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SUMMARY  

In this paper we apply a parametric semi-Markov process to model the dynamic 
evolution of HIV-1 infected patients. The seriousness of the infection is rendered by the 
CD4+ T-lymphocyte counts. For this purpose we introduce the main features of non-
homogeneous semi-Markov models. After determining the transition probabilities and 
the waiting time distributions in each state of the disease, we solve the evolution 
equations of the process in order to estimate the interval transition probabilities. These 
quantities appear to be of fundamental importance for clinical predictions. We also 
estimate the survival probabilities for HIV infected patients and compare them with 
respect to certain categories, such as gender, age group or type of antiretroviral therapy. 
Finally we attach a reward structure to the aforementioned semi-Markov processes in 
order to estimate clinical costs. For this purpose we generate random trajectories from 
the semi-Markov processes through Monte Carlo simulation. The proposed model is 
then applied to a large database provided by ISS (Istituto Superiore di Sanità, Rome, 
Italy), and all the quantities of interest are computed. 

Keywords: semi-Markov process, HIV states, waiting time distribution, evolution 
equation, survival probabilities, Monte Carlo simulation. 

1. Introduction 

Homogeneous semi-Markov processes (HSMP) were introduced in the 1950s, 

independently by Levy (1954) and Smith (1955), with the objective of 

generalizing Markov processes. Ina Markov process environment, the waiting 

time distribution functions in each state must be exponential, whereas in a semi-

Markov process environment these distributions can be of any type. A detailed 

theoretical analysis of semi-Markov processes can be found in Howard 
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(1971a, b), and more recently in Janssen and Manca (2006). These processes 

have been applied successfully in a wide range of scientific fields. 

In turn, non-homogeneous semi-Markov processes (NHSMP) were 

introduced by Iosifescu Manu (1972). 

We will deal here with semi-Markov stochastic models applied in a clinical 

field. These processes turn out to be a very efficient tool for predicting the 

dynamic evolution of human immunodeficiency virus (HIV) infection and the 

probability of an infected patient’s survival. This approach has the following 

advantages with respect to traditional epidemiological models (according to Di 

Biase et al., 2007a): 

• we can consider an arbitrary number of states, linked to the seriousness of 

the infection; 

• all transitions between states are allowed; 

• we can consider the randomness of the evolution between all states, as well 

as the stochastic time spent in each state before a transition occurs; 

• model parameters are directly estimated from raw data; 

• finally, conclusions consist in certain interval transition probabilities 

obtained by solving the evolution equations of the process. 

We recall that stochastic tools have been widely used in biomedical 

applications.  

As concerns applications of Markov models, we can mention the studies 

carried out by Longini et al. (1991), Fischl et al. (1987), and Tsiatis et al. 

(1992). Nevertheless, the Markov framework used in those papers leads to 

excessively rigid conditions. According to Brookmeyer and Gail (1994) in their 

AIDS epidemiology basic text, Markov assumptions are not faithful. 

For instance, Longini et al. (1991) assume a time homogeneous Markov 

chain in order to describe the transitions between seven states characterized by 

CD4 + T cell numbers. One of the main assumptions of this study is that the 

hazard rate of transitions from one state to another is constant. 

The semi-Markov framework allows much more flexible modeling of these 

phenomena. Indeed, the duration of each state of the disease can be considered 



 
 
 
 

Survival probabilities for HIV infected patients through semi-Markov processes 

 
 
 
 

15 

as a random variable. Many authors have recently applied semi-Markov models 

in the field of biomedicine. For examples see Davidov (1999), Davidov and 

Zelen (2000), and Foucher (doctoral dissertation, 2007). Specific applications to 

HIV infection have been examined by Lagakos et al. (1978), Sattenand 

Sternberg (1999), Sternberg andSatten (1999), Sweeting et al. (2005), Di Biase 

et al. (2007a; 2009), Joly (1999), D’Amico et al. (2011), and Goshu and Dessie 

(2013). Foucher et al. (2005) consider the impact of covariates and assume that 

the duration time process follows a generalized Weibull distribution. Goshu and 

Dessie (2013) consider a homogeneous non-parametric semi-Markov model 

applied to a cohort of Felege-Hiwot hospital (Ethiopia). 

It is also important to note, following Di Biase et al. (2007a, b; 2009), that 

physicians consider that HIV evolution satisfies the working hypotheses 

inherent in the semi-Markov theory. 

The natural evolution of HIV infection usually starts with a latency phase. 

This phase can last for several years. The main characteristic of HIV infection is 

the gradual depletion of a particular class of lymphocytes named CD4+ (also 

called “helper lymphocytes”). These lymphocytes play an essential part in the 

body’s immune response to infections. The depletion of CD4+ then causes a 

weakening of the immune response, which leads to opportunistic infections of 

significant seriousness. Besides, the presence of plasma viremia is linked to a 

possible worsening of the disease. 

The disease evolves through successive stages (see Levy, 1993), which can 

be defined according to CD4+ lymphocyte count, viral load and constitutional 

symptoms (see Centres for Disease Control and Prevention, 1992). The final 

stage of the disease (Jaffe and Lifson, 1988) is represented by full blown AIDS. 

Three general classes of AIDS markers are available: immunological, viral 

and clinical. On this topic see Goedert (1990), and Brookmeyer and Gail 

(1994). 

Immunological markers are based on concentrations of CD4+ T cells and 

CD8+ T cells, levels of serum beta2-microgobulin and serum neopterin, and 

anergy to cutaneous tests for delayed hyposensitivity. 
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Viral markers aim to evidence the presence or absence of detectable p24 

antigen and plasma viremia (detection of infectious HIV in fresh plasma). 

Finally, clinical markers concern typical symptoms such as weight loss, 

candidiasis, persistent diarrhea, herpes zoster, fatigue and night sweats, 

persistent fever, and oral hairy leukoplakia. 

It is now well known that HIV is transmitted primarily by sexual contact, 

syringe sharing among intravenous drug users, and blood and blood products 

that have not been correctly screened. From an epidemiological point of view, 

the disease has a worldwide spread. It is currently estimated that total cases of 

HIV infection number some 39.5 million, with a peak in Sub-Saharan Africa 

and East Asian countries (for more details on this subject, see UNAIDS/WHO 

AIDS Epidemic Update December 2006). 

In this paper we consider a non-homogeneous parametric semi-Markov 

model in order to determine the dynamic evolution of HIV infected patients 

through four observable states linked to CD4 count (plus an absorbing state, the 

death of the patient). The waiting time distributions are given by generalized 

Weibull distributions and the parameters are obtained using the maximum 

likelihood procedure. We then solve numerically the evolution equations to 

obtain the transition probabilities and consequently the survival probabilities. 

Our model thus combines the parametric approach carried out by Foucher et al. 

(2005) and the survival analysis conducted by Di Biase et al. in a non-

parametric approach (2007a, b; 2009). Nevertheless, the most original feature of 

our study consists in the generation of random trajectories from the semi-

Markov process which permits the attachment of a reward structure. We are 

then able to estimate the therapy costs for a patient with respect to the stochastic 

evolution of the disease. 

The paper is organized as follows. In this section 1 we have introduced the 

problem and have listed the main applications of semi-Markov models reported 

in the literature and the basic features of HIV diffusion. Section 2 is devoted to 

theoretical aspects of semi-Markov processes. The numerical application and  
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a description of the database used are presented in section 3. Conclusions are 

stated in section 4. 

2. Semi-Markov Processes 

The dynamic evolution of HIV infection can be modeled as a sequence of 

different states based on the severity of the infection. According to the National 

Center for Infectious Diseases, Division of HIV/AIDS (see Centres for Disease 

Control and Prevention, 1992), we can define the following four categories 

depending on the CD4+ T-lymphocyte counts per microliter of blood: state I  

( 4 500CD ≥ ), state II (350 4 500CD≤ < ), state III(200 4 350CD≤ < ), and state 

IV ( 4 200CD < ). We add an absorbing state D  corresponding to the death of 

the patient. Patients can move through these five states and all possible 

transitions are allowed (we have 20 possible transitions; see Figure 1). 
 

 

Figure 1. HIV states and transitions 

Let us now formalize this problem from a semi-Markov point of view. We 

first recall the most important aspects of this theory (see Janssen and Manca, 

2006). 

We denote by { }, , , ,E I II III IV D=  the state space and by { }, ,Ω F P  the 

usual probability space. Let cardm E=  (here 5m = ). We introduce the 

following random variables 

: : [0, )n nJ E SΩ → Ω → +∞  (1) 
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where nJ  represents the state at the nth transition and nS  represents the 

chronological time of the nth transition. We denote by ( )N t  the counting pro-

cess { }( ), 0N t t ≥  which is associated with the point process NnnS ∈)(  defined 

as 

}:sup{)( tSNntN n ≤∈=  (2) 

for every 0t ≥ . 

From this definition, the meaning of the random variable ( )N t  is clear. It 

represents the number of transitions occurring in the horizon [0, ]t . 

From the definition of nS , we can introduce the “duration process” 

NnnX ∈)(  as the following family of random variables: 

0

1 1

0

n n n

X

X S S+ +

=
 = −

 (3) 

Consequently, 1nX +  represents the sojourn time spent in state nJ . 

We can now set up the main definition of the theory. The process 

Nnnn SJ ∈),(  is called a “non-homogeneous Markov renewal process” if the 

following relation holds: 

( )
( )

1 1 1 1 0 0

1 1

, | , , , , , ,

, | ,

n n n n n n

n n n n

P J j S t J i S s J S J S

P J j S t J i S s

+ + − −

+ +

= ≤ = = =

= = ≤ = =

K
 (4) 

Besides, we can associate with the renewal process its non-homogeneous semi-

Markov kernel Q  (for j i≠ ) defined as 

( )( ) 1 ( ) 1 ( ) ( )( , ) , | ,ij N s N s N s N sQ Q s x P J j X x J i S s+ +  = = = ≤ = =     (5) 

We observe that in the second expression in this definition, x  represents a 

duration whereas s  represents a chronological time. 

It has been proved (Janssen and Manca, 2006) that the probability ( )ijp s  

that a patient performs his or her next transition to state j , given that he or she 

entered state i  at time s , can be computed as: 

( )( ) 1 ( ) ( )( ) lim ( , ) | ,ij ij N s N s N sx
p s Q s x P J j J i S s+→∞

= = = = =  (6) 
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for every ,i j E∈ andi j≠ . Hence we can introduce the transition probability 

matrix EjisijpsP ∈= ,)( ][)(  of the embedded non-homogeneous Markov chain 

NnnJ ∈)( . In our application, ( )P s  is a matrix of order m . 

We observe that before entering state j , the patient remains for a certain 

time x  in state i . It is appropriate here to introduce the conditional cumulative 

distribution function of the waiting time in each state, given the state 

subsequently occupied. We thus set up: 

( )( ) 1 ( ) 1 ( ) ( )( , ) | , ,ij N s N s N s N sF s x P X x J j J i S s+ += ≤ = = =  (7) 

It can be shown that this function is obtained in the following manner: 

( , ) / ( ) if ( ) 0
( , )

1 if ( ) 0
ij ij ij

ij
ij

Q s x p s p s
F s x

p s

≠=  =
 (8) 

Remark. We recall that a striking difference between a continuous time Markov 

process and a semi-Markov process concerns the characteristics of the 

distribution functions ( , )ijF s x . In a Markov framework, these functions follow 

a negative exponential distribution. In a semi-Markov framework, the 

distribution functions ( , )ijF s x  can be of any type. Consequently, the transition 

intensity can be decreasing or increasing. It follows that the semi-Markov 

environment is richer than the Markov environment. 

We assume that the distributions of waiting times admit densities, which 

will be denoted ( )
,

( , ) ( , )ij i j E
D s x d s x

∈
= . Note that these densities do not depend 

on t . 

We now introduce ( , )iH s x , the probability that the process stays in state i  

for a duration of at least the time x , given that the state i  is entered at 

chronological time s : 

( )( ) 1 ( ) ( )( , ) | ,i N s N s N sH s x P X x J i S s+= ≤ = =  (9) 

These probabilities can equivalently be written as 

1 1

( , ) ( , ) ( ) ( , )
m m

i ij ij ij
j j

H s x Q s x p s F s x
= =

= = ⋅∑ ∑  (10) 



 
 
 
 

G. Masala, G. Cannas, M. Micocci  

 
 
 
 
20 

We then observe that the marginal cumulative distribution functions of the 

waiting time in each state depend on both times. 

Let us finally introduce the functions ( , ) 1 ( , )i iS s x H s x= − . 

We are now able to introduce the continuous time non-homogeneous semi-

Markov process ( )Z t . This process represents, for each time t , the state 

occupied by the process, namely (Janssen and Manca, 2006): 

( )( ) for 0N tZ t J t= >  (11) 

We can deduce from these definitions that the semi-Markov process ( )Z t  is 

completely determined from knowledge of the transition matrix ( )tP  and the 

duration matrix ( , ).s xD In what follows we will see the importance of correctly 

estimating these two elements. 

We observe that two different time scales are involved in these processes. 

The “chronological time” t  refers to an arbitrary origin. In our applications we 

set 0t =  as the first clinical measurement available for the patient. The “internal 

time” x  represents the duration of the time spent in each state. 

Remark. The non-homogeneity of the process with respect to time is given by 

the fact that the jump process ( )ijp t  depends on the chronological time t . In 

other words, time has an influence on the transition probabilities. 

One of the main objectives of this paper is to define the so-called “interval 

transition probabilities” given by the following: 

( )
( )( ) ( )

( , ) patient stays in state  at time | entered state  at time 

( ) | ;

ij

N t N t

t x P j t x i t

P Z t x j J i S t

φ = + =

= + = = =
(12) 

for every ,i j E∈ . 

It can be shown that these probabilities satisfy the obvious property 

( , ) ( , )ij ijt x t h x hφ φ≠ + +  for every 0h > . 

These probabilities can provide important information for medical 

applications, so we would like to develop a procedure enabling their 

determination. It is clear that knowledge of the elements ( )ijp t  of the transition 
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matrix and the elements ( , )ijd s x  of the duration matrix will allow us to 

determine ( , )ij t xφ . 

The link between these elements is given by the following fundamental 

relation, called the evolution equation of the process: 

.
1 0

( , ) ( , ) ( ) ( ) ( , )
xm

ij ij i il il lj
l
l i

t x S t x p t d u t u x u duφ δ φ
=
≠

= ⋅ + ⋅ ⋅ + −∑∫  (13) 

where ijδ  is the Kronecker delta. 

The terms in the right-hand side of the evolution equation can be interpreted 

in the following manner. 

The first term represents the probability that there is no transition from time 

t  up to t x+  given entry of the process into state i  at time t . In our medical 

interpretation, this term gives the probability that the infected patient does not 

shift to any new stage in a time t  (so that his or her clinical situation remains 

stable). 

The second term represents the probability that the system moves into a 

different state following one of the possible trajectories in some time. In the 

medical interpretation, this term gives the probability that the infected patient 

moves to a new clinical situation (the patient’s clinical situation improves or 

worsens). 

Let us set ( , ) ( ) ( )il il ilc t x p t d x= ⋅ . The evolution equation can be rewritten as 

.
1 0

( , ) ( , ) ( , ) ( , )
xm

ij ij i il lj
l
l i

t x S t x c t u t u x u duφ δ φ
=
≠

= ⋅ + ⋅ + −∑∫  (14) 

The following relation also holds: 

0 if
( ,0)

1 ifij

i j
t

i j
φ

≠
=  =

 (15) 

In order to solve the evolution equation (13), it is convenient to treat the 

problem in the discrete framework. Indeed, Corradi et al. (2004) have proved 

that a numerical solution of the evolution equation can be easily determined 
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thanks to the quadrature method. They also proved that the numerical solution 

of the process converges to the discrete time semi-Markov process. 

Furthermore, in the same paper, the authors showed that the discrete time 

process converges to the continuous one if the discretization step tends to zero. 

Although time in real-life problems is generally continuous, the real 

observations of a given system are often made in discrete time, even if the time 

unit chosen may be infinitesimal. The definitions of semi-Markov processes in 

the continuous and discrete time cases are very similar. We merely introduce 

the following probabilities, which are specific to the discrete case (non-

homogeneous framework): 

( )1 1( , ) , | ,ij n n n nB B s t P J j S t J i S s+ + = =  = = = =     (16) 

From the definition of the kernel Q  we obtain immediately: 

( , ) 0 if
( , )

( , ) ( , 1) if
ij

ij
ij ij

Q s s t s
b s t

Q s t Q s t t s

= ==  − − >
 (17) 

The evolution equations (13) can be easily discretized (Janssen and Manca, 

2006). We obtain the following relations (where h  denotes the discretization 

step): 

1 1

( , ) ( , ) ( , ) ( , )
m k

ij ij il lj
l u

uh kh d uh kh b uh h h kh
τ

φ τ φ τ
= = +

= + ⋅∑ ∑  (18) 

The matrix form is the following: 

1

( , ) ( , ) ( , ) ( , )
k

u

uh kh D uh kh B uh h h kh
τ

τ τ
= +

Φ = + ⋅Φ∑  (19) 

Janssen and Manca (2006) proved the following two fundamental results: that 

the equations (19) admit a unique solution; and that the matrices Φ  thus 

obtained are stochastic. 

The aforementioned equations can be quickly solved thanks to an iterative 

procedure we now describe. The following steps are required. 
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First, let us fix a time horizon [0, ]T  and a finite subdivision with k  

intervals of length h . The input data are the transition matrices ( )P t  and the 

waiting time distributions ( )ijF t . The matrices ( )F t  are m m× ( m  denotes the 

number of states) and they must be evaluated for 1, ,t k= K  using the 

distributions previously determined. We make the obvious assumption 

(0) 0F = . 

The matrices ( )Q t  are defined as ( ) ( ) ( )Q t F t P t= ×  (“element by element” 

product).The matrices ( )B t  are given by: 

0 if 0
( )

( ) ( 1) if 0

t
B t

Q t Q t t

=
=  − − >

 (20) 

We then obtain the matrices ( )H t  in the following way: 

1

0 if

( )
( ) if

m
ij

ik
k

i j

H t
Q t i j

=

≠
=  =

∑

 (21) 

These matrices represent the probability of leaving state i  within time t . 

Finally, we define the matrices ( )D t  as ( ) ( )D t I H t= − . 

The full iterative procedure runs as follows: 
• We set up the obvious relation (0) mIΦ =  (identity matrix). 

• We deduce ( ) ( ) (0) ( )h B h D hΦ = ⋅ Φ + . 

• Given (0), ( ), , ( )h khΦ Φ ΦK , we deduce recursively 

( ) ( ) ( )
1

1

( 1) ( ) ( 1 ) ( 1)
k

k h B h k h D k h
τ

τ τ
+

=

Φ + ⋅ = ⋅ ⋅Φ + − ⋅ + + ⋅∑  (22) 

Finally, we illustrate the Monte Carlo procedure needed to generate sample 

paths from the semi-Markov process. 

We fix the usual time horizon [0, ]T .The algorithm involves the following 

steps: 

• (1) set 0k =  and select the initial state 0J i=  with { }, , ,i I II III IV∈ ; 

• (2) sample the next state from the distribution ,kJp ∗ ; 

• (3) sample the sojourn time X~
1, +kk JJF ; 
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• (4) set the new jump time 1k kS S X+ = + ; 

• (5) if 1kS T+ ≥  or 1kJ D+ =  (absorbing state) the cycle ends; 

• (6) otherwise set 1k k= +  and repeat from step (II) until 1kS T+ ≥  or 

1kJ D+ = . 

This algorithm has been revised from Barbu and Limnios (2008). 

3. Empirical Application 

In this section, we apply the model to a database of HIV infected patients. The 

database characteristics will be described in subsection 3.1. The chronological 

time is measured from the first biological measurement. The next subsection 3.2 

is devoted to the estimation of the main features of the semi-Markov model, 

namely the transition probability matrices and the distribution of the waiting 

times in each state. Subsection 3.3 will then present the numerical solutions of 

the evolution equations and thus the probabilities of interest for medical 

analysis. Finally, subsection 3.4 concerns the reward structure as a consequence 

of the Monte Carlo simulation. 

3.1. Database description 

Our database contains 2,240 subjects enrolled in the Italian public structures 

from January 1996 to January 2008,and is provided by ISS (Istituto Superiore di 

Sanità, Rome, Italy). Our study is based on 25,839 checkups (CD4 counts). This 

database contains a large amount of information. Each patient is codified and 

the following data are available: patient identifier, birth date, date of enrolment 

into the cohort, gender, exposure group (sex between men, hemophiliac, 

perinatal, etc.), co-infection with hepatitis B or C, vaccination against hepatitis 

B or C, date of seroconversion, how was seroconversion determined, ART 

therapy initiation, AIDS diagnosis, country of origin, ethnic/racial group, 

educational level, date of last clinic visit, date last alive, date of death (primary 

or contributed causes), date of CD4 count, absolute CD4 count (cells/mm3), date 

of HIV RNA measurement, RNA copies (copies/mm3), antiretroviral drug, date 
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drug commenced, viral test. The clinical measurements for each subject are 

scheduled approximately every six months. Some additional measurements are 

also performed whenever the patient’s state worsens. 

3.2.  Semi-Markov estimation 

3.2.1. Estimation of the transition matrices ( )P t  

Consider the time horizon [0, ]T  with 4T =  years. We take a partition of this 

time horizon with monthly step size (total 48 sub-intervals). 

The matrices ( )P t  have already been defined in section 2. Whenever real 

data is available, these matrices can be estimated in the following way. In our 

application, we recall that the states are { }, , , ,E I II III IV D= , so that 5m =  

(using the previous notation).  

We have to determine a transition matrix ( )P t  with 1/12,2 /12, ,4t = K . 

The elements ( )ijp t  are given by 

1

( ) ( ) / ( )
m

ij ij ik
k

p t a t a t
=

= ∑  (23) 

where ( )ija t  represents the number of direct transitions from state i  to state j  

given entry into state i  at time t . 

We can also set up a polynomial interpolation in order to approximate the 

functions ( )ijp t  with a polynomial (for every , 1, ,i j m= K ). 

Let us consider an approximation with a polynomial of given order (for 

example order six, which will be justified later):  

6 5 4 3 2
6 5 4 3 2 1( )ijp t t t t t t t bα α α α α α= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  (24) 

The coefficients iα  and b  are given in Table 1 below (note that state D is now 

denoted by 5). For the sake of brevity, we report only the first transitions. 

We observe that the coefficients of monomials of degree five and six are of 

lower order with respect to the other coefficients. Besides, the Root Mean 

Square Errors (transition 1-1) for the interpolating polynomials of order three, 

four, five and six are respectively 0.00278, 0.00235, 0.00234 and 0.00213. We 
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conclude that the six-order interpolating polynomial is to be preferred. For 

higher orders, the relative coefficients are notably smaller, so that we finally use 

a six-order polynomial. This argumentation also concerns the other transitions. 

This continuous interpolating polynomial then permits the estimation of 

transition probabilities at every time required by a discretized algorithm. 
 

Table 1. Coefficients of the polynomial regression 

Trans. α1 α2 α3 α4 α5 α6 b 

1-1 -0.035631 -0.064013 0.093248 -0.046178 0.010042 -0.000811 0.820992 

1-2 0.298632 -0.421427 0.296797 -0.109457 0.020185 -0.001467 0.092354 

1-3 -0.070419 0.156754 -0.134130 0.055162 -0.010901 0.000831 0.039994 

1-4 -0.043937 0.081442 -0.065998 0.026648 -0.005229 0.000397 0.012771 

1-5 -0.148645 0.247244 -0.189916 0.073826 -0.014097 0.001050 0.033890 

 

We show below (Figure 2) the interpolating polynomial for the function 

11( )p t . 
 

 

Figure 2. Polynomial regression 
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3.2.2. The duration time distribution 

After determining the number of transitions, we deduce from our database the 

waiting time in each state (expressed in years). We should then determine a 

more adequate distribution function of these waiting times. As a typical choice, 

in accord with Foucher et al. (2005), we consider the generalized Weibull 

distribution (GW). The authors of that paper assert that this distribution is 

suitable for this kind of application. 

The hazard rate function of the GW is given by: 

1
11

1

( , , , )

x x

x

ν ν θ

ν
σ σ

λ ν σ θ
θ σ

−−     ⋅ +         
⋅

=
⋅

 (25) 

where ν , σ  and θ  are real parameters. 

The survival function is defined as: 

1/

1 1

( , , , )

x

S x e

θν

σν σ θ
   − +    =  (26) 

Hence, we deduce the expression of the density function: 

( , , , ) ( , , , ) ( , , , )f x S x xν σ θ ν σ θ λ ν σ θ= ⋅  (27) 

and consequently the distribution function takes the form 

( , , , ) ( , , , )
x

x f tF dtν σ θ ν σ θ
−∞

= ∫  (28) 

We can estimate these three parameters by maximization of the likelihood 

function 

( )
1

, , ,
N

i
i

f xL ν σ θ
=

= ∏  (29) 

for each transition, where ix  denotes the time (expressed in years) and N  

represents the number of observations. 
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The results are given in Table 2 below (we include the log-likelihood values 

LogL ). For the sake of brevity, we report only the first transitions. 
 

Table 2. GW parameters 

Transition Mean Variance ν σ θ Theor. Mean Theor. Variance LogL 

1-1 0.5293 0.2980 2.8945 0.2164 3.8266 0.5335 0.1775 1,507.50 

1-2 0.6269 0.4683 3.4531 0.2214 5.0250 0.6304 0.2897 -641.61 

1-3 1.0911 2.4482 2.9607 0.2290 5.8143 1.0793 1.8764 -450.54 

1-4 2.7867 7.0690 0.8080 16.0527 0.3282 2.8007 6.9051 -309.02 

1-5 2.8532 10.1310 0.7516 4.4461 0.7417 2.8501 11.5468 -136.47 

3.3.  Numerical results 

In this subsection we present the results obtained by solving the evolution 

equation. 

We obtained numerical results taking a time horizon of one year with a 

monthly step subdivision. The results are given in Table 3. 
 

Table 3. Interval transition probabilities 

Prob. (12 months) I II III IV D 

I 76.63% 17.58% 4.95% 0.51% 0.33% 

II 31.85% 44.49% 20.06% 2.92% 0.67% 

III 13.33% 24.04% 47.53% 13.25% 1.86% 

IV 3.16% 6.75% 20.02% 58.42% 11.66% 

D 0.00% 0.00% 0.00% 0.00% 100.00% 

 

For example, let us consider a patient whose initial state is II. After one 

year, the probability of his state improving is 31.85% while the probability of 

his state worsening is 22.98%. Besides, the probability of reaching the 

absorbing state D  is 0.67%. 
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Survival probabilities 

Let us define the survival probability for a patient which enters state i  at time 

zero as 

{ }
1

1

( ) ( ) 1 ( ) , , ,
m

i ij iD
j

t p t p t i I II III IVπ
−

=

= = − ∈∑  (30) 

We then perform the following numerical procedure. Consider the time horizon 

[0,4]T =  (years) with a monthly step subdivision. We can represent graphically 

the values ( )i tπ  for each { }, , ,i I II III IV∈  and 1/12,2 /12, ,4t = K . 

The result is illustrated graphically in Figure 3 below (in this application, 

the whole database is involved). The upper line represents ( )I tπ , the second 

line represents ( )II tπ , the third line represents ( )III tπ  and finally the lower line 

indicates ( )IV tπ . We deduce immediately that for each value of the time t , the 

survival probability decreases as the initial state worsens. For each initial state, 

the survival probability decreases with respect to time t . This decreasing trend 

is more striking with respect to the worsening of the initial state. 
 

 

Figure 3. Survival probabilities 

 

Next, we compare the survival probabilities between men and women.  

We get the following results with respect to the initial state of the patient (see 

Table 4). 
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Table 4. Survival probabilities men/women vs. initial state 

Time 

(years) 

women  

(I) 

men 

(I) 

women  

(II) 

men 

(II) 

women  

(III) 

men 

(III) 

women  

(IV) 

men 

(IV) 

1 99.52% 99.48% 99.42% 98.85% 98.54% 97.25% 88.07% 86.61% 

2 98.66% 98.39% 97.83% 96.81% 95.57% 93.12% 80.74% 76.97% 

3 97.30% 96.62% 95.64% 94.07% 92.30% 88.70% 75.34% 69.88% 

4 95.50% 94.27% 93.21% 90.92% 89.16% 84.43% 71.17% 64.48% 

 

The same conclusions as stated for Figure 3 also hold here. As a further 

comment, we note that, for each situation (time and initial state), the survival 

probability for women is always higher. 

These results can be refined by considering different age ranges (as is usual 

in actuarial practice, for example). We give below the survival probabilities for 

the ranges 20–30 years and 30–40 years, conditional on the starting state 

(Tables 5a–5d). 
 

Table 5a. Initial state I    Table 5b. Initial state II 

N 

(years) 

M 20-

30 Y 

W 20-

30 Y 

M 30-

40 Y 

W 30-

40 Y 
…

N 

(years) 

M 20-

30 Y 

W 20-

30 Y 

M 30-

40 Y 

W 30-

40 Y 

1 99.48% 99.52% 99.39% 99.83%  1 98.84% 99.42% 99.17% 98.91% 

2 98.38% 98.66% 98.13% 98.92%  2 96.80% 97.83% 96.99% 96.93% 

3 96.62% 97.30% 96.01% 97.31%  3 94.05% 95.64% 93.77% 94.31% 

4 94.27% 95.50% 93.11% 95.13%  4 90.91% 93.21% 89.99% 91.42% 

Table 5c. Initial state III    Table 5d. Initial state IV 

N 

(years) 

M 20-

30 Y 

W 20-

30 Y 

M 30-

40 Y 

W 30-

40 Y 
…

N 

(years) 

M 20-

30 Y 

W 20-

30 Y 

M 30-

40 Y 

W 30-

40 Y 

1 97.25% 98.54% 97.24% 98.38%  1 86.61% 88.07% 84.69% 89.56% 

2 93.12% 95.57% 92.53% 95.13%  2 76.97% 80.74% 73.76% 81.35% 

3 88.69% 92.30% 87.34% 91.56%  3 69.88% 75.34% 65.66% 75.93% 

4 84.43% 89.16% 82.31% 88.11%  4 64.47% 71.17% 59.48% 72.07% 
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The interpretation of the results is less straightforward here. When 

considering initial state IV, we observe that the survival probability of men in 

the range 20–30 years is higher than for the range 30–40 years. We obtain the 

opposite conclusion when we consider women in the ranges 20–30 and 30–40 

years. 

Finally, patients in our database are divided into two categories: patients 

with antiretroviral therapy and patients without therapy. It is very useful for 

medical applications to compare the survival probabilities between these two 

categories. This is indeed a striking indicator that reveals the efficiency of the 

therapies. 

The results are summarized in the following Tables 6a–6d. These contain 

the estimations with respect to the starting state. 
 

Table 6a. Initial state I  Table 6b. Initial state II 

N (years) therapy no therapy …… N (years) therapy no therapy 

1 99.70% 98.88%  1 99.35% 97.68% 

2 99.21% 98.03%  2 98.30% 96.19% 

3 98.11% 95.45%  3 96.40% 91.00% 

4 96.47% 91.79%  4 94.00% 84.75% 

5 94.44% 87.74%  5 91.44% 79.29% 

6 92.14% 83.04%  6 88.85% 73.86% 

7 89.60% 77.06%  7 86.16% 67.17% 

8 86.92% 70.19%  8 83.39% 60.06% 

9 84.26% 63.84%  9 80.73% 54.83% 

10 81.53% 56.64%  10 77.97% 47.88% 

 

From these results we can appreciate that the survival probability for 

patients “with therapy” is higher. We observe a more striking difference for 

long time horizons. 
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Table 6c. Initial state III  Table 6d. Initial state IV 

N (years) therapy no therapy …… N (years) therapy no therapy 

1 98.27% 94.09%  1 90.31% 58.32% 

2 95.92% 88.69%  2 84.51% 38.53% 

3 92.73% 78.29%  3 77.37% 23.15% 

4 89.21% 69.41%  4 72.15% 16.19% 

5 86.04% 63.96%  5 69.35% 14.80% 

6 83.27% 58.85%  6 67.05% 13.33% 

7 80.54% 51.56%  7 63.80% 9.58% 

8 77.66% 44.36%  8 60.48% 6.62% 

9 75.00% 41.22%  9 58.94% 7.55% 

10 72.45% 33.61%  10 55.78% 4.09% 

 

3.4.  Reward structure 

We can attach a “reward” structure to the process which represents the 

dynamical evolution of the disease. The goal is to determine the therapy costs 

for a patient. 

In order to perform this estimation, we set up a Monte Carlo procedure to 

generate sample paths from the semi-Markov process, as described in the 

previous section. 

In order to determine the total cost, we have to assign to each state a specific 

cost referred to time unity. We can then determine a discounted reward process 

by considering an interest rate structure. For simplicity, we consider here a 

constant rate structure given by the instantaneous interest rate δ . 

Next we estimate the cost for each simulation, and we then take the 

expected value over a large number of replications.  

Semi-Markov reward processes are also studied in Janssen and Manca 

(2006). The authors give a recursive formula which permits determination of 

the cost. 
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We performed the simulation by assigning the following arbitrary costs for 

each state (referred to the unit time period, namely one year): 1, 1.5, 2 and 4 for 

states I, II, III and IV respectively. 

The constant interest rate is 3%δ = , the time horizon is 4T =  and the 

number of simulations is 1,000.  

We found the following costs, as given in Table 7 (conditional on the initial 

state) together with relative confidence intervals at a 95% level. 
 

Table 7. Mean cost 

Initial state Mean cost 95% confidence interval 

I 5.11 [5.00,5.22] 

II 6.07 [5.93,6.21] 

III 7.14 [6.97,7.31] 

IV 9.29 [9.05,9.53] 

 

Similar investigations can be carried out considering various additional factors 

such as patient gender and age group. 

Some more references concerning reward structures can be found in 

Marshall (2007). 

4. Conclusions 

The HIV model considered in this study clearly concerns a “macroscopic” 

viewpoint of the dynamical evolution of the disease and it is linked to the CD4 

measurement available in our database. This multi-state model consists of four 

immunological states plus a fifth absorbing state, the death of the patient. We 

take into consideration all possible transitions. The non-homogeneous semi-

Markov model adopted in this paper makes it possible to represent faithfully the 

dynamical evolution of the disease, and thus we succeed in approximating a real 

and complex natural process. Besides, we observe that the follow-up time is of 

fundamental importance for the disease process.  
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We set a parametric approach through maximum likelihood estimators in 

order to determine the waiting time distribution functions.  

The integral evolution equations of the continuous process are solved in 

discrete time thanks to an iterative algorithm. This permits us to determine the 

so-called interval transition probabilities. These probabilities are fundamental in 

order to perform predictions concerning the clinical evolution of patients. 

As a consequence, we can estimate the survival probabilities for HIV 

infected patients and compare them with respect to certain categories such as 

gender, age group or type of antiretroviral therapy. This study allows us to 

deduce certain correlations between survival probabilities and specific factors 

such as the patient’s gender and/or age. As a further improvement, this 

methodology could be used to compare the efficiency of different antiretroviral 

therapies. 

Finally, a Monte Carlo simulation of semi-Markov processes permits the 

attachment of a reward structure in order to estimate the therapy costs for a 

patient. 
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