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Summary

The effects of three pre-fermentative techniques (standard procedure, cold
soak pre-fermentation and cryomaceration), temperature (20 or 30◦C)
and saignée (with/without) on the extraction of total anthocyanins were
investigated during maceration of must obtained from Sangiovese grapes.
A Bayesian hierarchical model was developed to estimate time-dependent
contrasts while addressing the peculiar features displayed by the experi-
mental units (wine tanks): substantial heterogeneity among replicates,
departure from low-order ‘textbook’ kinetics and the occasional presence
of very low observations. Prior distributions of critical model parameters
were elicited with the help of wine–making experts and by considering
the results of previous experiments. The posterior distribution of model
parameters was approximated by Markov Chain Monte Carlo simulation
using JAGS software. Among the main findings, it is to be highlighted that
temperature and saignée increased the total anthocyanin concentration in
all the techniques, although at different times during maceration. In all
the procedures the total anthocyanin gain decreased as the maceration
came to an end.

Key words: semiparametric regression, outliers, MCMC, wine making,
pre-fermentation treatments

1. Introduction

Flavonoids affect the colour, mouth-feel and ageability of red wines (Glories,
1988; Ribereau-Gayon and Glories, 1986). They are extracted from skins
and seeds during the maceration/fermentation process (Amrani Joutei and
Glories, 1995). They are phenols and include flavanols, flavonols and an-
thocyanins. Intensely coloured wines can be obtained through : i) pre-
fermentative cold maceration, where crushed berries are kept at low temper-
atures for 2-5 days (Cuenat et al., 1996; Feuillat, 1997; Gerbaux, 1993; Ger-
baux et al., 2002; Gordillo et al., 2010) ii) cryoextraction, where a cryogenic
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liquid is kept in contact with berries for 2-4 days (Parenti et al., 2004;
Couasnon, 1999).

A conclusive demonstration of the positive role of these techniques has
not yet been made; in particular, many papers deal with the co-lour at the
end of fermentation and do not consider its development over time. At-
tempts to fit plain mathematical models without considering the statistical
properties of estimating procedures are provided by (Amendola et al., 2010)
and (Bucic-Kojic et al., 2007), who based their work on Fick’s second law,
and described the evolution of total phenolic concentration during solid-
liquid extraction from matrices other than must or wine. The previous mod-
els were extended in (Andrich et al., 2005) to take account of diffusion and
oxidation phenomena. A class of models made by sigmoidal functions or
by a linear plus exponential combination was recently proposed (Amendola
et al., 2010) to describe the formation of pigmented polymers and the con-
centration of malvidine in must from Sangiovese grapes. A piecewise linear
model for the concentration of 16 polyphenols was first proposed by (Soleas
et al., 1998), as a flexible model to describe wine fermentation. Due to the
lack of analysis of residuals, confidence intervals and other statistical char-
acterizations, it remains difficult to judge the effectiveness of the above
proposals in actual applications.

Longitudinal statistical models (Hedeker and Gibbons, 2006) include
growth and repeated measure models in which parameters are estimated
while taking account of within-subject correlation. Classical polynomial
regression often uses orthogonal polynomials to model time dependence
(Hedeker and Gibbons, 2006, section 5.3). Polynomial models guarantee
the smoothness of estimated expected values along time, but locally varying
functions may be badly estimated because data points influence the global
fit of the model.

Flexible semiparametric regression models are nowadays built to de-
scribe smooth nonlinear functions by means of generalized basis functions
(Ruppert et al., 2003, for a textbook presentation). This class of models
may be conveniently fitted with penalized splines (Eilers and Marx, 1996),
for example to avoid knots selection. In our experiment, extra model flexi-
bility was needed due to the presence of extremely low values occurring on
occasional days.

In this paper, a Bayesian hierarchical model was formulated to estimate
the effect of three experimental factors, arranged in a full factorial design,
on the extraction of total anthocyanins (TA) during maceration of must.
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Both the probability of occurrence and magnitude of extremely low values
were explicitly modelled. Tank-specific kinetics of TA and the expected
value over tanks (higher hierarchical level) were estimated for each treat-
ment. Time-dependent contrasts were calculated to compare the kinetic of
each treatment against the presumably mildest one.

2. Materials and methods

In this section the experimental design and the winemaking protocol are
described, together with details on laboratory equipment. The Bayesian
hierarchical model is presented by introducing the likelihood function and
by describing the prior distribution of model parameters.

2.1. Wine–making protocol and experimental design

The experiment was performed on Sangiovese grapes, 2010 vintage, hand
picked in buckets (20 kg) at maturity in Maremma, Southern Tuscany. As
the harvest proceeded through rows, a randomization procedure was used
to allocate the buckets within bins (500 L), which were transported to the
Consorzio Tuscania experimental winery. Each bin (destemmed-crushed
berries) was randomly assigned to one of the 36 cylindrical vinification
tanks (1000 L, stainless steel) which were used for the vinification. Each
tank finally contained 800 L of must to be processed. A programmable
control unit (Parsec s.r.l.) regulated both temperatures and pump-overs of
every single tank.

A balanced full factorial experiment defined by 3 experimental factors
with 3 replicates (tanks) within treatment was performed. A treatment
is defined by the levels selected for each of the 3 experimental factors,
which were:

• maceration, with 3 levels (traditional vinification (Ctrl), cold soak
pre-fermentation (CSPF ), cryomaceration (Cryo));

• temperature, with 2 levels (20◦C or 30◦C);

• saignée, with 2 levels (present or absent).

Saignée was targeted to 20% vol/weight of the total volume of the tank
(1000 L). A total of 12 different treatments were considered, and the treat-
ment Ctrl 20◦C, no saignée was selected as the reference because experts
recommended it as the mildest among those considered.

Briefly, destemmed-crushed berries for Ctrl were sent directly to the
tanks and brought to the planned fermentation temperature. CSPF was
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applied in the tank on the destemmed-crushed berries, lowering the tem-
perature to 5◦C immediately after filling and maintaining it for 48 hours.
Cryomaceration was performed on the destemmed and drained berries us-
ing an experimental apparatus (Parsec s.r.l.) consisting of a freezing tunnel
containing a stainless steel conveyor belt, on top of which some sprinklers
for liquid nitrogen were installed. The contact time of the liquid nitrogen
with the berries was approximately 5 − 10 seconds, such to obtain a final
temperature of the mass below 0◦C, as regulated by the speed of the con-
veyor belt. The temperature of the flowing mass was measured and was
found to be between +7◦C and −5◦C. The Cryo-treated berries were then
crushed and added with the previously drained must.

The vinification lasted 14 days for Cryo and Ctrl, while 4 extra days
were required for CSPF. The time was rescaled within the range [0, 100] for
all the treatments, thus it represents the percentage of completed maceration.

2.2. Must sampling and laboratory analyses

Sampling was performed during vinification on a daily basis just after a
pumping–over. A volume of 100 ml was withdrawn from the sampling
valve, labelled, and added with 400 mg of NaF to stop the fermentation
process; it was then processed for chemical analyses. The UV/VIS spec-
tra of the supernatants were recorded after centrifugation at 3840 g for 15
minutes (Agilent 8543 UV-Visible DAD spectrophotometer equipped with
a 1FS peristaltic pump and a G18011A XY-auto sampler and UV-Visible
ChemStation (Rev B01.01[21]) software). Total anthocyanins were deter-
mined by UV and visible spectra registered from 230 to 900 nm in a 1 cm
path-length quartz flow cell. Wine samples (80 ml) were diluted with 3 ml
of a solution of water:ethanol:HCl (29:70:1) by volume. The instrument
was previously zeroed with this solution. The TA and non-anthocyanic
flavonoids were quantified according to (Di Stefano et al., 1989) by auto-
mated macro peak integration and calculation using ChemStation software.
The peak height at 280 nm was measured at the tangent baseline between
the two valleys, corresponding to the absorbance of total flavonoids. More
details of the analyses are given in (Buratti et al., 2007). Only the variable
representing TA is considered in this paper.

2.3. A Bayesian statistical model

In this section a Bayesian hierarchical model is developed to estimate the
kinetics of TA under different treatments. The semiparametric model de-
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scribed below accounts for the presence of outliers, that is extraordinary
small values with respect to nearby observations.

The function representing the expected value of the response (TA) is
smooth and it is represented by means of B-spline bases (de Boor, 1978).
Instead of looking for the optimal placement of knots, a penalized smoother
is adopted by defining a suitable Bayesian prior distribution on spline pa-
rameters (Lang and Brezger, 2004; Eilers and Marx, 1996).

Let Y (t) be the response variable at time t in a given tank. Among the
experimental factors maceration m is labelled by integers {1, 2, 3}, temper-
ature c by {1, 2}, and saignée s by {0, 1}. Three replicates were run for
each treatment; therefore a total of 36 tanks were considered. The index
j ∈ {1, 2, 3} refers to the three tanks within a treatment, while an integer
i ∈ {1, 2, . . . , 12} is used hereafter to denote treatments instead of using
the triple of integers m, c, s.

The smooth function describing the expected value of the response vari-
able Y (t) over time was decomposed into a function µ(t), which is the ex-
pected value of the treatment, plus a function related to the departure of
a tank from the expected value of its own treatment, formally written as:

E[Yi,j(t)] = µi(t) + αi,j(t) (1)

where αi,j(t) is the time-dependent effect due to tank j, that is the de-
parture of a given tank from the expected value µi(t) of treatment i. The
function αi,j(t) for tank j is also assumed to be smooth and to be well
represented by spline bases.

At each sampling time (index t omitted) Yi,j = E[Yj | m, c, s] + εj , with
the error εj ∼ N(0, σ2i,j), thus such variance depends both on treatment
and tank within treatment; errors are assumed to be independent and to
follow a normal distribution.

An estimate µ̂i(t) of the unknown µi(t) is the kinetic law inferred using
three tanks and it is also exploited to compare two different treatments.
The pointwise difference among expected values is the natural extension of
ANOVA contrasts to time-dependent effects:

δi,k(t) = µi(t)− µk(t) (2)

with i the test treatment and k 6= i the reference treatment. For example,
a flat estimated function δ̂i,k(t) which is equal to zero over time indicates
no differences between test and reference treatments at every time point
t. A flat but not null estimated function δ̂i,k(t) 6= 0 indicates that the two
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considered kinetics differ by the same constant value at every time point t.
Estimated time-dependent contrasts are shown in Figure 5.

2.3.1. B-spline bases

B-splines are built from polynomial pieces which are joined at selected
values of time, called knots, here the % of elapsed days since the start of
maceration. The computation with B-splines is detailed in (de Boor, 1978)
and in (Dierckx, 1995).

B-splines show no boundary effects and are computationally quite tra-
ctable if compared with other classes of splines. Note that the derived
models still depend on parameters, as it happens in regression, but they are
not straightforwardly interpretable. Nevertheless, B-splines provide a way
to represent a locally varying smooth function of time, here expected values
of TA concentration. The general properties of B-splines can be found in
(Eilers and Marx, 1996).

Given a grid of points at selected time values, B-splines are matrices
representing generalized bases of a linear model:

µi(t) = Mi βi (3)

thus the smooth function for the expected value of a treatment is described
through Mi. In a similar way, the smooth function for the departure of a
given tank from the expected value is also represented by B-splines:

αi,j(t) = Ai,j βi,j (4)

with j the index of tanks. The observations performed at given time points
may be decomposed as detailed in the equation below if the same basis
functions are used within treatment, that is Ai,j = Mi:

yi,j = Mi βi + Mi βi,j + εi,j (5)

where i refers to treatments, j to tanks within treatment and with yi,j the
vector of responses (TA).

2.3.2. The likelihood function

In equation (5) a decomposition is provided which is able to address the
needs described in the introduction: heterogeneity among replicates and
flexibility in the shape of kinetics. The model accommodates the main
features found in this experiment and in similar contributions of the lit-
erature: the lack of an actual horizontal upper asymptote, the variability



A Bayesian model to compare vinification procedures 67

in the shape of the kinetic within replicates and the lack of a standard
‘textbook’ shape for the expected value of TA over time.

Occasionally there appear outliers, characterized by extraordinary small
values with respect to nearby observations (Figure 4). The availability of
three replicates for each treatment and the huge size of such decreases, even
down to one half of the expected value, allowed the detection of outliers by
visual inspection (about 5-10% of the observations, Figure 4). Outliers may
be included in the analysis if the model properly takes into account their
features. Such a rigorous statistical approach makes it possible to estimate
the proportion of outliers occurring within a tank. An extension of equation
(5) was obtained by generalizing the expected value of the response:

E[ Yi,j ] = ( Mi βi + Mi βi,j) · ηi,j (6)

where ηi,j is a Ki×1 vector in which each element is in the open set (0, 1) if
it corresponds to an outlier, otherwise it is equal to 1 (regular observation).
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Figure 1. Splines and prior distributions (a) Example of B-spline bases of
degree 3 (order 4) (b) Prior distribution for the variance of the response (c) Prior

distribution for the probability that an observation is an outlier (d) Prior
distribution for the magnitude ηi,j,k of an outlier
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The likelihood function for all the observations is therefore:

p( yi,j | θ) =

12∏
i=1

MN
(

[ Mi βi + Mi βi,j ] · ηi,j , Σi,j

)
(7)

where MN () stands for multivariate normal distribution and with Σi,j

the diagonal variance-covariance matrix Σi,j = σ2ε,i,j I; vector θ contains
all model parameters of the likelihood function.

2.3.3. Bayesian elicitation of prior distributions.

The full specification of a Bayesian model is made by assigning a probability
distribution to all unknowns, such as model parameters. The elicitation
consists of quantifying the degree of belief that an expert associates to the
possible values taken by each unknown model parameter, for example by
reasoning on equipment features or about results of previous experiments.
For a comprehensive account on elicitation see (Garthwaite et al., 2005).

Let σ2ε,i,j be the 36 variances of residuals in different treatments. The
initial (prior) distribution of the precision, that is the inverse of the vari-
ance, is σ−2

ε,i,j ∼ G(15, 1000), where G indicates the Gamma distribution
(Figure 1b): it is clear that values of variance below 10 or above 200 are
not a-priori plausible in our model.

The model term Mi βi in equation (7) describes a smooth function for
the expected value of a regular TA value (it is not an outlier). To avoid
the explicit selection of knots, 21 equispaced points were selected from the
interval [0, 1] on the time axis and stochastic constraints on the elements
of vector βi were posed (Eilers and Marx, 1996). Let βi,r be the element
in position r of vector βi, then:

βi,r+1 ∼ N (βi,r, σ
2
M,i) (8)

βi,1 ∼ N (0, 0.00001) (9)

σ−2
M,i ∼ G(0.001, 0.001) (10)

where r is the index spanning pairs of subsequent times and N () is the uni-
variate normal distribution. G() indicates the Gamma distribution. Note
that the degree of similarity existing between pairs of subsequent elements
βi,r, βi,r+1 is regulated by the unknown parameter σ2M,i, with its final dis-
tribution determined by the results of the experiment.

A similar definition holds for tank-specific functions representing depar-
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tures from the treatment mean:

βi,j,r+1 ∼ N (βi,j,r, σ
2
A,i,j) (11)

βi,j,1 ∼ N (0, 0.00001) (12)

σ−2
A,i,j ∼ G(0.001, 0.001) (13)

with r the index spanning pairs of subsequent times.

The initial distribution for the probability of being an outlier at a given
point in time is shown in Figure 1c, which is a Beta probability density
function:

πF,i ∼ B(1.2, 12) (14)

therefore the expected value is equal to 0.1: it is believed that one out of ten
observations on average is an outlier. Bernoulli Boolean variables Wi,j,k ∼
(1 − πF,i)

1−wi,j,k + π
wi,j,k

F,i , with i = 1, . . . , 12, j = 1, 2, 3, k = 1, 2, . . . ,Ki

are unobserved indicator variables taking value 1 if the observation yi,j,k
is an outlier, zero otherwise. They are assumed to be independent over
tanks (index j) and treatments (index i). Note that only extreme outliers
are detected by visual inspection without uncertainty, i.e. all observations
being extremely small with respect to their neighbours.

Given that an observation yi,j,k is an outlier, that is Wi,j,k = 1, the
magnitude of its reduction is unknown and it is represented by parameter
ηi,j,k, that is the ratio of original-to-outlying mean values. For a regular
observation, Wi,j,k = 0, the ratio is :

p(ηi,j,k |Wi,j,k = 0) = I1(ηi,j,k) (15)

thus Wi,j,k = 0 causes ηi,j,k to have a degenerate distribution at the point
ηi,j,k = 1 . For outliers, Wi,j,k = 1, the probability density function indicat-
ing the amount of reduction was elicited as a mixture of Beta distributions
(Figure 1d):

p(ηi,j,k |Wi,j,k = 1) = 0.275 B(8, 24) + 0.55 B(17.5, 48) + (16)

+0.175 B(45, 200)

where B() stands for the Beta distribution. Elements within ηi,j are as-
sumed to be independent, that is p( ηi,j | Wi,j) =

∏
k p(ηi,j,k | Wi,j,k),

with Wi,j = {Wi,j,k : k = 1, 2, . . . ,Ki}. It is also assumed that vectors
ηi,j are independent.
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3. Results and discussion

This section opens with a description of the Bayesian computations and
their quality. Then the marginal posterior distribution of some model pa-
rameters is described. Finally the expected value of kinetics under different
treatments is presented, together with the estimated time-dependent con-
trasts against the reference treatment.

All the computations were performed with the R software (Team, 2010)
using libraries like lattice (Sarkar, 2008) and rjags (Plummer, 2003).

3.1. Model fitting

The posterior distributions of model parameters and the expected value
of functions of some model parameters were obtained by Markov Chain
Monte Carlo simulation (Robert and Casella, 2010) using the JAGS soft-
ware (Plummer, 2003).

At first, one simulation comprising all 12 treatments was performed.
The selection of a bad starting point in combination with large error vari-
ances within tank drove the simulation of simpler models far from con-
vergence. Similar effects were observed reducing the number of parame-
ters related to splines in different treatments. One explanation of these
results is related to the presence of different levels of noise in different
tank-treatments, so that a satisfactory model fit was obtained only by
tank–specific parameters. It was therefore decided to run 12 separated
simulations, one for each treatment. The convergence of Markov chains
was improved remarkably by imposing the condition that at each time t,
the effects are subject to a sum-to-zero constraint

∑
j αj(t) = 0.

The starting points of each Markov chain were randomly generated
around the maximum likelihood point estimate of a simplified version of
the Bayesian model. The initial burn-in of chains was 25000 steps, while
100000 iterations were saved after thinning by 10 for each chain. The final
output of 10000 sampled values for each chain was processed with standard
post-simulation numerical diagnostics (Brooks and Gelman, 1997; Cowles
and Carlin, 1996), and diagnostic plots, like autocorrelations and cross-
correlations. Overall, the quality of chains output seemed almost always
good. By repeating MCMC runs several times it was possible to assess the
effect of starting points on the simulation, and the odd behaviour observed
when running the initial simpler model disappeared.

After model fitting, the difference between observed values and expected
values from the marginal posterior distribution given a day-tank pair was
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calculated to plot quantile-quantile relations (not shown). No obvious vio-
lation of the assumption of normality was found in any treatment.

3.2. Posterior distribution of model parameters and estimated
kinetics

Equation (14) represents the prior distribution of πF , the probability of
being an outlier for a given treatment-tank combination. In Figure 2, the
marginal posterior distribution given a treatment is shown. The mode of
the posterior distribution is always below 0.1 and it is closest to 0.01 in
the following treatments: Ctrl 20 ◦C saignée, Ctrl 30 ◦C saignée, Ctrl 20
◦C no saignée, CSPF 20 ◦C saignée. Treatments have an impact on the
probability of observing an outlier.

Indicator variables Wi,j,k in treatment i, tank j and day k, are affected
by uncertainty: it is not known where outliers are located along time.
The marginal posterior distribution of an indicator Wi,j,k summarizes the
probability that a given observation is effectively an outlier (Figure 3).
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Figure 2. Final distributions. Marginal posterior probability density functions
of observing an outlier in a given treatment
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The presence of outliers in a treatment-tank-day may be extremely evi-
dent in almost constant regions of the kinetic, like in the kinetic of tank
3 under treatment Cryo 30◦C saignée (Figure 4), but it may be difficult
to detect outliers elsewhere without a formal model, for example in tank 1
of treatment Cryo 20◦C saignée. The expected values of Wi,j,k (Figure 2)
are grouped by treatment, with tanks labelled as (1), (2) or (3). An unan-
ticipated result is that outliers are almost absent in just three treatments,
(Ctrl 30◦C saignée, Ctrl 20◦C saignée, CSPF 20◦C saignée), and that such
small observations are typically asymmetrically distributed among tanks
under the same treatment (for example Cryo 20◦C saignée). Further in-
vestigations are needed to fully understand the outlier generating process.
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Figure 3. Estimated posterior probability of having observed an outlier in a
given tank-day. Tanks within treatments are labelled with bracketed integers

The estimated kinetics of TA under different treatments are shown in
Figure 4. For each time point of a dense grid defined on [0, 100] the ex-
pected value and the 95% credible interval were calculated using the final
distributions of model parameters.
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A general feature of the estimated kinetics is smoothness with respect
to time, despite the presence of perceptible departures of the tank kinetics
from the smoothed treatment estimate. Other general features include the
departure of estimated kinetics from the plateau in late days, where the
kinetic may decrease, as in treatments Ctrl 30◦C saignée and CSPF 30◦C
no saignée, or be still increasing, as in CSPF 20◦C saignée and Cryo 20◦C
no saignée. Treatments made by CSPF are notable for an initial steady or
decreasing behaviour, which is due to the nature of the treatment itself.

The estimated kinetics do not typically conform to standard laws like
the sigmoid function, with the exception of treatment Ctrl 20◦C saignée.
Nevertheless, even in this case, our model is able to properly estimate the
kinetic without knowing and excluding outliers (for example, tank 3 of
Figure 4).
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The estimated kinetics of each treatment were exploited to obtain time-
dependent contrasts (Figure 5), using marginal distributions of contrasts
defined on a dense grid of time points. In the present study the mildest
treatment (Ctrl 20◦C no saignée) was chosen as reference, although any
other choice would have been possible due to the full generality of the
model. Minimum and maximum values of a contrast are decorated with
numerical values to better appreciate their magnitude. Dotted lines define
pointwise 95% credible intervals around the estimated expected value of
the time-dependent contrast.

The dashed and straight horizontal line at zero is the reference of no
effect between a treatment and the considered reference. Therefore the
contrast Ctrl 20◦C no saignée bottom left is horizontal and without uncer-
tainty because the tested and reference kinetics are equal.

As regards the final concentration of anthocyanins, the top treatment
is CSPF 20◦C saignée, which is equal to 45 ± 13. Treatment Ctrl 20◦C
saignée is almost constant but above the reference treatment, due only
to the presence of saignée. Other contrasts including CSPF show a test
treatment which is late with respect to the control, but it later recovers
and the contrast remains well above zero.

3.3. Effects of maceration, temperature and saignée

3.3.1. Ctrl

The leftmost column in Figure 3 shows trends similar to a 1st order kinetic
reaction with asymptote, but at 30 ◦C there is also a decrease in concen-
tration towards the end of maceration. The differences between procedures
and Ctrl 20 ◦C saignée are shown in Figure 4. All the Ctrl procedures
show significant increases in TA concentration, which are functions of both
temperature and saignée. The absolute value of the gain increases with
temperature and the presence of saignée. In the most radical procedure
(Ctrl 30 ◦C saignée) there is a gain of 109 mg L−1 at 27% of macera-
tion, i.e. the concentration almost doubled with respect to the reference
(Figure 4). At the end of the maceration the order is exactly reversed,
the less drastic procedure Ctrl 20 ◦C saignée being able to yield a gain of
30 mg L−1. The final outcome of the systems seems to be resilient to the
conditions imposed by the procedures: the more TA was extracted at the
beginning, the less TA remained at the end.
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Figure 5. Time-dependent contrasts between pairs of treatment kinetics
estimated on three tanks each. The dashed horizontal line indicates no effect
between the tested treatment and Ctrl 20◦C no saignée (reference). The area

between the two lines (95 % credible interval) is shaded if there is a significant
difference between the reference and the treatment. The figures expressed in %
on the top/bottom define the time interval in which the credibility interval does

not include zero. Minimum and maximum values are labelled both with
numerical values ± credible interval and with % of maceration near the dashed
line. The bold italic figures on top right indicate the final value minus the lower

credible interval at the end of maceration

3.3.2. Cryo

No reference dealing with Cryo can be found in the literature except (Parenti
et al., 2004), where kinetics are not reported. The shape of the kinetic is
exponential-like (Figure 5) but with a less pronounced curvature than ob-
served for Ctrl. The temperature and saignée being constant, no significant
differences were found between Cryo and Ctrl (time-dependent contrasts
not reported). The central column in Figure 5 shows that the gain is im-
portant at the early stage of maceration and that the absolute value of gain
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increases with temperature and with saignée. At the end of maceration this
gain is lost for Cryo treatments regardless of temperature or saignée. The
shape of the gain over time is similar to that already observed for Ctrl ; the
less drastic procedure seems able to achieve the greatest gain at the end of
maceration.

3.3.3. CSPF

The initial phase was not monitored on the Tempranillo variety with a
CSPF held at 5-8◦C for 8 days (Gordillo et al., 2010). An exponential-
like shape in the same phase was monitored on the Shiraz variety, where
CSPF was held at 15 ◦C for 6 days (Gómez-Mı́guez et al., 2007). Both
authors recorded an indubitable increase (about +100-200 mg L−1) of TA
concentration with respect to traditional vinifications held at 25◦C, both
at the beginning and at the end of tumultuous fermentation. Reynolds
et al. (2001) on investigating the effect of CSPF on Shiraz at 2◦C for
one or ten days, found smaller increases in TA concentration, in the order
of 50-70 mg L−1, which is also the range we observed (Figure 5). Other
results on CSPF (Gerbaux, 1993; Feuillat, 1997; Gerbaux et al., 2002)
confirm a rapid decrease in the anthocyanins extracted early and a lower
final concentration of these molecules as compared with other extraction
procedures. Due to the heterogeneous nature of the experimental conditions
reported in the literature, is not possible to draw conclusive results. In the
present experiment, the temperature of CSPF was kept at 5◦C, a level
low enough to reduce to a minimum the spontaneous fermentation activity
before the inoculation of the selected yeast. The low temperature is possibly
the main responsible for the lack of extraction of TA in the first 30-40 %
of maceration for CSPF (Figure 4). The delay in extraction is a function
of the combination of temperature and saignée, since it is maximum at the
less drastic conditions (65% at 20 ◦ C no saignée) and becomes 31% at 30
◦C saignée. Later on, when the temperature is raised, the rapid increase of
TA is probably a consequence of the cold soak, which may have weakened
the cell walls of berries. This hypothesis is consistent with the results
obtained by (Andrich et al., 2005) who reported a decrease in the rates of
anthocyanins diffusion in the liquid phase on decreasing the temperature.
(Sacchi et al., 2005) reports that for cold soak ”the rationale offered is that
aqueous extraction improves wine color”. This early aqueous extraction, as
demonstrated here, seems not to occur in TA on Sangiovese at 5◦C. From
the review of the literature we therefore hypothesize that the gain in TA
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concentration is only possible when the temperature during cold soak is kept
at 10-15 ◦C, where faster and more effective biotic and enzymatic reactions
are most likely to occur. On the other hand, the reduction/elimination of
unwanted spontaneous fermentations could not easily be achieved in these
warmer conditions. The time-dependent contrasts in Figure 5 show that
for CSPF there is a small gain, but that this gain is quite stable along
the whole maceration. Ctrl and Cryo, even if they show a remarkable gain
increase at the beginning, later anyway have a decrease. Also for CSPF,
the less drastic procedure allow a final gain of 45 mg L−1.

3.3.4. Temperature of fermentation

The fairly large number of studies, carried out on different cultivars,
have generally established that higher fermentation temperatures increase
the colour and anthocyanin content of wines (Gao et al., 1997; Harbertson
et al., 2008; Reynolds et al., 2001). The present experiment indicates that
this gain is remarkable during fermentation and reaches a maximum in
the first half/third of the process (Figure 5), but it also indicates that the
maximum gain is observed at the end with lower temperature. As one of the
aims in the vinification of Sangiovese is colour extraction and stabilization,
higher temperatures are not recommended. Undoubtedly the crucial issue
here is not to focus on the conditions/techniques, but rather on methods
to avoid/reduce the decay of gain which is visible in all the procedures.

3.3.5. Saignée

The present results agree with those reported in literature where a larger
extraction is found (Gerbaux, 1993; Zamora et al., 1994). Saignée enhances
the gain for all procedures, including the higher fermentation temperature.

4. Conclusions

The Bayesian model described in this work made possible a comparison of
treatments regardless of the presence of both outliers and tank heterogeneity.
Uncertainty in the estimates of kinetics and time-dependent contrasts were
quantified by Markov Chain Monte Carlo simulation despite the limited
sample size, without resorting to asymptotic approximations. Indeed elicited
prior distributions of model parameters entered into the inferential machinery
but we see this as a bonus for the regularization effect exerted on estimation
in such a complex model. An advantage of the hierarchical formulation is
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the possibility of borrowing statistical strength about parameters of similar
treatments, an issue that deserves further attention in future work.

Further research is required on the chemical side of this work because
a clear explanation of the outlier generating process is still to be achieved.
Analytical lab measurements were repeated for each outlying observation
and its time neighbours: recorded values were always confirmed. Sample
corruption or lack of proper manipulation was considered unlikely after re-
viewing the recorded equipment setup and field and lab notes. Analytical
measurements repeated after a few hours, a week after collection and one
month later always confirmed the initial measurements. We are reasonably
confident of the absence of manipulation or analytical errors, and for this
reason we developed a model which captured some aspects of the outlier
generating process and which might be useful in monitoring these features
in future experiments. A hypothesis to be considered in future work con-
cerns the temporary unavailability of TA in the form that is detected by
our laboratory protocols.
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F.J. (2010): Influence of prefermentative cold maceration on the color and an-
thocyanic copigmentation of organic Tempranillo wines elaborated in a warm
climate. Journal of Agricultural and Food Chemistry 58(11): 6797–6803.
PMID: 20455543.

Harbertson J.F., Hodgins R.E., Thurston L.N., Schaffer L.J., Reid M.S., Landon
J.L., Ross C.F., Adams D.O. (2008): Variability of tannin concentration in
red wines. American Journal of Enology and Viticulture 59(2): 210–214.

Hedeker D., Gibbons R. (2006): Longitudinal Data Analisys, Wiley Series in
Probability and Statistics. Hoboken, New Jersey: John Wiley and Sons.

Lang S., Brezger A. (2004): Bayesian P-Splines. Journal of Computational and
Graphical Statistics 13(1): 183–212.

Parenti A., Spugnoli P., Calamai L., Ferrari S., Gori C. (2004): Effects of cold
maceration on red wine quality from Tuscan Sangiovese grape. European
Food Research and Technology 218: 360–366. 10.1007/s00217-003-0866-1.

Plummer M. (2003): JAGS: A program for analysis of Bayesian graphi-
cal models using Gibbs sampling, Proceedings of the 3rd International
Workshop on Distributed Statistical Computing (DSC 2003). http://www-
ice.iarc.fr/martyn/software/jags/

Reynolds A., Cliff M., Girard B., Kopp T.G. (2001): Influence of fermentation
temperature on composition and sensory properties of Semillon and Shiraz
wines. American Journal of Enology and Viticulture 52(3): 235–240.

Ribereau-Gayon P., Glories Y. (1986): Phenolics in grapes and wines, in 6th
Australian Wine Industry Technical Conference, ed. T. Lee, Australian Wine
Industry Technical Conference Inc., Adelaide, Australia: 247–256.

Robert C., Casella G. (2010): Introducing Monte Carlo Methods with R, num-
ber 27 in Use R!. Heidelberg: Springer-Verlag.

Ruppert D., Wand M., Carroll R. (2003): Semiparametric Regression. Cambridge:
Cambridge University Press.

Sacchi K.L., Bisson L.F., Adams D.O. (2005): A review of the effect of winemaking
techniques on phenolic extraction in red wines. American Journal of Enology
and Viticulture 56(3): 197–206.

Sarkar D. (2008): Lattice: multivariate data visualization with R. New York:
Springer. ISBN 978-0-387-75968-5. http://lmdvr.r-forge.r-project.org

Soleas G.J., Tomlinson G., Goldberg D.M. (1998): Kinetics of polyphenol release
into wine must during fermentation of different cultivars. Journal of Wine
Research 9: 27–41.

Team R.D.C. (2010): R: a language and environment for statistical computing.
ISBN 3-900051-07-0. http://www.R-project.org/

Zamora J.B., Luengo G., Margalef P., Magrina M., Arola L. (1994): Nota: Efecto
del sangrado sobre el color y la composicion en compuestos fenolicos del vino
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