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Summary

The Birnbaum-Saunders (BS) model is a life distribution that has been
widely studied and applied. Recently, a new version of the BS distribution
based on extreme value theory has been introduced, named the extreme
value Birnbaum-Saunders (EVBS) distribution. In this article we provide
some further details on the EVBS models that can be useful as a supple-
ment to the existing results. We use these models to analyse real survival
time data for patients treated with alkylating agents for multiple myeloma.
This analysis allow us to show the adequacy of these new statistical
distributions and identify them as models useful for medical practitioners
in order to predict survival times for such patients and evaluate changes
in their treatment dose.
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1. Introduction and preliminaries

The Birnbaum-Saunders (BS) model is a life distribution that was intro-
duced and studied by Birnbaum and Saunders (1969). This distribution
has been widely applied in recent decades. BS and standard normal ran-
dom variables (RVs), now denoted respectively by T and Z, are related by
the formula

T = δ(αZ/2 +
√
{αZ/2}2 + 1 )2 i.e., Z = (

√
T/δ −

√
δ/T )/α,

with α > 0 and δ > 0 being shape and scale parameters. Thus when
a RV T follows a BS distribution with parameters α and δ, the notation
T ∼ BS(α, δ) is used. In addition, let us consider the usual notations φ
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and Φ for the standard normal probability density function (PDF) and
cumulative distribution function (CDF), respectively, and let

at = (
√
t/δ −

√
δ/t)/α, so that a′t = dat/dt = (

√
t/δ +

√
δ/t)/(2αt). (1)

Then, the PDF and the CDF of T are respectively

fT (t) = φ(at) a
′
t and FT (t) = Φ(at), t > 0, (2)

with at and a′t defined in (1).
The assumption of a normal RV Z can obviously be relaxed, supposing

that it follows any other distribution with PDF fZ . We then obtain a
general BS type (BST) RV, denoted by

T ∼ BST(α, δ; fZ ), with a PDF fT (t) = a′t fZ (at), t > 0,

again with at and a′t given in (1). Among those models, we mention the ex-
treme value Birnbaum-Saunders (EVBS) distributions, recently introduced
by Ferreira et al. (2012), essentially based on results from extreme value
theory (EVT).

In Section 2 of this article we present a few results on EVT. In Section 3
we introduce the EVBS models, providing information on their moments.
In Section 4 we discuss estimation and model checking for this type of
models. In Section 5 we make some comments on the importance of haz-
ard analysis. In Section 6 we provide an application to biometrical data.
Finally, in Section 7, we provide some concluding remarks.

2. Limiting results in EVT

The main limiting result in EVT dates back to the papers by Fréchet (1927),
Fisher and Tippett (1928), von Mises (1936) and Gnedenko (1943). These
authors fully characterized the possible non-degenerate limit laws of the
sequence of maximum values, Xn:n, suitably normalized, as n→∞, prov-
ing what is called Gnedenko’s extremal types theorem. More specifically,
all possible non-degenerate weak limit distributions of the normalized par-
tial maxima, Xn:n, of independent and identically distributed (IID) RVs,
X1, . . . , Xn, are generalized extreme value (GEV) distributions. That is, if
there are normalizing constants an > 0, bn ∈ R and some non-degenerate
CDF, G, such that, for all x ∈ C(G), the set of continuity points of G,

lim
n→∞

P

{
Xn:n − bn

an
≤ x

}
= G(x), (3)
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we can redefine the constants in such a way that

G(x) ≡ Gγ(x) :=


exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0, if γ 6= 0

exp(− exp(−x)), x ∈ R, if γ = 0,

(4)

given in the von Mises-Jenkinson form (see von Mises, 1936; Jenkinson,
1955) and denoted as EVM ≡ EVM(γ) laws. We then say that the CDF F
underlying the RVs X1, X2, . . . , is in the max-domain of attraction (MDA)
of Gγ , in (4), and use the notation F ∈ DM (Gγ). The limiting CDFs, G,
in (3), are then max-stable (MS), i.e., they are indeed the unique laws S
such that the functional equation Sn(αnx+δn) = S(x), for n ≥ 1, holds for
some αn > 0 and δn ∈ R. The real parameter γ in (4), corresponding to the
primary parameter of interest in EVT, is the so-called extreme value index.
This index governs the behaviour of the right-tail of F . The GEV distribu-
tion, a unified version of all possible non-degenerate weak limits of maxima
of sufficiently long sequences of IID, or more generally weakly dependent
and stationary RVs, reduces to the Fréchet (γ > 0), max-Weibull (γ < 0)
and Gumbel (γ = 0) CDFs respectively. In fact, the GEV distribution in
(4) is often separated into the three following types:

Type I (Gumbel) : Λ(x) = exp(− exp(−x)), x ∈ R,

Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0,

Type III (max-Weibull) : Ψα(x) = exp(−(−x)α), x ≤ 0,

with γ = 0, γ = 1/α > 0 and γ = −1/α < 0, respectively. We have
Λ(x) = G0(x), Φα(x) = G1/α(α(1 − x)) and Ψα(x) = G−1/α(α(x + 1)),
with Gγ being the GEV distribution given in (4). For a recent overview of
similar topics in the field of EVT, see Gomes et al. (2008).

Remark 1. All results developed for maxima can easily be reformulated for
minima since X1:n := min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}. If we
are interested in the left-tails, i.e. in the limiting behaviour of the sequence
of minimum values, we have for a linearly normalized minimum, a limiting
CDF, G∗γ(x) = 1−Gγ(−x), with Gγ(·) given in (4), often referred to as an
EVm ≡ EVm(γ) law, i.e.

G∗γ(x) =


1− exp(−(1− γx)−1/γ), 1− γx > 0, if γ 6= 0,

1− exp(− exp(x)), x ∈ R, if γ = 0.

(5)
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We then say that F belongs to the min-domain of attraction of G∗γ, in short
F ∈ Dm(G∗γ). The parameter γ, in (5), determines the left-tail behaviour
of F , as the parameter γ, in (4), determines the right-tail behaviour of F ,
both thus being crucial parameters in EVT.

In Figure 1, we represent the right-tails of truncated positive EVM and
normal PDFs, as well the BS(1,1) PDF. If γ < 0, we have the so-called
Weibull MDA, i.e. light right-tails, with a finite right endpoint. In addition,
γ = 0 corresponds to the Gumbel MDA (exponential right-tails). If γ > 0,
we have the Fréchet MDA corresponding to heavy right-tails (polynomial
tail decay, with an infinite right endpoint). Moreover, as proved in Ferreira
et al. (2012), the BS CDF, FT (·), given in (2), belongs to DM(G0), and this
can be heuristically inferred from Figure 1.

0

0.1

2 4 6 8! = "0.5

! = 0

! = 1.5

x

Normal

BS(1,1)

Figure 1. Right-tails of positive truncated EVM PDFs for γ = −0.5, γ = 0
and γ = 1.5, jointly with the right-tails of positive truncated normal and

BS(1,1) PDFs

3. Moments in EVBS models

The EVBSM (and EVBSm) distributions based on limiting EV models for
maxima, EVM, (and for minima, EVm), have been introduced in Ferreira et
al. (2012). Specifically, consider that the RV Z follows the EV distribution
for maxima given in (4), i.e. Z ∼ EVM(γ). Then we use the notation
EVBSM(α, δ, γ) for the RV

T = δ(αZ/2 +
√
α2Z2/4 + 1 )2. (6)
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Analogously, if we consider that Z follows the EV distribution for minima
given in (5), i.e. Z ∼ EVm(γ), and the same expression for T , i.e. that
given in (6), we use the corresponding notation T ∼ EVBSm(α, δ, γ).

The shapes for the EVBSM and the EVBSm PDFs are quite diverse.
As expected, the parameter α can modify drastically the shapes of these
distributions. In the case of thise parameter γ, we detect changes in the
kurtosis and tail heaviness, as is also expected. The EVBS models are thus
very flexible and with extremely diversified left and right-tails; see Ferreira
et al. (2012).

The following result comes directly from Theorem 2.6 of Vilca and Leiva
(2006), which allows us to state the moments of the RV T given in (6).

Theorem 1. Let the RV T be as given in (6). Then the rth moment of T

exists if E[Zk+l
(
{αZ}2 +4

)(k−l)/2
] <∞, with k = 0, . . . , r and l = 0, . . . , k,

and we have

E[T r] = δr
r∑

k=0

(
r

k

) k∑
l=0

(
k

l

)
2kE

(αZ
2

)k+l({αZ
2

}2

+ 1

)(k−l)/2
 . (7)

Particular moments of T that are of interest correspond to the mean,
µ[T ] = E[T ], the variance, σ2[T ] = V[T ], the standard deviation (SD),
σ[T ] =

√
V[T ], and the coefficients of variation (CV), δ[T ] = σ[T ]/µ[T ],

of skewness (CS), β1[T ] = E[({T − µ[T ]}/σ[T ])3] and of kurtosis (CK),
β2[T ] = E[({T −µ[T ]}/σ[T ])4], as well as the excess kurtosis (EK), α4[T ] =
δ2[T ]− 3.

In order to obtain these moments for the EVBSM and EVBSm RVs, we
need to have information on the moments of the EVM and EVm models
given in (4) and (5) respectively, which will be sketched next.

For an RV, XM, with an EVM(γ) distribution, we have

µ[XM] =


{Γ(1− γ)− 1}/γ, if γ < 1 ( 6= 0),

−ψ(1), if γ = 0,

σ2[XM] =


(l2 − l21)/γ2, if γ < 1/2 ( 6= 0),

π2/6, if γ = 0,
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where lk = Γ(1 − kγ), for k = 1, . . . , 4, and −ψ(1) is the Euler constant,
with ψ = Γ′/Γ being the digamma function, i.e. the logarithmic derivative
of the gamma function, denoted as usual by Γ, with Γ′ being its derivative.
In addition,

β1[XM] =


(l3 − 3l1l2 + 2l31)/(l2 − l21)3/2, if γ < 1/3 ( 6= 0),

12
√

6 ζ(3)/π3, if γ = 0,

α4[XM] =


{l4 − 4l1l3 + 6l21l2 − 3l41}/(l2 − l21)2, if γ < 1/4 ( 6= 0),

27/5, if γ = 0,

where

ζ(k) =

∞∑
j=0

j−k

is the Riemann zeta function, for k > 1.
Similarly, given the relation G∗γ(x) = 1 − Gγ(−x) mentioned in Re-

mark 1, if we consider Xm, with an EVm(γ) distribution, we have

E[Xk
m] = (−1)kE[Xk

M] for all k ≥ 1.

Values of the mean, SD, CS and EK for EVBSM and EVBSm distributions
can be found in Table 1.

Example. The Pareto distribution is very common in the domain of heavy-
tailed models, i.e. models in the Fréchet MDA, necessarily with γ > 0. Let
Z ∼ Pareto(γ), i.e., FZ (x) = 1 − x−1/γ , with x ≥ 1. Then, for s non-null
and if γ < 1/(s+ 1),

E[Zs
√

(αZ)2 + 4 ] =
α 2F1

(
−1

2 ,−
1
2

(
s+ 1− 1

γ

)
, 1−γ(s+1)

2γ ,− 4
α2

)
1− γ(s+ 1)

,

where 2F1 is the hypergeometric function (see Abramowitz and Stegun,
1972) given by

2F1(a, b, c, x) =

∞∑
k=0

a(a+ 1) · · · (a+ k − 1)b(b+ 1) · · · (b+ k − 1)

c(c+ 1) · · · (c+ k − 1)

xk

k!
.

The computations of the moments given in (7) of an associated BST RV
then become then much simpler.
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Table 1. Values of mean, SD, CS and EK for the indicated distributions
when δ = 1

EVBSm distribution EVBSM distribution
γ α µ[T ] σ[T ] β1[T ] α4[T ] µ[T ] σ[T ] β1[T ] α4[T ]

1.50 0.05 0.850 0.272 -1.964 2.789 – – – –
0.10 0.800 0.320 -1.385 0.610 – – – –
0.50 0.693 0.472 -0.217 -1.471 – – – –
1.00 0.709 0.618 0.288 -1.418 – – – –
1.50 0.776 0.787 0.599 -1.101 – – – –

1.00 0.05 0.898 0.205 -2.535 6.419 – – – –
0.10 0.850 0.263 -1.696 2.115 – – – –
0.50 0.740 0.463 -0.183 -1.294 – – – –
1.00 0.767 0.658 0.449 -1.094 – – – –
1.50 0.860 0.893 0.841 -0.501 – – – –

0.50 0.05 0.943 0.122 -2.927 11.913 – – – -
0.10 0.905 0.186 -1.842 3.942 – – – –
0.50 0.804 0.452 0.003 -0.983 – – – –
1.00 0.852 0.735 0.803 -0.213 – – – –
1.50 0.989 1.096 1.311 1.099 – – – -

0.25 0.05 0.961 0.084 -2.177 8.277 1.052 – – –
0.10 0.930 0.145 -1.459 3.074 1.121 – – –
0.50 0.843 0.449 0.233 -0.651 2.443 – – –
1.00 0.910 0.803 1.126 0.872 6.236 – – –
1.50 1.083 1.272 1.706 2.953 12.496 – – –

0.00 0.05 0.974 0.060 -0.863 1.242 1.031 0.069 1.461 4.219
0.10 0.952 0.114 -0.624 0.519 1.068 0.148 1.828 6.937
0.50 0.889 0.453 0.630 0.125 1.606 1.370 4.652 45.629
1.00 0.985 0.911 1.624 3.160 2.994 4.766 5.920 69.648
1.50 1.208 1.546 2.285 6.588 5.243 10.380 6.299 77.338

-0.25 0.05 0.983 0.050 0.046 -0.249 1.020 0.052 0.219 -0.204
0.10 0.968 0.098 0.181 -0.192 1.044 0.107 0.349 -0.106
0.50 0.941 0.476 1.257 2.230 1.353 0.693 1.260 1.864
1.00 1.081 1.092 2.402 8.428 2.093 1.981 1.935 4.586
1.50 1.379 1.993 3.146 14.199 3.264 4.017 2.248 6.150

-0.50 0.05 0.990 0.047 0.763 0.591 1.013 0.046 -0.506 -0.028
0.10 0.982 0.094 0.903 1.020 1.027 0.093 -0.389 -0.238
0.50 0.998 0.538 2.205 8.156 1.229 0.501 0.338 -0.607
1.00 1.211 1.412 3.629 21.511 1.699 1.223 0.877 0.032
1.50 1.623 2.760 4.439 31.184 2.425 2.284 1.173 0.663

-1.00 0.05 1.001 0.053 2.331 8.969 1.001 0.048 -1.728 4.029
0.10 1.005 0.112 2.728 13.369 1.005 0.092 -1.505 2.695
0.50 1.151 0.940 6.519 89.537 1.100 0.383 -0.546 -0.664
1.00 1.654 3.144 8.746 152.367 1.346 0.755 -0.028 -1.235
1.50 2.535 6.760 9.507 175.900 1.715 1.223 0.258 -1.252

-1.50 0.05 1.014 0.080 5.598 73.340 0.991 0.060 -2.888 11.851
0.10 1.033 0.190 8.346 200.962 0.986 0.109 -2.366 7.009
0.50 1.456 2.706 20.475 1130.34 1.027 0.358 -0.988 -0.069
1.00 2.749 10.369 22.496 1317.63 1.181 0.610 -0.458 -1.157
1.50 4.929 23.121 22.958 1361.20 1.413 0.893 -0.180 -1.435
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4. Estimation and validation in EVBS models

Estimation aspects and model checking for EVBS distributions have been
dealt with in Ferreira et al. (2012). The system of likelihood equations does
not produce an explicit solution, and so a numerical procedure is necessary.
An R package named evbs, to analyse data from EVBS models, is being
developed, and its “in progress” version is already available through the
authors. This package contains diverse indicators, as well as methodolo-
gies useful for EVBS distributions, for example maximum likelihood (ML)
estimation of the unknown parameters of the distribution.

Once the EVBS distribution parameters have been estimated, a natural
question that arises is that of checking how good is the fit of the model to the
data. In order to compare the EVBS distributions with other distributions,
we can use model selection criteria based on loss of information, such as
Akaike (AIC) and Schwarz’s Bayesian (BIC) information criteria. These
criteria are given by

AIC = −2`(θ̂) + 2d and BIC = −2`(θ̂) + d log (n),

where `(θ) is the log-likelihood function for the parameter θ associated
with the model, θ̂ is its ML estimate, n is the sample size and d is the
dimension of the parameter space.

Remark 2. AIC and BIC are based on a penalization of the likelihood
function that allows us to compare models with different numbers of param-
eters, because, as is known, models with more parameters always provide a
better fit. Thus a model whose AIC or BIC has the smallest value is better;
see Sanhueza et al. (2008) and Ferreira et al. (2012). This is an important
point, because the EVBS distribution has more parameters than its closer
competitors, such as the BS and EV distributions.

Because, in general, differences between two values of the BIC are not
very noticeable, the Bayes factor (BF) can be used to highlight such differ-
ences, if they exist. An interpretation of a transformation of the BF (B12),
denoted by 2 log (B12), which allows us to detect the degree of superiority of
one model (Model 1) with respect to another (Model 2), is given in Table 2.
For details, see Ferreira et al. (2012) and references therein.
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Table 2. Interpretation of 2 log(B12) associated with the BF
2 log (B12) Evidence in favour of M1

< 0 Negative (M2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥ 10 Very strong

5. Hazard analysis in EVBS models

A hazard may be considered as a dangerous event that can lead to an emer-
gency or disaster. A hazard analysis can be performed statistically based
on the hazard rate (HR), also known as chance function, failure rate, inten-
sity function, or risk rate, among other names. A nice property of the HR
is that it allows us to better characterize the behaviour of statistical distri-
butions, and to differentiate models with very similar CDFs. For example,
the HR may have several different shapes, such as increasing (IHR), con-
stant (exponential distribution), decreasing (DHR), bathtub (BT), inverse
bathtub (IBT) approaching a non-null constant, or IBT approaching zero.
The HR of T is given in general by

hT (t) :=
fT (t)

1− FT (t)
, t > 0, 0 < FT (t) < 1,

where fT and FT are the PDF and the CDF of T .
A simple manner for exploring the shape of the HR of a RV T is by its

corresponding scaled total time on test (TTT) function given by

WT (u) =

∫ F−1
T

(u)

0
(1− FT (y)) dy/H−1

T
(1), 0 ≤ u ≤ 1,

which can be empirically approximated, making it possible to construct
the empirical scaled TTT curve by plotting the consecutive points[
k/n,Wn(k/n)

]
, where Wn(k/n) = {

∑k
i=1 Ti:n+(n−k)Tk:n}/

∑n
i=1 Ti:n, for

k = 1, . . . , n, with Ti:n being the corresponding ith ascending order statis-
tic, for 1 ≤ i ≤ n, associated with the observed sample (T1, T2, . . . , Tn).
From Figure 2, we identify several theoretical shapes for the scaled TTT
curve. Thus, a TTT curve that is concave (or convex) is related to the IHR
(or DHR) class. A concave (or convex) and then convex (or concave) TTT
curve is related to a BT (or IBT) HR. Finally, a TTT curve expressed by
a straight line corresponds to the exponential distribution.
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Figure 2. Theoretical scaled TTT curves for a general model with the indicated
HR shape

The EVBSM and EVBSm distributions provide very rich models, in the
sense that they can attain all types of TTT curves given above. For more
details about hazard analysis for EVBS models, see Ferreira et al. (2012).

6. An application to biometry

For illustration purposes, we consider the uncensored part of a data set
analysed by Leiva et al. (2007) corresponding to the survival times (T , in
months) of 48 patients who were treated with alkylating agents for multiple
myeloma. These data (which we will henceforth call myeloma) are: 1, 1,
2, 2, 2, 3, 5, 5, 6, 6, 6, 6, 7, 7, 7, 9, 11, 11, 11, 11, 11, 13, 14, 15, 16, 16, 17,
17, 18, 19, 19, 24, 25, 26, 32, 35, 37, 41, 42, 51, 52, 54, 58, 66, 67, 88, 89,
92.

Table 3. Descriptive statistics for myeloma data (in months)
Median Mean SD CV CS CK Range Min. Max. n
15.500 24.44 24.67 100% 1.36 6.22 18 1 92 48

For analysing the myeloma data, we use the implementation in R code
of the EVBS models considered in Ferreira et al. (2012). An exploratory
data analysis (EDA) of such data is first produced, and then estimation
and EVBS model checking are carried out. The EDA of myeloma, based
on the descriptive summary presented in Table 3 and in Figure 3, allows
us to detect a positively skewed distribution with a moderate to high kur-
tosis and a shape for the HR, all of which can be modelled well by an
EVBS distribution. Thus we propose this distribution for describing the
myeloma data.
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Figure 3. Histogram (left) and indicated boxplots (centre) and TTT plot
(right) for myeloma

As the EVBSm distribution based on the Gumbelmin model, Λ∗(x) =
G∗0(x), given in (5), belongs to the Gumbel min-domain of attraction, we
apply a semi-parametric EV test to analyse whether or not the myeloma

data belongs to this domain. We test H0: F ∈ Dm(G∗γ), with γ ≥ 0, against
H1: F 6∈ Dm(G∗γ), with γ ≥ 0. From Figure 4, we see the sample path of the
test statistic as a function of the k largest order statistics and the critical
value (horizontal line) above which we reject H0. For myeloma, we do not
reject the null hypothesis for 1 ≤ k ≤ 36, which is a credible result in EVT
to keep such a hypothesis. Note also that we cannot have γ > 0 due to the
fact that a infinite left endpoint does not make sense for these data. We
have just restricted to the EVBSm(α, δ) ≡ EVBSm(α, δ, 0) model.

0 10 20 30 40 50
0

0.5

1

1.5

2
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3

k

Figure 4. Sample path of the EV condition test applied to myeloma (horizontal
line: critical value above which we reject F ∈ Dm(G∗

γ), with γ ≥ 0)

Once we have established the type of EVBS model to be used, we es-
timate the model parameters using the evbs package and myeloma data.
These results, along with the negative value of the log-likelihood function
and values for AIC, BIC and BF, are given in Table 4.
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Table 4. ML estimates, AIC, BIC and BF for the indicated models using
myeloma

Distribution θ̂1 θ̂2 θ̂3 −` AIC BIC 2 log (B12)
EVBSm(α, δ) 1.115 23.684 – 199.981 403.962 409.469 –
EVM(µ, σ, γ) 10.182 10.202 0.612 203.364 412.728 420.989 11.520
GP(σ, γ) – 24.467 -0.001 201.414 406.828 412.335 2.866
BS(α, δ) 1.323 12.719 – 201.494 406.988 412.495 3.026

We perform a comparison among the EVBSm and BS, EVM(µ, σ, γ) :=
µ+σEVM(γ) and generalized Pareto (GP) models using these criteria. Note
that the GP(σ, γ) CDF, another important model in EVT, is related to the
GEV CDF, in (4), through Pγ(x;σ) = 1 + lnGγ(x/σ), 1 +γx/σ > 0, x > 0.
This comparison indicates that the EVBSm model is strongly superior to
the GEV model for these data, and with positive evidence in its favour
in relation to the BS and GP models. The excellent agreement between
the EVBSm distribution and the myeloma data can be observed in Figure
5 from the histogram of the data with estimated EVBSm PDF (left), the
empirical CDF plot with estimated EVBSm CDF (centre) and the QQ plot
(right).

Based on this analysis, we can use the EVBSm model for obtaining
different indicators useful in survival analysis, such as the hazard rate and
survival function, in order to predict times of survival and evaluate changes
in treatment dose.
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Figure 5. Histogram with estimated EVBSm (Gumbelmin) PDF (left), empirical
CDF plot with estimated (theoretical) EVBSm CDF (center) and QQ plot

(right) for myeloma
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7. Concluding remarks

We have dealt with extreme value versions of the Birnbaum-Saunders dis-
tribution, which were introduced by Ferreira et al. (2012). A description of
the moments and hazard analysis of extreme value Birnbaum-Saunders dis-
tributions has been given. We have used the R package initiated in Ferreira
et al. (2012) for analysing a real data set corresponding to survival times
of patients who were treated with alkylating agents for multiple myeloma.
This analysis has allowed us to show the adequacy of these new statistical
distributions, in a pure parametric framework, and identify them as models
that can be useful for diverse medical practitioners in order predict times
of survival for such patients and evaluate changes in their treatment dose.
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Polonaise de Mathématique 6: 93–116.

Fisher R.A., Tippett L.H.C. (1928): Limiting forms of the frequency of the largest
or smallest member of a sample. Proc. Cambridge Phil. Soc. 24: 180–190.

Gnedenko B.V. (1943): Sur la distribution limite du terme maximum d’une série
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