions. According to Brookreeyand Gail (1994) in their
AIDS epidemiology basic text, Markov assumptiores ot faithful.

For instance, Longini et al. (1991) assume a tiramdgeneous Markov
chain in order to describe the transitions betwsmren states characterized by
CD4 + T cell numbers. One of the main assumptidnthie study is that the
hazard rate of transitions from one state to amasheonstant.

The semi-Markov framework allows much more flexibtedeling of these
phenomena. Indeed, the duration of each stateeoflifease can be considered
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as a random variable. Many authors have recenpliegpsemi-Markov models
in the field of biomedicine. For examples see David1999), Davidov and
Zelen (2000), and Foucher (doctoral dissertati@0,72. Specific applications to
HIV infection have been examined by Lagakos et (4B78), Sattenand
Sternberg (1999), Sternberg andSatten (1999), 8weet al. (2005), Di Biase
et al. (2007a; 2009), Joly (1999), D’Amico et &011), and Goshu and Dessie
(2013). Foucher et al. (2005) consider the impaciwariates and assume that
the duration time process follows a generalizeddMedistribution. Goshu and
Dessie (2013) consider a homogeneous non-paransng-Markov model
applied to a cohort of Felege-Hiwot hospital (Egi&).

It is also important to note, following Di Biase @t (2007a, b; 2009), that
physicians consider that HIV evolution satisfiee tiworking hypotheses
inherent in the semi-Markov theory.

The natural evolution of HIV infection usually dmwith a latency phase.
This phase can last for several years. The mairactaistic of HIV infection is
the gradual depletion of a particular class of lgytes named CD4+ (also
called “helper lymphocytes”). These lymphocytesypda essential part in the
body’'s immune response to infections. The depleabi€D4+ then causes a
weakening of the immune response, which leads pmmpnistic infections of
significant seriousness. Besides, the presencédasima viremia is linked to a
possible worsening of the disease.

The disease evolves through successive staget€sge1993), which can
be defined according to CD4+ lymphocyte count,Mimad and constitutional
symptoms (see Centres for Disease Control and Riieme 1992). The final
stage of the disease (Jaffe and Lifson, 1988)asesented by full blown AIDS.

Three general classes of AIDS markers are availabi@unological, viral
and clinical. On this topic see Goedert (1990), &rdokmeyer and Gail
(1994).

Immunological markers are based on concentratiér@Dzi+ T cells and
CD8+ T cells, levels of serum beta2-microgobulird eeerum neopterin, and
anergy to cutaneous tests for delayed hyposengitivi
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Viral markers aim to evidence the presence or aesem detectable p24
antigen and plasma viremia (detection of infectiblllg in fresh plasma).

Finally, clinical markers concern typical symptommisch as weight loss,
candidiasis, persistent diarrhea, herpes zostdiguéa and night sweats,
persistent fever, and oral hairy leukoplakia.

It is now well known that HIV is transmitted prinilgtrby sexual contact,
syringe sharing among intravenous drug users, &wbband blood products
that have not been correctly screened. From areepadogical point of view,
the disease has a worldwide spread. It is curresgifynated that total cases of
HIV infection number some 39.5 million, with a peak Sub-Saharan Africa
and East Asian countries (for more details on shigject, see UNAIDS/WHO
AIDS Epidemic Update December 2006).

In this paper we consider a non-homogeneous paranstmi-Markov
model in order to determine the dynamic evolutidrHV infected patients
through four observable states linked to CD4 cdphus an absorbing state, the
death of the patient). The waiting time distribngoare given by generalized
Weibull distributions and the parameters are okthimising the maximum
likelihood procedure. We then solve numerically #helution equations to
obtain the transition probabilities and consequyetite survival probabilities.
Our model thus combines the parametric approacaiedaout by Foucher et al.
(2005) and the survival analysis conducted by DasBi et al. in a non-
parametric approach (2007a, b; 2009). Neverthellessnost original feature of
our study consists in the generation of randomettajies from the semi-
Markov process which permits the attachment ofweard structure. We are
then able to estimate the therapy costs for amatigh respect to the stochastic
evolution of the disease.

The paper is organized as follows. In this secfiome have introduced the
problem and have listed the main applications ofigddarkov models reported
in the literature and the basic features of HI\fudifon. Section 2 is devoted to
theoretical aspects of semi-Markov processes. TUmeerical application and
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a description of the database used are presentsection 3. Conclusions are
stated in section 4.

2. Semi-Markov Processes

The dynamic evolution of HIV infection can be maetklas a sequence of
different states based on the severity of the trdacAccording to the National
Center for Infectious Diseases, Division of HIV/A(see Centres for Disease
Control and Prevention, 1992), we can define tHewing four categories
depending on the CD4+ T-lymphocyte counts per niteroof blood: state |
(CD42=500), state Il 350<CD 4< 50(), state I11(200<CD 4< 35(), and state
IV (CD4<200). We add an absorbing stai® corresponding to the death of
the patient. Patients can move through these fia¢es and all possible
transitions are allowed (we have 20 possible ttams; see Figure 1).

mn o

State Il

State | (CD42500) —_— AN A0]

State llI

P b
—>
(200<CD4<350)

\ \
Figure 1. HIV states and transitions

State IV (CD4<200)

Let us now formalize this problem from a semi-Markmint of view. We
first recall the most important aspects of thisotlge(see Janssen and Manca,
2006).

We denote byE ={1,11,1Il,IV,D} the state space and ¥, #,7} the
usual probability space. Lem=carcE (here m=5). We introduce the
following random variables

JIQ-E S, :Q - [0,+w) (1)
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where J, represents the state at thth transition andS, represents the
chronological time of theth transition. We denote b (t) the counting pro-
cess{ N(),t= O} which is associated with the point procésg) N defined
as

N(t) =sup{nON:S, <t} 2)

for everyt=0.

From this definition, the meaning of the randomiafale N(t) is clear. It
represents the number of transitions occurringpénhorizon[0,t] .

From the definition of S,, we can introduce the “duration process
(Xp)non s the following family of random variables:

X, =0
_ 3)
Xn+l - Sn+l - Sn
Consequently X ,, represents the sojourn time spent in sthte

We can now set up the main definition of the theofye process
(Jn:Sh)non is called a “non-homogeneous Markov renewal praicésthe
following relation holds:

P(‘Jn+l = 1Sust]3,=1.8,=5,3,.,.5 1 Jo vSo) =

4
:P(‘]ml:j-SnﬂStlJn:i,Snzs) ( )

Besides, we can associate with the renewal proteesn-homogeneous semi-
Markov kernelQ (for j #i) defined as

Q=[Q,(59] =[P(‘]N(s)+1 =1 Xy =X dve =Sy = S)] )

We observe that in the second expression in thimitlen, x represents a
duration whereas represents a chronological time.

It has been proved (Janssen and Manca, 2006)hegprobability p; (s)
that a patient performs his or her next transitmstate j , given that he or she
entered staté at time s, can be computed as:

Py (s)= Ixi[TlQij(S, X) = P(‘]N(s)+1 =j |‘]N(S) :i’SN(S) = S) 6)
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for every i, jO0Eandi # j . Hence we can introduce the transition probability
matrix P(s) =[pjj(s)li,joe of the embedded non-homogeneous Markov chain
(Jn)non - In our applicationP(s) is a matrix of ordem.

We observe that before entering stgtethe patient remains for a certain
time x in statei . It is appropriate here to introduce the condaiocumulative
distribution function of the waiting time in eachate, given the state
subsequently occupied. We thus set up:

Fy (5X) = P( Xy S X1y = §dne =1:Sue =) @)

It can be shown that this function is obtainedhia tollowing manner:

Q(sX)/p (s if p(9#0
(,):{ (sx)/p;(s) if py(9 @®)

A0 i p(9=0

(]
Remark. We recall that a striking difference between aticmous time Markov
process and a semi-Markov process concerns theaatkastics of the
distribution functionsFij (s,X). In a Markov framework, these functions follow
a negative exponential distribution. In a semi-Markframework, the
distribution functionsF; (s,x) can be of any type. Consequently, the transition
intensity can be decreasing or increasing. It fedothat the semi-Markov
environment is richer than the Markov environment.

We assume that the distributions of waiting timdmia densities, which
will be denotedD(s, X) =(dij (s, x))i!jDE. Note that these densities do not depend
ont.

We now introduceH, (s, x) , the probability that the process stays in state
for a duration of at least the tim&, given that the staté is entered at

chronological times :
H, (5.%) = P(Xy g < X1 Jy =1.Sye =) (9)

These probabilities can equivalently be written as

H(5X=2Q 60=3 B O)F () (10
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We then observe that the marginal cumulative digtion functions of the
waiting time in each state depend on both times.

Let us finally introduce the function§ (s, x) =1-H, (s,x).

We are now able to introduce the continuous time-m@mogeneous semi-
Markov processZ(t). This process represents, for each tinethe state
occupied by the process, namely (Janssen and M20@8):

Z(t) =y for t>0 (12)

We can deduce from these definitions that the d@arkov processZ(t) is
completely determined from knowledge of the traositmatrix P(t) and the
duration matrixD(s, x).In what follows we will see the importance of catig
estimating these two elements.

We observe that two different time scales are wewlin these processes.
The “chronological time"t refers to an arbitrary origin. In our applicatioms
sett =0 as the first clinical measurement available fer patient. The “internal
time” x represents the duration of the time spent in state.

Remark. The non-homogeneity of the process with respedinte is given by
the fact that the jump process; (t) depends on the chronological tinbe In
other words, time has an influence on the tramspimbabilities.

One of the main objectives of this paper is torethe so-called “interval
transition probabilities” given by the following:

¢ (t,x) = P(patient stays in staje attimex |eetestaté at timg) =

12
=P(Z(t+%) =] [Iyq =15 Sy =t) (12)

for everyi, jOE.

It can be shown that these probabilities satisfg tibvious property
@ (t,x) # @ (t+h,x+h) for everyh>0.

These probabilities can provide important informati for medical
applications, so we would like to develop a procedenabling their
determination. It is clear that knowledge of theneéntsp, (t) of the transition
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matrix and the elementsl;(s,x) of the duration matrix will allow us to
determineg (t, x).

The link between these elements is given by thieoahg fundamental
relation, called the evolution equation of the s

0=, 18 €0+ 3] Py (O, @) (+ux-u)dy (13)

where J; is the Kronecker delta.

The terms in the right-hand side of the evolutigoaion can be interpreted
in the following manner.

The first term represents the probability that ¢hisrno transition from time
t up tot+x given entry of the process into statet timet. In our medical
interpretation, this term gives the probability tttize infected patient does not
shift to any new stage in a time(so that his or her clinical situation remains
stable).

The second term represents the probability thatsgistem moves into a
different state following one of the possible traggies in some time. In the
medical interpretation, this term gives the proligbthat the infected patient
moves to a new clinical situation (the patient'michl situation improves or
worsens).

Let us sefc, (t,x) = p, (t) [8l, (x). The evolution equation can be rewritten as

B(LX)=3, 15 L0+ 6 (L) € +ux-u)dy (14)

1=1 o
12i

The following relation also holds:

0 if i#]
15
1 (15)

%(t.0) { if i=]
In order to solve the evolution equation (13),sitconvenient to treat the
problem in the discrete framework. Indeed, Coretdal. (2004) have proved

that a numerical solution of the evolution equat@an be easily determined
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thanks to the quadrature method. They also provatithe numerical solution
of the process converges to the discrete time damkov process.

Furthermore, in the same paper, the authors sholadhe discrete time
process converges to the continuous one if theatization step tends to zero.

Although time in real-life problems is generally ntimuous, the real
observations of a given system are often madescreke time, even if the time
unit chosen may be infinitesimal. The definitiorissemi-Markov processes in
the continuous and discrete time cases are verjasiriVe merely introduce
the following probabilities, which are specific tthe discrete case (non-
homogeneous framework):

B=[B(st)]=[P(J, = },S..=t1J, =15, =9)] (16)

From the definition of the kern€) we obtain immediately:

b (51) = {Qu (58)=0 if t=s a7

Q(st)-Q;(st-1) if t>s
The evolution equations (13) can be easily disoeeti(Janssen and Manca,
2006). We obtain the following relations (whebe denotes the discretization
step):

¢ (uh,kh) = d, (uh,kh)+ i i b, (uh,zh) @ (th,kh) (18)

1=1 r=u+l

The matrix form is the following:

®(uh,kh) = D(uh,kh) + i B(uh,7h)@ (rh,kh) (29)
T=u+l
Janssen and Manca (2006) proved the following tww&mental results: that
the equations (19) admit a unique solution; and tha matrices® thus
obtained are stochastic.
The aforementioned equations can be quickly sotiiadks to an iterative
procedure we now describe. The following stepsegeired.
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First, let us fix a time horizorf0,T] and a finite subdivision withk
intervals of lengthh. The input data are the transition matrid@) and the
waiting time distributionsF, (t). The matricesF(t) are mxm(m denotes the
number of states) and they must be evaluated tfed,... .k using the
distributions previously determined. We make thevialls assumption
F(0)=0.

The matricesQ(t) are defined af)(t) = F(t)x P(t) (“element by element”
product).The matrice8(t) are given by:

0 if t=0
B(t)_{Q(t)—Q(t—l) if t>0 29

We then obtain the matricd4(t) in the following way:
0 if i#]j

O 0 0 i i (21)

These matrices represent the probability of leagiatei within timet.
Finally, we define the matriceB(t) asD(t) =1 -H(t).

The full iterative procedure runs as follows:

* We set up the obvious relatiah(0) = | (identity matrix).

*  We deduced(h) = B(h) &b(0)+ D(h).

*  Given ®(0),®(h),...,® (kh), we deduce recursively

k+1

®((k+1)h)=> B(r th)®((k +1-7)h) + D( (k + 1)h) (22)

Finally, we illustrate the Monte Carlo procedureded to generate sample
paths from the semi-Markov process.

We fix the usual time horizof0,T].The algorithm involves the following
steps:
(1) setk=0 and select the initial stat&, =i with i C{1,11,111,IV};
* (2) sample the next state from the distribution;
* (3) sample the sojourn time- P s
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* (4) setthe newjumptim§,, =S + X;

« (5if S, =T or J,,, =D (absorbing state) the cycle ends;

« (6) otherwise setk=k+1 and repeat from step (ll) unti§,
Ja =D.
This algorithm has been revised from Barbu and ldas1(2008).

=T or

+1 =

3. Empirical Application

In this section, we apply the model to a databdddl\d infected patients. The
database characteristics will be described in siose3.1. The chronological
time is measured from the first biological measweinThe next subsection 3.2
is devoted to the estimation of the main featurethe semi-Markov model,
namely the transition probability matrices and thstribution of the waiting
times in each state. Subsection 3.3 will then pregee numerical solutions of
the evolution equations and thus the probabilitiésinterest for medical
analysis. Finally, subsection 3.4 concerns the réwtucture as a consequence
of the Monte Carlo simulation.

3.1. Database description

Our database contains 2,240 subjects enrolledanitdiian public structures
from January 1996 to January 2008,and is provigebs (Istituto Superiore di
Sanita, Rome, Italy). Our study is based on 25@g&%xkups (CD4 counts). This
database contains a large amount of informatioch Eetient is codified and
the following data are available: patient identifieirth date, date of enrolment
into the cohort, gender, exposure group (sex between, hemophiliac,
perinatal, etc.), co-infection with hepatitis B ©r vaccination against hepatitis
B or C, date of seroconversion, how was serocormerdetermined, ART
therapy initiation, AIDS diagnosis, country of arg ethnic/racial group,
educational level, date of last clinic visit, dédet alive, date of death (primary
or contributed causes), date of CD4 count, abs@ité count (cells/mf), date
of HIV RNA measurement, RNA copies (copies/Mnantiretroviral drug, date
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drug commenced, viral test. The clinical measuréméor each subject are
scheduled approximately every six months. Sometiaddi measurements are
also performed whenever the patient’'s state worsens

3.2. Semi-Markov estimation

3.2.1. Estimation of thetransition matrices P(t)

Consider the time horizof0,T] with T =4 years. We take a partition of this
time horizon with monthly step size (total 48 sakervals).

The matricesP(t) have already been defined in section 2. Wheneaadr r
data is available, these matrices can be estimatdte following way. In our
application, we recall that the states de={l,I1,111,IV,D}, so thatm=5
(using the previous notation).

We have to determine a transition matit) with t=1/12,2/12,.. ,
The elementsp, (t) are given by

p,(=3,0/3 3. (23)

where g, (t) represents the number of direct transitions froaes to state |
given entry into staté at timet.

We can also set up a polynomial interpolation ideorto approximate the
functions p; (t) with a polynomial (for every, j =1,...,m).

Let us consider an approximation with a polynonaalgiven order (for
example order six, which will be justified later):

pt)=a,d° +a,0° +a, 0" +a,B°+a,B°+a,[d+b (24)

The coefficientsa, andb are given in Table 1 below (note that states now
denoted by 5). For the sake of brevity, we repaoly the first transitions.

We observe that the coefficients of monomials afrde five and six are of
lower order with respect to the other coefficierBgsides, the Root Mean
Square Errors (transition 1-1) for the interpolgtpolynomials of order three,
four, five and six are respectively 0.00278, 0.(2800234 and 0.00213. We
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conclude that the six-order interpolating polyndnig to be preferred. For
higher orders, the relative coefficients are nagtahaller, so that we finally use
a six-order polynomial. This argumentation alsoaans the other transitions.
This continuous interpolating polynomial then pdemthe estimation of
transition probabilities at every time requiredaygliscretized algorithm.

Table 1. Coefficients of the polynomial regression

Trans. o1 Oy o3 Oy Os Og b
1-1 -0.035631 -0.064013 0.093248 -0.046178 0.010042006811 0.820992
1-2 0.298632 -0.421427 0.296797 -0.109457 0.020185 01@®7 0.092354
1-3 -0.070419 0.156754 -0.134130 0.055162 -0.010901 008®1 0.039994
1-4 -0.043937 0.081442 -0.065998 0.026648 -0.005229 00397 0.012771
1-5 -0.148645 0.247244 -0.189916 0.073826 -0.014097 01080 0.033890

We show below (Figure 2) the interpolating polynalrior the function

Pu(t) -

puit)

0.83
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0.81
0.80
0.7¢
0.78

0.77

time

10

20

30

40

Figure 2. Polynomial regression
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3.2.2. Theduration timedistribution

After determining the number of transitions, we wiesl from our database the
waiting time in each state (expressed in years). shauld then determine a
more adequate distribution function of these wgitimes. As a typical choice,
in accord with Foucher et al. (2005), we considex generalized Weibull
distribution (GW). The authors of that paper asskdt this distribution is
suitable for this kind of application.

The hazard rate function of the GW is given by:

X v-1 X v %_l
OB
A(xv,0,0)= D (25)

wherev, o and @ are real parameters.
The survival function is defined as:

S(x,v,0,6)= el_[[;j +l] (26)

Hence, we deduce the expression of the densityiumc

f(x,v,0,80)=SxXv,0g,80) AKXy oP) (27)

and consequently the distribution function takesftrm

F(xv,0,0)= [ f(tv.0o8)d (28)
We can estimate these three parameters by maxianizat the likelihood
function
71 (x.v.0.0)
L= |_1| f(x,v,0,0 (29)

for each transition, wheres denotes the time (expressed in years) &hd
represents the number of observations.
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The results are given in Table 2 below (we incltigelog-likelihood values
LogL ). For the sake of brevity, we report only thetftransitions.

Table 2. GW parameters

TransitionMeanVariance v o 0 Theor. MeaiTheor. Variance LogL
1-1 0.5293 0.2980 2.894%).21643.8266 0.5335 0.1775 1,507.50
1-2 0.6269 0.4683 3.4531.22145.0250 0.6304 0.2897 -641.61
1-3  1.0911 2.4482 2.96070.22905.8143 1.0793 1.8764 -450.54
1-4 2.7867 7.0690 0.80806.0527.3282 2.8007 6.9051 -309.02
1-5 2.853210.13100.75164.44610.7417 2.8501 11.5468 -136.47

3.3. Numerical results

In this subsection we present the results obtaimgdsolving the evolution

equation.
We obtained numerical results taking a time horibbrone year with a

monthly step subdivision. The results are givemable 3.

Table 3. Interval transition probabilities

Prob. (12 months) I Il 1] v D
I 76.63% 17.58% 4.95% 0.51% 0.33%
I 31.85%  44.49% 20.06% 2.92% 0.67%
[l 13.33% 24.04%  47.53% 13.25% 1.86%
v 3.16% 6.75% 20.02%  58.42% 11.66%
D 0.00% 0.00% 0.00% 0.00% 100.00%

For example, let us consider a patient whose Irgtiate is 1l. After one
year, the probability of his state improving 3&.85% while the probability of
his state worsening i22.98%. Besides, the probability of reaching the
absorbing stat® is 0.67%.
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Survival probabilities
Let us define the survival probability for a patievhich enters staté at time
zero as

q(t):fgj(t):l— b, () iof1,0,01,1v} (30)

We then perform the following numerical procedensider the time horizon
T =[0,4] (years) with a monthly step subdivision. We camresent graphically
the valuesrz (t) for eachi O{1,11,111,IV} andt=1/12,2/12,.. -

The result is illustrated graphically in Figure 8ldw (in this application,
the whole database is involved). The upper lineesgnts (t), the second
line representsr, (t), the third line representg,, (t) and finally the lower line
indicatesrz, (t) . We deduce immediately that for each value oftiine t, the
survival probability decreases as the initial stat@sens. For each initial state,
the survival probability decreases with respedirte t. This decreasing trend
is more striking with respect to the worseningha initial state.

survival probability
0.9
0.8
0.7
0 10 20 30 20 fime

Figure 3. Survival probabilities

Next, we compare the survival probabilities betwesan and women.
We get the following results with respect to thiiah state of the patient (see
Table 4).
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Table 4. Survival probabilities men/women vs. initial state

Time women men women men women men women men

(years) () () () o qm oy aqv)y (V)

1 99.52% 99.48% 99.42% 98.85% 98.54% 97.25% 88.07% 86.61%
2 98.66% 98.39% 97.83% 96.81% 95.57% 93.12% 80.74% 76.97%
3 97.30% 96.62% 95.64% 94.07% 92.30% 88.70% 75.34% 69.88%
4 95.50% 94.27% 93.21% 90.92% 89.16% 84.43% 71.17% 64.48%

The same conclusions as stated for Figure 3 al$d here. As a further
comment, we note that, for each situation (time guitthl state), the survival
probability for women is always higher.

These results can be refined by considering difteage ranges (as is usual
in actuarial practice, for example). We give belin survival probabilities for
the ranges 20-30 years and 30-40 years, conditionathe starting state
(Tables 5a-5d).

Table 5a. Initial state | Table 5b. Initial state Il
N M20- W20- M30- W 30- N M20- W20- M30- W 30-
(years) 30Y 30Y 40Y 40Y (years) 30Y 30Y 40Y 40Y
1  99.48%99.52% 99.39% 99.83% 1 98.84%99.42% 99.17% 98.91%
2 98.38%98.66% 98.13% 98.92% 2 96.80%97.83% 96.99% 96.93%
3  96.62%97.30%96.01% 97.31% 3  94.05%95.64% 93.77% 94.31%
4 94.27%95.50% 93.11% 95.13% 4 90.91%93.21% 89.99% 91.42%
Table5c. Initial state 111 Table5d. Initial state IV
N M20- W20- M30- W 30- N M20- W20- M30- W 30-
(years) 30Y 30Y 40Y 40Y (years) 30Y 30Y 40Y 40Y
1 97.25%98.54% 97.24% 98.38% 1 86.61%88.07% 84.69% 89.56%
2  93.12%95.57%92.53% 95.13% 2  76.97%80.74% 73.76% 81.35%
3  88.69%92.30% 87.34% 91.56% 3  69.88%75.34% 65.66% 75.93%
4  84.43%89.16% 82.31% 88.11% 4 64.47%71.17%59.48% 72.07%
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The interpretation of the results is less stramfwbrd here. When
considering initial state IV, we observe that thevasal probability of men in
the range 20-30 years is higher than for the r&tgel0 years. We obtain the
opposite conclusion when we consider women in émges 20-30 and 30—-40
years.

Finally, patients in our database are divided itwo categories: patients
with antiretroviral therapy and patients withoueitipy. It is very useful for
medical applications to compare the survival prdiies between these two
categories. This is indeed a striking indicatort tieveals the efficiency of the
therapies.

The results are summarized in the following Tallas6d. These contain
the estimations with respect to the starting state.

Table 6a. Initial state | Table 6b. Initial state Il

N (years}herapyno therapy N (years}therapyno therapy

1 99.70% 98.88% 1 99.35% 97.68%
2 99.21% 98.03% 2 98.30% 96.19%
3 98.11% 95.45% 3 96.40% 91.00%
4 96.47% 91.79% 4 94.00% 84.75%
5  94.44% 87.74% 5  91.44% 79.29%
6  92.14% 83.04% 6 88.85% 73.86%
7  89.60% 77.06% 7  86.16% 67.17%
8  86.92% 70.19% 8  83.39% 60.06%
9  84.26% 63.84% 9 80.73% 54.83%

10 81.53% 56.64% 10 77.97% 47.88%

From these results we can appreciate that the vaurgrobability for
patients “with therapy” is higher. We observe a enatriking difference for
long time horizons.
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Table 6c¢. Initial state 1| Table 6d. Initial state 1V

N (years}herapyno therapy N (years}therapyno therapy

1 98.27% 94.09% 1 90.31% 58.32%
2 95.92% 88.69% 2 84.51% 38.53%
3 92.73% 78.29% 3 77.37% 23.15%
4 89.21% 69.41% 4 72.15% 16.19%
5 86.04% 63.96% 5 69.35% 14.80%
6 83.27% 58.85% 6 67.05% 13.33%
7 80.54% 51.56% 7 63.80% 9.58%
8 77.66% 44.36% 8 60.48% 6.62%
9 75.00% 41.22% 9 58.94% 7.55%
10 72.45% 33.61% 10 55.78% 4.09%

3.4. Reward structure

We can attach a “reward” structure to the processchw represents the
dynamical evolution of the disease. The goal islétermine the therapy costs
for a patient.

In order to perform this estimation, we set up ankdoCarlo procedure to
generate sample paths from the semi-Markov procassdescribed in the
previous section.

In order to determine the total cost, we have sigasto each state a specific
cost referred to time unity. We can then deternairdiscounted reward process
by considering an interest rate structure. For Baityy, we consider here a
constant rate structure given by the instantanauesest rated .

Next we estimate the cost for each simulation, am then take the
expected value over a large number of replications.

Semi-Markov reward processes are also studied mssém and Manca
(2006). The authors give a recursive formula whpelmits determination of
the cost.
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We performed the simulation by assigning the follgyvarbitrary costs for
each state (referred to the unit time period, ngraek year): 1, 1.5, 2 and 4 for
states I, Il, lll and IV respectively.

The constant interest rate 8=3%, the time horizon isT =4 and the
number of simulations is 1,000.

We found the following costs, as given in Table@nditional on the initial
state) together with relative confidence intenatla 95% level.

Table 7. Mean cost

Initial state Mean cost 95% confidence interval

| 5.11 [5.00,5.22]
I 6.07 [5.93,6.21]
I 7.14 [6.97,7.31]
\Y 9.29 [9.05,9.53]

Similar investigations can be carried out consitenarious additional factors
such as patient gender and age group.

Some more references concerning reward structuaes be found in
Marshall (2007).

4, Conclusions

The HIV model considered in this study clearly cemms a “macroscopic”
viewpoint of the dynamical evolution of the diseasel it is linked to the CD4
measurement available in our database. This ntalitsnodel consists of four
immunological states plus a fifth absorbing st#te, death of the patient. We
take into consideration all possible transitionsie Tnon-homogeneous semi-
Markov model adopted in this paper makes it posdiblrepresent faithfully the
dynamical evolution of the disease, and thus weesat in approximating a real
and complex natural process. Besides, we obseatdhb follow-up time is of
fundamental importance for the disease process.
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We set a parametric approach through maximum hkeld estimators in
order to determine the waiting time distributiomdtions.

The integral evolution equations of the continupuscess are solved in
discrete time thanks to an iterative algorithm.sTpérmits us to determine the
so-called interval transition probabilities. Thegebabilities are fundamental in
order to perform predictions concerning the clih@aolution of patients.

As a consequence, we can estimate the survivalapiities for HIV
infected patients and compare them with respecettain categories such as
gender, age group or type of antiretroviral theraplis study allows us to
deduce certain correlations between survival pritiieb and specific factors
such as the patient’'s gender and/or age. As a efuritmprovement, this
methodology could be used to compare the efficiefayifferent antiretroviral
therapies.

Finally, a Monte Carlo simulation of semi-Markovopesses permits the
attachment of a reward structure in order to edtinthe therapy costs for a
patient.
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