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SUMMARY

In this article there is proposed a new two-parametrical variant of the
gravitational classification method. We use the general idea of objects’
behavior in a gravity field. Classification depends on a test object’s
motion in a gravity field of training points. To solve this motion problem,
we use a simulation method. This classifier is compared to the 1NN
method, because our method tends towards it for some parameter values.
Experimental results on different data sets demonstrate an improvement
in efficiency and that this approach outperforms the 1NN method by
providing a significant reduction in the mean classification error rate.
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1. Introduction

In this paper we introduce and study a new classifier. The idea of our
classifier has its origin in observations of the behavior of celestial bodies
in a gravity field. In physics this is known as the n-body problem, which
can be described as the problem of taking an initial set of data that gives
the positions (in R3), masses and velocities of some set of n bodies, for
some particular point in time, and then using that set of data to determine
the motions of the n bodies, and to find their positions at other times, in
accordance with the laws of classical mechanics. Objects from the training
sample correspond to bodies in a gravity field. To classify a test object we
place it in the field of training objects and observe its movement. If the test
object hits the training object with class G; we assign it to the class G;.
Suppose that a training sample has been collected by sampling from a
population P consisting of K subpopulations or classes G, ..., Gg. Theith
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observation is a pair denoted by (x;,y;), where x; is a p-dimensional feature
vector and y; is the label for recording class membership. The correspond-
ing pair for an unclassified observation is denoted by (x,y). In this case x
is observed, but the class label y is unobserved. The object of classifica-
tion is to construct a classification rule for predicting the membership of
an unclassified feature vector x € P.

The gravitational classification method was first proposed in Wright
(1977). In subsequent years many gravitational classification algorithms
have been well studied by researchers (Kundu, 1999; Peng et al., 2005; Peng
et al., 2009; Ravi and Gowda, 1999; Shi et al., 2003). A framework for clas-
sification based on physical fields was proposed in Ruta and Gabrys (2009)
and followed in Budka and Gabrys (2011). In the present paper we study
a parametrical approach to gravitational classification. In classification
methods based on a gravity field the intensity of the field induced by an
object is inversely proportional to the square of the distance. We propose
to take a different parametrical power function to compute the intensity of
the field. The use of such a parametrical kernel function, in a static man-
ner, was proposed in Goérecki and Luczak (2010). In this work we use the
kernel dynamically, the field induced by the kernel function causing move-
ment of the test points. We consider the radius of training points as the
second parameter, and investigate the influence of the parameters on the
classification process, dynamically changing them for each data set. Then
we try to simplify the method by finding more or less universal values of
the parameters which are best on average for all data sets.

In our paper we first present the main ideas of gravity classifiers (section
2). Details of algorithms are described in section 3. The performances of
the methods are compared and the error of classification is considered. Our
classifiers seem to tend towards the INN method. Salzberg (1997) recom-
mends comparing a new method with the most similar one. Therefore we
compare our methods with the 1NN rule. The methods and data sets used
are described in section 4. The results of the research are explained with
a number of charts, where the differences between the classifiers are shown
precisely. Section 5 contains the results (with figures) of our experiments
on the described real data sets. We conclude with discussion in section 6.

2. Method

The intensity of the gravity field induced by bodies x; with masses m;
(t = 1,...,n) at point x is inversely proportional to the square of the
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distance. The vector of the intensity is expressed as

— X
=G 1
Z PR W)

where G is the gravitational constant. To find the trajectories of the bodies,
we have to find the solution of the following second—order system of n
differential equations (in vector form):

— xi(t) ,
=G m; ’ i1=1,...,n, (2)
)=G 2. =0T
J#i

where x;(t) are the positions of the bodies at time ¢.

Our idea for a new classification method is as follows. Objects from the
training sample correspond to bodies in a gravity field. We assume that the
masses of the objects are the same (m; = 1) and each of them is a sphere
in RP with a radius r (the same for all training objects) and with center at
x;. The training objects are motionless, and they have no influence on each
other. We also assume that the intensity of the field induced by the objects
does not need to be inversely proportional to the square of distances; it can
be any other power function. Thus the vector of intensity is

GZ EE )

where a > 1 is a parameter.

Then, to classify a test object x, we put it in the field (it appears at
position x). The object starts moving and at some time hits one of the
training objects (i.e. at time ¢, its distance from some training point xj is
lower than ). We classify the test object by placing it in the class of the
object xp.

To find the trajectory of a test object we have to find the solution of
the following second—order differential equation (in vector form):

— x(t)
GZ PO )

where x; € RP are training points, and x(t) is the position of test object x
at time t.
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To solve the problem we use simulation methods. We also introduce
some simplifications of the main method. We examine three different
models:

1. The first model is the most sophisticated, but it corresponds strictly
to the main analytical problem. The time of a test object’s motion
is divided into many short periods. A test object is placed in the
field of training objects with an initial velocity of 0. In each period
the object moves with uniformly accelerated linear motion. As the
periods tend to 0, the model becomes similar to the main analytical
problem.

2. The second model is a simplification of the first one. We assume
that the test object moves with constant velocity (some fixed initial
velocity). In each period only the direction of motion changes (it
corresponds to the direction of field intensity).

3. The third model is the simplest. The test objects move rectilinearly.
The direction of a test object is constant for the whole time of move-
ment and equals the direction of field intensity at the initial point of
the object.

Figure 1 shows the classification areas of the above three methods for
the same training data set. For the first model there are some more or less
chaotic (random) disturbances of the classification regions. In real motion
in a gravity field, a test object often covers a long distance before hitting
one of the training objects. The destination object can be quite far from
the starting position of the test point. This is similar to the behavior of our
first model. It is possible that, in finite time, a test object fails to collide
with any training object. It may be thrown out of the classification area
or go into a more or less stable orbit.

The second model gives smoother classification borders. It very rarely
happens that a test object is not classified. Practically all test points reach
one of the training objects.

In the third model, it very often happens that the trajectory line does
not intersect any sphere of the training objects. There are large unclassified
areas.

All of the models have the same properties. As the radius r increases,
the models become similar to the nearest neighbor method. However, for
large values of radius r, a test object in its start position can be closer than
r to many training points. Then we have to resolve this conflict, and this
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Figure 1. Comparison of classification areas. Black (class ‘1’) and white
(class ‘2°) dots represent the observations from the training set, while the color
of the area specifies areas of classification (light gray — unclassified region,
gray — class ‘1’, white — class 27)

Figure 2. Classification areas for different values of the parameter o. Black
(class ‘1’) and white (class ‘2’) dots represent the observations from the training
set, while the color of shading specifies areas of classification (light gray —
unclassified region, gray — class ‘1’, white — class ‘2)

has a significant influence on the classification error rate. Because of this,
we should prefer to take smaller values of radius r.

As the value of the parameter « increases, the influence of distant train-
ing points decreases. Thus also in this case the model tends towards the
INN method. Figure 2 shows classification areas for different values of the
parameter a.

Our research established that the second model is the best for classifi-
cation problems. The classification error rate of the other models is similar
and is much higher than in the second model. Thus, for the remainder of
this paper, we consider only the second method.
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3. Algorithm

In our method (the second model) a test object has constant velocity norm.
For each test object, the total time of its motion is divided into many
short periods. In each period the test object covers a distance of 1/10 of
the radius r (constant for the training objects). In this way, the gravity
constant G does not influence the velocity norm and can be fixed at G = 1.
In the total time the test object covers the distance of twice the maximum
distance between all training points (if it does not hit any training object).
If it does not reach any training object in the total time, then its class
is chosen randomly. This has a negligible influence on the classification
results, because such points are very few (Figure 1, second model). Also if
the start position of a test object is closer than r to more than one training
object, we classify it randomly. The classification of one test point can be
presented in pseudocode:

Algorithm 1 Classification of one test point x.
Require:
(xi,y;) — positions and classes of training points
r — constant radius of training points
X — position of the test point
t — constant time period
v(x) — velocity vector with constant norm and varied
Ensure: y — class of the test point x
1: while V;||x — x;|| > r do
2: X :=x+tv(x)
3: end while
4: y:=1y;, where ||x — x;|| <7

Thus there are two parameters in our model: the radius r > 0 and
the power function exponent o« > 1. We introduce a new parameter (3,
where 0 < 8 < 1. To compute the radius r from § we calculate all nonzero
distances between training points. Let us denote the number of these as m.
Then we take the |5 - m| lowest of them (or the lowest one if [5-m| = 0)
and calculate the arithmetic mean. Half of the mean is the radius r. In
this procedure the lowest possible radius equals half the minimal nonzero
distance between training points. The radius is usually a little greater than
the shortest possible one.

We finally obtain a classification method depending on two parameters:
a>1and 0 < B < 1. The greater is the value of «, the less influence on
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classification comes from distant training points. The greater is the value
of 3, the greater is the radius r.

4. Computational experiments

4.1. Data sets

We conducted experiments on some real data sets. The learning capabil-
ity of our algorithm was measured by the accuracy of a classifier, learned
from training samples, in classifying unseen features. We compared our
algorithm with the widely used nearest neighbor method. A total of 12
data sets were selected. These data sets have been extensively adopted
for benchmark study. A summary of some of their properties is given in
Table 1.

Table 1. A summary of the data sets used in the experiments.

Dimension of Number of Number of Number of
Data set . . .

feature space classes instances in classes all instances
balance 4 3 49,288,288 625
beetles 2 3 21, 31, 22 74
diabetes 8 2 500,268 768
hayes 5 3 51, 51, 30 132
heart_h 10 5 31, 23, 24, 15, 168 261
hepatitis 16 2 26, 111 137
iris 4 3 50,50,50 150
lungcancer 55 3 9, 13, 10 32
parkinsons 22 2 147, 48 195
thyroid 5 3 150,35,30 215
vertebral 6 3 60, 150, 100 310
wine 13 3 59,71,48 178

The data set beetles comes from Seber (1984). Other data sets originate
from Frank and Asuncion (2010). These data sets are representative for a
wide range of biometry classification problems.

4.2. Experimental setup

We employed a bootstrap method in estimating the classification accuracy.
We used 100 repetitions for each data set. The 100 values of classification
accuracy are averaged to get the final estimate. Clearly this number of rep-
etitions is somewhat arbitrary and may not be optimal. However, since the
bootstrap samples were fixed for all methods and data sets, the comparison
should be fair. We carried out experiments for 8 from 0 in steps of 0.005
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up to 0.05 and for o € {3,4,...,15,20,50}, but we show in the tables only
values for « € {3,4,...,10,20,50}, due to table size limitations.

5. Results

We experimented on a range of values for 5. For a fixed data set, the
same value of parameter 3 can give a lower error rate for different values of
parameter «. However, for each data set the best value of 3 is different. For
some data sets the error rate curve is constant, while for others it increases
or decreases. For example, the results for fixed o = 5 are shown in Table 2.

Table 2. Sensitivity of bootstrap classification error rates with respect
to parameter 8 (o = 5)

Data set 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

balance 24.32  24.32 24.32 24.37 24.32 2434 24.39 24.38 24.41 24.46 24.54

beetles 6.61 6.61 6.61 6.61 6.61 6.61 6.61 6.61 6.61 6.61 6.61
diabetes 33.10 33.03 33.17 33.26 33.51 33.56 33.42 33.50 33.49 33.69 33.70
hayes 59.28 59.24 59.16 59.08 59.12 59.08 59.06 59.10 59.13 59.21 59.37

heart_h 54.97 54.96 54.99 55.07 54.99 54.94 54.90 54.78 54.69 54.55 54.62
hepatitis 27.63 27.61 27.56 27.48 27.32 27.34 27.54 27.51 27.48 27.25 27.09
iris 4.19 419 4.19 4.19 4.19 4.19 4.19 419 4.19 421 4.21
lungcancer 64.07 64.07 64.07 64.17 64.17 64.32 64.32 64.32 64.24 64.24 64.14
parkinsons 15.42 1542 1546 1544 1547 15.38 15.43 1543 15.59 15.75 15.90
thyroid 7.18 T1r o TA7 7.18 7.18 7.18 7.18 717 TAT IBYERS Y
vertebral 20.39 20.39 20.39 20.47 2048 20.40 20.30 20.26 20.09 19.94 19.93
wine 27.16  27.19 27.22 27.19 27.22 2740 27.58 27.91 28.15 27.89 27.71

It may be of interest to have one total value of the parameter 8 for all
data sets. To find such 8 we normalize the error rates for each data set
and take means for each 5. Thus we have a function of average normalized
errors for all data sets depending on the parameter 8 (Figure 3). It is seen
that the most universal value is § = 0.01. All further investigations are
performed only for this value of 5.

We recognize that this selection of parameters is not a universally best
choice for all practical problems. In our experiments it is selected mainly to
demonstrate the potential of gravity classifiers. For practitioners, however,
the parameters must be fine-tuned to the problem domain. Nonetheless it
seems that the value § = 0.01 is a fairly good first choice for a wide range
of data sets.

Next we have to choose the parameter o. The estimated mean values
of classification error rate are listed in Table 3. A lower error rate means a
higher classification accuracy. The winner in each data set is given in bold.
We can see that for almost all data sets there exists a such that our
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Figure 3. Normalized mean bootstrap error rates for different values
of fand o =5

method is better than the nearest neighbor method. The only exceptions
are the data sets balance and wine. However we can see that the error
decreases as the value of « increases. Because the model tends towards the
1NN method, we can hope that the error also tends to the 1NN error rate
and attains it for some (maybe large) value of the parameter .

Table 3. Bootstrap error rates with respect to the parameter o (8 = 0.01)

Data set INN 3 4 5 6 7 8 9 10 15 20 50
balance 21.62 47.05 26.83 24.32 22.98 22.41 22.13 22.08 22.04 22.11 22.10 22.13

beetles 6.82 7.51 6.54 6.61 6.61 6.64 653 6.50 6.57 6.68 6.68 6.75
diabetes 32.85 36.71 35.05 33.17 32.87 32.88 32.86 32.86 32.84 32.89 32.99 33.01
hayes 59.05 60.07 59.67 59.16 59.20 58.96 58.87 59.09 58.90 58.97 58.99 58.89
heart_h 56.10 55.71 53.67 54.99 55.78 55.84 55.99 56.06 56.02 56.15 56.24 56.14
hepatitis 27.11 27.25 27.91 27.56 26.84 26.49 27.02 26.92 26.96 26.85 26.93 27.09
iris 4.29 510 4.26 4.19 4.30 4.34 4.25 4.22 4.25 4.34 4.38 4.33

lungcancer 56.33 68.07 66.62 64.07 60.72 58.47 58.43 57.16 56.54 55.61 56.40 55.40
parkinsons 16.38 16.75 15.26 15.46 15.65 16.13 16.28 16.31 16.36 16.35 16.34 16.35

thyroid 6.60 14.71 9.17 7.17 6.78 6.60 6.38 6.40 6.38 6.44 6.47 6.54
vertebral 18.48 34.67 23.52 20.39 19.30 18.91 18.97 18.75 18.68 18.49 18.44 18.48
wine 26.29 28.07 27.41 27.22 27.07 27.09 26.87 26.88 26.76 26.71 26.60 26.44

We may use the mean ratio of error rates across data sets as a measure
of relative performance (Bauer and Kohavi, 1999). However, Webb (2000)
reported that this measure could increase the difficulty of error comparison
in different data sets. Therefore he adopted the geometric mean ratio rather
than arithmetic mean ratio:



10 T. Gérecki, M. Luczak

where n is the total number of data sets and a;, b; are classification error
rates. The geometric mean ratio of a;/b; enjoys the desirable property that
if it is greater than one then the geometric mean ratio of b;/a; will be less
than one.We therefore calculate the geometric mean ratios of error rates
for our method with respect to the INN method, the results are shown
in Table 4. From the table we see that, on average (for the best value of
parameter «), our algorithm performs better than the INN method (Figure
4). This is in accordance with the above-mentioned observations.

As Salzberg, 1997 (1997) recommends, for the statistical comparison of
methods we used the exact binomial test. Let n be the number of data
sets, s be the number of times that our method is better than the 1NN
rule, and f be the number of times that our method fails. Suppose that
s > f, so our method is better than 1NN. We calculate the probability
that our method “wins” over 1NN at least as many times as observed in
the experiment. This will be our p-value. It can be computed as

n

HIOK L pp— (6)

—
=t =)

In our case we have n = 12, s = 10, f = 2. Hence the p-value is equal to
0.01929. Thus it is highly unlikely that the rules have the same accuracy.
We can reject the null hypothesis with high confidence.

In Figure 5 a few curves of normalized error rates are shown. For each
data set the best value of « is rather different, but we can choose one
universal value of « for all data sets. We can see that for « = 9, ..,15 our
method is better on average than the INN method (Table 4).

Table 4. Geometric mean ratios of bootstrap error rates for our method with
respect to the INN method

o 3 4 5 6 7 8 9 10 15 20 50  Best
Error 1.2714 1.0811 1.0303 1.0125 1.0056 1.0006 0.9972 0.9967 0.9985 1.0008 1.0002 0.9801
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6. Conclusions

In this paper we have introduced and studied a new classification method
having its origin in the behavior of bodies in a gravity field. Our research
shows that there are a number of data sets for which the method is better
than the nearest neighbor method. To achieve a lower error rate we have to
choose an appropriate value of the parameter « for each data set. However
for some fixed a the method also has a lower error rate on average than
the 1INN method.

Due to the high nonlinearity and complicated dynamics involved in
gravity classifiers, the method does not easily lead to a rigorous theoretical
analysis. However the experiments that we have conducted justify the
potential and usefulness of our method.

Of course, the classification performance of the new algorithm needs to
be further evaluated, considering additional real and artificial data. Re-
ducing the number of training samples by editing (to remove noise) and
condensing (to obtain a smaller subset) can improve the performance of
the method. This may be a direction of future research.
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