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Summary

Classical canonical correlation analysis seeks the associations between two
data sets, i.e. it searches for linear combinations of the original variables
having maximal correlation. Our task is to maximize this correlation, and
is equivalent to solving a generalized eigenvalue problem. The maximal
correlation coefficient (being a solution of this problem) is the first
canonical correlation coefficient. In this paper we propose a new method
of constructing canonical correlations and canonical variables for a pair
of stochastic processes represented by a finite number of orthonormal basis
functions.
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1. Introduction

In classical canonical correlation analysis we are interested in the relation-
ship between two random vectors Y and X. We seek weight vectors u and
v such that the linear combinations of vectors u′Y and v′X, called canon-
ical variables, are maximally correlated with each other. In the functional
case we are interested in the relationship between two stochastic processes
Y (t) and X(t). We seek weight functions u(t) and v(t) such that

∫
uY and∫

vX are maximally correlated (all integrals are definite integrals on the
interval [0, T ]). The values

∫
uY and

∫
vX are called functional canonical

variables. The problems of functional canonical correlation analysis were
first raised in the work of Leurgans, Moyeed and Silverman (1993), and
are presented in a more mature form in the monograph of Ramsay and
Silverman (2005). Canonical correlations, weight functions and functional
canonical variables are constructed on the basis of N independent realiza-
tions of the stochastic processes Y (t) and X(t). These are called functional
data, after Ramsay and Danzell (1991). In practice we have available dis-
crete data in the form of time series, and it is necessary to transform these
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to functional data. In section 2 of this work a method of transforming dis-
crete data to functional data is presented. Section 3 shows the relationship
between the techniques of canonical correlation analysis for random vectors
and for random processes. Section 4 is devoted to canonical correlations,
weight functions and functional canonical variables constructed on the ba-
sis of functional data. In the final section of the work a concrete real-life
example is given.

2. Transformation of discrete data to functional data

Many financial, meteorological and other data are recorded at discrete mo-
ments in time. Let {yij , xij} denote an observed value of a pair of sta-
tistical features Y and X on the ith individual at the jth time point,
where i = 1, 2, . . . , N , j = 1, 2, . . . , Ji. Our data then consist of N triples
{tij , yij , xij}, where tij ∈ [0, T ], i = 1, 2, . . . , N , j = 1, 2, . . . , Ji. Actually,
we have N two-dimensional time series, each observed at a specific sequence
of time points not necessarily of the same length. However in many cases
it is more convenient to use continuous functions of time, y(t) and x(t),
t ∈ [0, T ], i.e. functional data. In this case the discrete data {tij , yij , xij} are
transformed to functional data {yi(t), xi(t), t ∈ [0, T ]}. The transformation
process is identical for all functions yi(t) and xi(t), hence our further consid-
erations will concern a single function y(t) and x(t), t ∈ [0, T ]. The process
of transformation of discrete to continuous data requires smoothing (Ram-
say and Silverman, 2005). One of the methods of smoothing is to present
the function y(t) as a linear combination of a finite number K1 + 1 of or-
thonormal basis functions ϕk and to present the function x(t) as a linear
combination of a finite number K2 + 1 of orthonormal basis functions ψk:

y(t) =

K1∑
k=0

αkϕk(t), t ∈ [0, T1], x(t) =

K2∑
l=0

βlψl(t), t ∈ [0, T2]. (1)

The orthonormal basis functions usually chosen are the Fourier system:

ϕ0(t) = 1, ϕ2k−1(t) =

√
2

T
sin

2πkt

T
, ϕ2k(t) =

√
2

T
cos

2πkt

T
,

for k = 1, 2, . . . , t ∈ [0, T ], or a system of Legendre polynomials over the
space L2([−1, 1]):

p̃k(x) =

√
2k + 1

2
pk(x),
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where pk+1(x) = 1
k+1 [(2k + 1)xpk(x) − kpk−1(x)] for k ≥ 1, p0(x) = 1

and p1(x) = x.

Every finite interval [a, b] can be transformed to the interval [−1, 1]
using the substitution

x =
2

b− a
t− b+ a

b− a
, t ∈ [a, b], x ∈ [−1, 1].

Let y = (y1, y2, . . . , yJ∗)′, x = (x1, x2, . . . , xJ∗∗)′, α = (α0, α1, . . . , αK1)′,
β = (β0, β1, . . . , βK2)′ and let Φ be a matrix of dimension J∗ × (K1 + 1)
containing the values ϕk(tj), k = 0, 1, . . . ,K1, j = 1, 2, . . . , J∗, and let
Ψ be a matrix of dimension J∗∗ × (K2 + 1) containing the values ψl(tj),
l = 0, 1, . . . ,K2, j = 1, 2, . . . , J∗∗.

The coefficients α and β in the expansion of (1) are selected by the least
squares method, that is, so as to minimize the functions:

S(α) = (y −Φα)′(y −Φα),

or

S(β) = (x−Ψβ)′(x−Ψβ).

Differentiating S(α) with respect to the vector α and differentiating S(β)
with respect to the vector β, we obtain

α̂ =
(
Φ′Φ

)−1
Φ′y, β̂ =

(
Ψ′Ψ

)−1
Ψ′x. (2)

The degree of smoothness of the function y(t) depends on the value
of K1, because small (large) values of K1 cause more (less) smoothing
of the curves. The optimum value of K1 is selected for each function yi(t)
using the Bayesian Information Criterion (BIC), and then from the values of
K1 corresponding to all functions a modal value is selected, as the common
value for all yi(t), i = 1, 2, . . . , N . The same applies to x(t). The BIC
measures the exactness of fit (see for example Shmueli (2010)). The BIC
value for y(t) is expressed by the following formula:

BIC(y(t)) = ln

(
e′e

2

)
+ (K1 + 1)

(
lnJ∗

J∗

)
,

where e = (e1, ..., eJ∗)′, ej = yj −
∑K1

k=0 α̂kϕk(tj), j = 1, 2, . . . , J∗.

We compute the BIC value for x(t) in an analogous manner.
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3. Canonical correlation analysis for random vectors
and random processes

Let us assume that we observe the realization of a two-dimensional random
process (Y,X), where Y (t) ∈ L2(I1) and X(t) ∈ L2(I2). Here L2(I1)
and L2(I2) are the spaces of square integrable functions on the intervals I1
and I2, equipped with the inner product

< u, v >=

∫
u(t)v(t)dt.

We further assume that E(< Z,Z >)) <∞ for Z = Y or Z = X.
Canonical correlation for finite-dimensional random vectors Y ∈ RK1+1,

X ∈ RK2+1 and for stochastic processes Y (t) ∈ L2(I1), X(t) ∈ L2(I2) is de-
fined as follows. Let Hi = RKi+1 in the vector case and Hi = L2(Ii) in the
functional case, i = 1, 2. Then the first canonical correlation ρ1 and the
associated vectors u1 and v1 or weight functions u1(t) and v1(t) are defined
as follows:

ρ1 = sup
u∈H1,v∈H2

Cov(< u, Y >,< v,X >) = Cov(< u1, Y >,< v1, X >), (3)

where u and v are subject to the restrictions

V ar(< u, Y >) = 1, V ar(< v,X >) = 1. (4)

In general, the kth canonical correlation ρk and the associated vectors
uk and vk or weight functions uk(t) and vk(t) are defined as follows:

ρk = sup
u∈H1,v∈H2

Cov(< u, Y >,< v,X >) = Cov(< uk, Y >,< vk, X >), (5)

where u and v are subject to the restrictions of (4), and the kth pair
of canonical variables (Uk, Vk) is not correlated with the first k − 1 pairs
{(Ui, Vi), i = 1, 2, . . . , k − 1}, where

Uk =< uk, Y >, Vk =< vk, X > . (6)

The expression (ρk, uk, vk) will be called the kth canonical system.
We will say that Y and X are uncorrelated if all of their canonical

correlations are equal to zero. This is equivalent to the equality ρ1 = 0,
because ρ1 > ρ2 > ... > 0.

Considering the case where Y and X are stochastic processes, we will
assume that Y and X can be represented by a finite number of orthonormal
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basis functions. For such finite-dimensional processes, functional canoni-
cal analysis is equivalent to ordinary canonical analysis for random vector
coefficients. To demonstrate this fact, we adopt the following notation. Let

Y (t) =

K1∑
k=0

αkϕk(t), t ∈ I1, X(t) =

K2∑
l=0

βlψl(t), t ∈ I2, (7)

where {ϕk} and {ψk} are the first (Ki + 1), (i = 1, 2) elements of the bases
of the spaces L2(Ii), and {αk} and {βk} are random variables with zero
expected values and finite variances. This means that E[Y (t)] = E[X(t)] =
0. This fact does not lead to loss of generality, because the canonical
systems are determined on the basis of the covariances of the processes
Y (t) and X(t) which do not depend on their means. Let

ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕK1(t))′, (8)

ψ(t) = (ψ0(t), ψ1(t), . . . , ψK2(t))′, (9)

α = (α0, α1, . . . , αK1)′, (10)

β = (β0, β1, . . . , βK2)′, (11)

where E(α) = 0, E(β) = 0,

V ar(α) = Σ11, V ar(β) = Σ22, Cov(α,β) = E(αβ′) = Σ12. (12)

Then the processes Y (t) and X(t) can be written in the form

Y (t) = α′ϕ(t), X(t) = β′ψ(t). (13)

Theorem 1. The kth canonical system (γk,uk,vk) of the pair of random
vectors (α,β) is related to the kth canonical system (ρk, uk(t), vk(t)) of the
pair of random processes (Y (t), X(t)) by the equations

ρk = γk, uk(t) = u′kϕ(t), vk(t) = v′kψ(t). (14)

Proof. The covariance function of the process Y (t) is equal to

rY Y (s, t) = E[Y (s)Y (t)] = ϕ′(s)E(αα′)ϕ(t) = ϕ′(s)Σ11ϕ(t). (15)

Similarly we have

rXX(s, t) = ψ′(s)Σ22ψ(t), rY X(s, t) = ϕ′(s)Σ12ψ(t) (16)

Without loss of generality we may assume that the covariance matrices
Σ11 and Σ22 are of full rank. We notice that every function u(t) ∈ L2(I1)
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can be written as the sum of two components u0 ∈ span{ϕ0, ..., ϕK1} and
u1 ∈ span{ϕ0, ..., ϕK1}⊥, namely

u(t) = u0(t) + u1(t) = u′ϕ(t) + u1(t)

where u ∈ RK1+1, (Schott (2005), p. 51). Then

< u, Y >= < u0 + u1,α
′ϕ >=< u′ϕ,α′ϕ >= u′ < ϕ,ϕ′ > α =

u′IK1+1α = u′α,

where IK1+1 is an identity matrix of order K1 + 1.

Similarly for v(t) ∈ L2(I2), < v,X >= v′β, where v ∈ RK2+1. Hence

E(< u, Y >) = u′E(α) = 0,
E(< v,X >) = v′E(β) = 0,
V ar(< u, Y >) = E(u′α(u′α)′) = u′E(αα′)u = u′Σ11u,
V ar(< v,X >) = E(v′β(v′β)′) = v′E(ββ′)v = v′Σ22v,
Cov(< u, Y >,< v,X >) = E(u′αv′β) = u′E(αβ′)v = u′Σ12v.

Let us consider the first canonical correlation between the processes Y (t)
and X(t):

ρ1 = sup
u∈L1(I1),v∈L2(I2)

Cov(< u, Y >,< v,X >) = Cov(< u1, Y >,< v1, X >),

subject to the restriction

V ar(< u, Y >) = 1, V ar(< v,X >) = 1.

This is equivalent to saying that

ρ1 = sup
u∈RK1+1,v∈RK2+1

u′Σ12v = u′1Σ12v1,

subject to the restriction

u′Σ11u = 1, v′Σ22v = 1.

This is the definition of the first canonical correlation between the random
vectors α and β. On the other hand, if we begin with the first canonical
system (ρ1,u1,v1) between random vectors α and β, we will obtain the
first canonical system for the processes Y (t) and X(t) from the equation

(ρ1, u(t), v(t)) = (ρ1,u
′
1ϕ(t),v′1ψ(t)).

We may extend these considerations to the second canonical system and
so on.
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We have thus shown that for 1 ≤ k ≤ min{K1+1,K2+1} the canonical
correlations ρk for a pair of random processes Y (t) and X(t) are the same
as the canonical correlations for a pair of random vectors α and β, and
that the weight functions are expressed by the formula

uk(t) = u′kϕ(t), vk(t) = v′kψ(t),

and the canonical variables are of the form

Uk =< uk(t), Y (t) >, Vk =< vk(t), X(t) > .

Let C = Σ−111 Σ12 and D = Σ−122 Σ21. Then the matrices CD and DC
have the same nonzero eigenvalues ρ2k, and the corresponding eigenvectors
uk and vk are given by the equations

(CD − ρ2kIp1)uk = 0, (DC − ρ2kIp2)vk = 0,

1 ≤ k ≤ min{K1 + 1,K2 + 1} (see for example Krzyśko (2009)).

4. Canonical correlations from a sample

Canonical correlation analysis for random vectors α and β is based on the
matrices Σ11,Σ22 and Σ12. In practice these matrices are unknown. We
estimate them on the basis of N independent realizations of these vectors,
forming the matrices

Â =


α̂10 α̂11 . . . α̂1K1

α̂20 α̂21 . . . α̂2K1

. . . . . . . . . . . .
α̂N0 α̂N1 . . . α̂NK1

 , B̂ =


β̂10 β̂11 . . . β̂1K2

β̂20 β̂21 . . . β̂2K2

. . . . . . . . . . . .

β̂N0 β̂N1 . . . β̂NK2

 ,
where α̂ik and β̂il are estimates obtained by the least squares method for
the parameters αik and βil in the representation

yi(t) =

K1∑
k=0

αikϕk(t), xi(t) =

K2∑
l=0

βilψl(t).

of processes Y (t) and X(t). It should be mentioned that each time series
leading to estimates of matrices Â and B̂ uses the least squares approxi-
mation with the same set of basis functions. The optimal selection of the
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number of basis functions is presented at the end of Section 2. Then the
estimates of the unknown matrices Σ11,Σ22 and Σ12 are of the form:

Σ̂11 =
1

n
Â
′
Â, Σ̂22 =

1

n
B̂
′
B̂, Σ̂12 =

1

n
Â
′
B̂.

If N > K1 + 1, the matrix Σ̂11 is positive definite with probability 1. If
N > K2 + 1, the matrix Σ̂22 is positive definite with probability 1. The
positive definiteness of these matrices is desired because only then will
the canonical correlations from the sample, and the weight functions from
the sample corresponding to those correlations, be maximum likelihood
estimates of those expressions built from the matrices Σ11,Σ22 and Σ12

(Seber, 1984, p. 197).

Let Ĉ = Σ̂
−1
11 Σ̂12 and D̂ = Σ̂

−1
22 Σ̂21, where Σ̂21 = Σ̂

′
12. Then the

matrices ĈD̂ and D̂Ĉ have the same nonzero eigenvalues ρ̂2k, and their
corresponding eigenvectors ûk and v̂k are given by the equations:

(ĈD̂ − ρ̂2kIK1+1)ûk = 0, (D̂Ĉ − ρ̂2kIK2+1)v̂k = 0,

1 ≤ k ≤ min{K1 + 1,K2 + 1}. Having determined the eigenvectors ûk and
v̂k we determine the weight functions:

ûk(t) = û′kϕ(t), v̂k(t) = v̂′kψ(t), t ∈ [0, T ].

Hence the coefficients of the projection of the ith realization yi(t) of process
Y (t) on the jth functional canonical variable are equal to

Ûij =< ûj(t), yi(t) >=
∫
ûj(t)yi(t)dt =

∑K1
k=0 α̂ikûjk = α̂′iûj ,

i = 1, 2, . . . , N, j = 1, . . . ,min(K1 + 1,K2 + 1), and the coefficients of the
projection of the ith realization xi(t) of process X(t) on the jth functional
canonical variable are equal to

V̂ij = β̂
′
iv̂j , i = 1, 2, . . . , N, j = 1, . . . ,min(K1 + 1,K2 + 1).

5. Example

The data come from the online database (http://data.worldbank.org/) of
the World Bank. For the analysis, eight regions of the world were chosen
(N = 8): the European Union (EUU), low and medium income countries
(LMY), the whole world (WLD), Bulgaria (BGR), Poland (POL), Russia
(RUS), Uganda (UGA), and the United States (USA). These were char-
acterized by two variables: GDP growth (Y) and rate of growth in direct
foreign investment (X), recorded in the years 1993–2011 (J∗ = J∗∗ = 19).
These data are presented in Figure 1 and Figure 2 respectively.
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Figure 1. Time series for GDP growth (Y )

 

Figure 2. Times series for rate of growth in direct foreign investment (X)
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Figure 3. Weight functions (u1(t), v1(t))

 

Figure 4. Projection of the eight selected regions of the world on the plane
(U1, V1)
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The series were centred, and calculations were performed using the Leg-
endre basis on L2([−1, 1]). Optimum values of K1 and K2, selected using
the BIC , take the value 2 for both series (K1 = 2 = K2). The first pair of
weight functions (u1(t), v1(t)) is presented in Figure 3.

The first functional canonical correlation between the processes Y (t)
and X(t) is equal to ρ1 = 0, 88, and the projection of the eight selected
regions of the world on the plane of the first functional canonical variables
(U1, V1) is shown in Figure 4.

Figure 4 shows the relative position of the eight selected regions of the
world due to the degree of relationship between the two variables char-
acterizing them: GDP growth (Y) and rate of growth in direct foreign
investment (X), recorded in the years 1993–2011. The extreme positions
are occupied by Uganda and Bulgaria. Poland is the most similar to the low
and medium income countries (LMY). The utility of the proposed method
can be seen on observing the time series shown in Figures 1 and 2.
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