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SUMMARY 

The kurtosis-based tests of Mardia and Srivastava for assessing multivariate normality 

(MVN) are considered. The asymptotic standard normal distribution of their test 

statistics, under normality, is often misused for too small samples. The purpose of this 

paper is to suggest mean-and-variance corrected versions of the Mardia and Srivastava 

test statistics. Simulation studies evaluating both the true sizes and the powers of 

original and corrected tests against selected alternatives are presented and compared to 

the size and the power of the Henze–Zirkler test. The proposed corrected statistics have 

empirical sizes closer to a nominal significance level than the original ones. It is also 

shown that the corrected versions of the tests can be more powerful than the original 

ones.  

Key words: Henze–Zirkler test, true size studies, power studies, heavy-tailed 

distributions, light-tailed distributions 

1. Introduction 

Many methods of multivariate analysis, including MANOVA, discriminant 

analysis and multivariate regression, are based on the assumption of 

multivariate normality. Different types of statistical analysis assuming 

normality are sensitive to different types of departure from this assumption. It is 

known, for example (Mardia et al., 1979), that tests of means are more sensitive 

to skewness, while tests for equality of covariance matrices are affected by 

kurtosis (Layard, 1974). In addition, though tests of means such as t-tests and 
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ANOVA are considered to be robust, Tiku et al. (1986) noted that the power 

and the Type I error could be violated by skewness and kurtosis in the case of 

small samples.  

In the literature can be found many tests for checking multivariate 

normality, in fact more than 50 (see e.g. Mecklin and Mundfrom, 2004). A first 

step for checking multivariate normality may be testing each variable for 

univariate normality, as univariate normality is necessary for multivariate 

normality. Of course it is not sufficient. Looney (1995) discussed an example 

(transformed Royston’s hematology data) where univariate tests did not reject 

marginal normality but multivariate tests did. Additionally, the multiple testing 

problem appears in such a case.  

Looney (1995) recommends using different tests for checking multivariate 

normality, as different tests are sensitive to different types of departures from 

normality. In general, practitioners prefer to use test statistics which have 

known asymptotic distributions, so there is no need either for using special 

tables or for determining critical values via simulation. Unfortunately, in 

practice these asymptotic distributions are frequently misused for too small 

samples.  

In this paper we consider Mardia’s and Srivastava’s asymptotic kurtosis-

based tests for multivariate normality, and suggest their mean-and-variance 

corrected versions. The small sample properties of these four test statistics are 

of special interest. The details of the tests are presented in Section 2. In Section 

3 we evaluate the true sizes of the tests by a simulation study. The results of the 

simulation study on the power of the tests for selected alternatives are given in 

Section 4. In Section 5 some concluding remarks on comparison of the tests are 

presented. The consistent invariant Henze–Zirkler test (Henze and Zirkler, 

1990), based on the distance between the empirical and theoretical characteristic 

functions, is also taken into account as a rival of four tests based on kurtosis. 

The choice of the Henze–Zirkler test is due to the fact that this is generally 

considered to be a very good test. Moreover, it is implemented in SAS 

Software.  
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All simulations and computations presented in the paper are carried out 

independently in the programs SAS/IML (SAS Institute Inc., 1989) and R (R 

Development Core Team, 2008).  

2. Description of the tests 

Let X be a p-variate random variable with mean vector μ  and covariance 

matrix Σ . We are interested in testing the multivariate normality of X. In this 

section we describe the five tests which are investigated in the paper, namely 

two original tests proposed by Mardia and Srivastava, their two corrected 

versions, and the Henze–Zirkler test.  

2.1. Mardia type tests 

Mardia (1970) introduced the measure of multivariate kurtosis as  
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The statistic pb ,2  is invariant under linear transformations, thus there exists 

a null distribution that is independent of μ  and Σ . Mardia (1970) and Mardia 

and Kanazawa (1983) gave formulae for moments of pb ,2 under multivariate 

normality, namely:  
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Thus, pb ,2  underestimates p,2  and its distribution is rather right-skewed, the 

skewness increasing with p. Mardia (1970) proved that, under multivariate 

normality, the statistic  
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has the asymptotic standard normal distribution.  

However, a frequently used test statistic for MVN based on Mardia’s 

kurtosis is of the form:  
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Under the null hypothesis of a multivariate normal distribution, the asymptotic 

distribution of 1M  is standard normal. Mardia (1974) gave tables of critical 

values for pb ,2  and warned that even in the univariate case “ 2b  is very skewed 

for 100n  and is hardly normal for 1000n ” (Mardia, 1980). In spite of 

this, many handbooks recommend using the asymptotic standard normal 

distribution of 1M .  

In the present work, instead of 1M  we propose to use the following mean-

and-variance corrected version of Mardia’s kurtosis test statistic:  
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which takes into account the exact two first moments of pb ,2 . Under the null 

hypothesis of a multivariate normal distribution, the asymptotic distribution of 

2M  is standard normal.  

To compare the original 1M  and corrected 2M  test statistics we generated 

10 000 random samples from the multivariate normal distribution with null 

expectation vector and identity covariance matrix for different combinations of 

n and p. Example histograms of 1M  and 2M  for 10n , 2p  together with 

the standard normal density curve are given in Figure 1. It can be noticed that 

the histogram of 1M  is far from a normal curve. However, even for such small 

sample size the corrected version of the test statistic (i.e. 2M ) improved the 

normality of the histogram, although it is still skewed.  

 
Figure 1.  Histograms for statistics 1M  and 2M  obtained on the basis of  10 000 

random samples generated from bivariate normal distribution, n=10 

In power studies some authors (e.g. Henze, Zirkler, 1990) consider the asym-

ptotic distribution of b2,p as normal with the expectation p(p+2)(n-1)(n+1)
-1

  and 

the variance 8p(p+2)n
-1

, namely the statistic M. The histogram in Figure 2 

shows that such correction is insufficient even for 25n . The true size of the 
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test based on M, evaluated on the basis of 10 000 random samples, is 0.02 for 

05.0  and 0.03 for 1.0 , and is thus much lower than the postulated 

significance level  .  

 

Figure 2. Histogram for statistic M obtained on the basis of 10 000 random samples 

generated from a bivariate normal distribution, n=25 

2.2. Srivastava type tests  

Srivastava (1984) proposed a test for assessing multivariate normality based on 

a coefficient of kurtosis that differs from Mardia’s. Srivastava’s sample kurtosis 

is the average of p univariate kurtosis coefficients for principal components. Let 

us recall his approach.  

Let  phhH ,,1   be an orthogonal matrix such that 
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Srivastava defines the sample kurtosis as follows:  
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where  ib2  is the univariate kurtosis for the ith principal component. Under 

multivariate normality, the  ib2   pi ,,1  are asymptotically independent 

and have the asymptotic normal distribution with mean 3 and variance 24n
-1

. 

Hence Srivastava proposes the following asymptotic test statistic:  
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and states that under the null hypothesis of a multivariate normal distribution, 

the asymptotic distribution of 1S  is standard normal. Srivastava illustrates his 

test with an example with 27n  and 2p . It should be mentioned that 

Srivastava’s test statistic is not invariant under linear transformations.  

In this paper we propose the following mean-and-variance corrected version 

of 1S :  
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Under the null hypothesis of a multivariate normal distribution, the asymptotic 

distribution of 2S  is standard normal. Figure 3 presents the histograms of 1S  

and 2S  based on 10 000 random samples generated from a bivariate normal 

distribution for 10n , together with the standard normal density curve.  

 
Figure 3. Histograms for statistics 1S  (left panel) and 2S  (right panel), obtained on 

the basis  of 10 000 random samples generated from a bivariate normal distribution, 

n=10 
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2.3. Henze–Zirkler (H-Z) test 

Henze and Zirkler (1990) proposed a class of invariant consistent tests for MVN 

based on the distance between the empirical and the normal distribution. The 

test statistic is of the form: 
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where S is a sample covariance matrix,  
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 is taken according to Henze and Zirkler’s suggestion.  

3. Simulation study of the true size of the tests  

The aim of this section is to show that asymptotic normal distribution of the 

statistics 1M  and 1S , described in Section 2, should not be recommended for 

testing multivariate normality. However, their corrected versions 2M  and 2S  

work quite well.  

For each combination of n=10, 25, 50 and p=2, 3, 4, ten thousand random 

samples from the multivariate normal distribution with null mean vector and 
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identity covariance matrix were generated, and the true sizes of tests based on 

1M , 2M , 1S , 2S  and the H-Z test were computed. The simulation results for 

significance levels 05.0  and 1.0  are given in Table 1. Tests based on 

1M , 2M , 1S , 2S  reject normality if the absolute value of the test statistics 

exceeds the  21  th quantile of the standard normal distribution. For the 

Henze–Zirkler test normality is rejected if the test statistic exceeds a critical 

value given in Henze and Zirkler (1990, formula (3.4), p. 3605). It can be 

noticed that 1M  and 1S  give true sizes much below the nominal   even for 

50n , whereas the true sizes of 2M  and 2S  are close to the nominal value.  

 

Table 1. True sizes (in percentages) of tests, obtained on the basis of 10 000 random 

samples generated from a p-variate normal distribution  

for significance level    

n p 
05.0  1.0  

1M  2M  1S  2S  H-Z 1M  2M  1S  2S  H-Z 

10 

2 0 5 0 5 4 0 8 0 8 9 

3 0 5 0 5 3 0 9 0 9 8 

4 0 4 0 5 3 0 9 1 10 9 

25 

2 1 5 1 5 5 2 8 2 8 10 

3 1 5 1 5 5 3 9 3 8 10 

4 1 5 1 5 5 4 9 4 8 10 

50 

2 2 5 2 5 5 5 8 5 8 10 

3 2 5 2 5 5 5 8 5 8 10 

4 2 5 2 5 5 6 9 6 9 10 

 

4. Simulation study on the power of the tests 

To evaluate the power of the five tests being compared, 10 000 random samples 

from selected alternative distributions were generated for different combinations 

of n and p. Distributions with independent marginals, the mixtures of normal 

distributions and elliptically contoured distributions Pearson Type II (MPII) and 

Pearson Type VII (MPVII) were considered.  
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The Pearson Type II distribution with shape parameter 1m  is a p-

variate distribution with the following density function:  
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having support on the ellipsoid     11 


 
μxΣμx  (see Johnson, 1987). In 

the simulation study, MPII with shape parameter 0m  (i.e. the uniform 

distribution) and IΣ0μ  ,  is considered; this is denoted by MPII(0).  

The Pearson Type VII distribution with shape parameter 0 , called the 

general multivariate t distribution with  degrees of freedom, is a p-variate 

distribution with the density function  
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The Pearson Type II and VII distributions were generated according to Johnson 

(1987) with the correction for MPVII type in the formula (6.9) from that book, 

namely   μZX 
1

Y , where Z is  Σ0,pN  and independent of Y, which 

is 
2
 . In the simulation study, the MPVII distribution with 0μ   and IΣ   

was taken; this is denoted by MPVII().  

The powers of four tests based on kurtosis were calculated as the percentage 

of samples for which the test statistics exceed the  21  th quantile of the 

standard normal distribution, where   is the significance level of the test. In the 

literature, some authors compare the power of tests by taking critical values 

which give the true size of the tests equal to nominal significance level. 

However, practitioners usually do not realize that tests do not maintain the 

nominal significance level, and take critical values 96.1  (for 05.0 ) or 

645.1 (for 1.0 ).  
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The power of the Henze–Zirkler test was evaluated as the percentage of 

samples for which the test statistic exceeds the critical value given in Henze and 

Zirkler (1990, p. 3605).  

As the corrected test statistics 2M  and 2S  usually give values shifted to the 

right and more scattered (compared to the original versions 1M  and 1S ) it is 

obvious that the power of the mean-and-variance corrected tests improves for 

alternatives with kurtosis greater than normal (see Figure 4). For small samples 

the improvement can be huge, as Table 2 and Figure 4 show.  

Table 2 gives the estimated powers obtained on the basis of 10 000 random 

samples generated from products of the 1t , 2t  and 7t  distributions (denoted by 
pt ), and the multivariate t distributions with 2 and 7 degrees of freedom. These 

distributions have heavier tails than the normal distribution. For 1  and 

2  degrees of freedom their tails are even so heavy that kurtosis does not 

exist. For v>4 the kurtosis of the product of the t  distributions is 

  1
,2 )4(62  vpppp  and the kurtosis of MPVII() is 

    1
,2 )4(222  ppppp  (Henze, 1994).  

 

 
Figure 4. Histograms for statistics 1M  (left panel) and 2M  (right panel) obtained  

on the basis of 10 000 random samples generated from the product  

of t1 distribution, n=10, p=4 
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Table 2. Power (in percentages) evaluated on the basis of 10 000 random samples 

generated from heavy-tailed distributions 

n p 

Alternative 

distribution 

05.0  1.0  

1M  2M  1S  2S  H-Z 1M  2M  1S  2S  H-Z 

10 

2 

t1
2
 

t2
2
 

MPVII(2) 

t7
2 

MPVII(7) 

18 

3 

3 

0 

0 

75 

41 

45 

11 

12 

39 

10 

9 

0 

1 

75 

43 

43 

12 

13 

70 

33 

37 

7 

8 

25 

5 

5 

0 

0 

79 

47 

51 

15 

17 

48 

15 

14 

1 

1 

78 

48 

48 

16 

16 

78 

44 

48 

14 

15 

3 

t1
3
 

t2
3
 

MPVII(2) 

t7
3 

MPVII(7) 

4 

0 

0 

0 

0 

78 

40 

46 

9 

11 

42 

9 

8 

0 

0 

82 

47 

48 

11 

15 

70 

29 

36 

5 

7 

9 

0 

1 

0 

0 

83 

48 

54 

14 

17 

51 

13 

12 

0 

1 

85 

52 

53 

15 

19 

79 

41 

47 

11 

14 

4 

t1
4
 

t2
4
 

MPVII(2) 

t7
4 

MPVII(7) 

0 

0 

0 

0 

0 

78 

37 

46 

8 

12 

44 

8 

8 

0 

0 

87 

49 

53 

11 

16 

68 

24 

32 

5 

7 

0 

0 

0 

0 

0 

83 

45 

55 

13 

18 

53 

12 

12 

1 

1 

89 

55 

58 

16 

21 

77 

38 

45 

12 

14 

25 

2 

t1
2
 

t2
2
 

MPVII(2) 

t7
2 

MPVII(7) 

97 

69 

75 

10 

15 

99 

83 

87 

23 

29 

97 

70 

72 

11 

15 

99 

81 

82 

21 

26 

99 

73 

78 

12 

15 

98 

74 

79 

14 

18 

99 

86 

89 

28 

35 

98 

75 

76 

14 

18 

99 

84 

85 

26 

31 

99 

79 

83 

20 

24 

3 

t1
3
 

t2
3
 

MPVII(2) 

t7
3 

MPVII(7) 

99 

76 

83 

8 

14 

100 

90 

94 

25 

37 

99 

77 

78 

10 
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31 
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11 

17 
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For the alternative distributions with kurtosis less than normal, products of 

the uniform distributions with   pppp 2.12,2   and MPII(m) with 

  1
,2 )42)(22(2  mpmpppp  (Henze, 1994), the corrected tests 

can give less power. This is not surprising because for these distributions the 

test statistics 1M  and 1S  have negative values and the values of their corrected 
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versions 2M  and 2S  are greater. Additionally, it should be remembered that 

1M  and 1S  give true test sizes far from the significance level.  

Table 3 contains the estimated powers of the tests in the case of the product 

of the uniform distributions on  1,0 , denoted by  pu 1,0 , and the multivariate 

uniform distribution on the set  1:  xxx
pR , i.e. MPII(0). The kurtosis of 

these distributions does not differ very much from normal  2pp , the 

sample sizes 25n  and 50 being considered. For 10n  the power would be 

very small, not greater than  .  
 

Table 3. Power (in percentages) evaluated on the basis of 10 000 random samples 

generated from light-tailed distributions 

n p 

Alternative 

distribution 

05.0  1.0  

1M  2M  1S  2S  H-Z 1M  2M  1S  2S  H-Z 

25 

2 u[0,1]
2
 

MPII(0) 

  2 

  4 

10 

18 

1 

1 

5 

6 

24 

27 

23 

37 

33 

49 

12 

17 

18 

25 

42 

43 

3 u[0,1]
3
 

MPII(0) 

10 

26 

17 

38 

3 

5 

5 

10 

21 

23 

41 

67 

40 

66 

15 

28 

16 

29 

37 

39 

4 u[0,1]
4
 

MPII(0) 

18 

46 

19 

48 

4 

10 

5 

11 

17 

19 

51 

80 

41 

73 

16 

32 

14 

27 

32 

35 

50 

2 u[0,1]
2
 

MPII(0) 

62 

84 

65 

86 

30 

51 

32 

55 

67 

70 

88 

97 

87 

97 

50 

83 

49 

82 

81 

83 

3 u[0,1]
3
 

MPII(0) 

78 

98 

75 

97 

26 

59 

24 

56 

64 

71 

94 

100 

91 

100 

49 

85 

44 

81 

78 

83 

4 u[0,1]
4
 

MPII(0) 

84 

100 

77 

99 

24 

58 

20 

52 

57 

69 

96 

100 

91 

100 

46 

81 

38 

74 

73 

81 

 

Table 4 presents the simulated powers of the tests in the case of a mixture of 

normal distributions, i.e. the distribution of   21 1 XXY KK  , where K, 

X1 and X2 are independent,   qKP 1 ,   qKP  10  and 

 I0X ,~1 pN ,  IX ,]'04[~2 pN . Thus the distributions of X1 and X2 are at a 

Mahalanobis distance 4  from each other.  
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Table 4. Power (in percentages) evaluated on the basis of 10 000 random samples  

generated from mixtures of normal distributions 

n q p 

05.0  1.0  

1M  2M  1S  2S  H-Z 1M  2M  1S  2S  H-Z 

50 

0.95 

2 35 49 41 52 38 42 56 48 59 48 

3 19 36 28 41 25 26 43 35 48 35 

4 11 27 19 32 17 16 35 26 40 27 

0.90 

2 23 38 30 43 66 31 46 38 52 75 

3 12 26 20 33 47 17 33 27 41 60 

4 6 19 14 26 31 10 26 19 34 44 

0.80 

2 4 9 5 9 86 7 13 9 14 92 

3 3 7 4 8 64 6 11 7 12 76 

4 2 6 3 8 43 6 11 7 12 57 

0.50 

2 8 9 16 18 72 26 25 38 37 85 

3 6 6 14 13 41 19 15 30 27 57 

4 6 4 13 11 25 17 12 27 22 39 

100 

0.95 

2 68 76 75 81 60 75 82 80 85 70 

3 45 58 59 68 44 55 67 67 75 55 

4 30 45 47 57 32 38 54 56 66 43 

0.90 

2 45 57 56 66 92 55 65 66 74 96 

3 26 39 42 52 81 34 48 52 62 88 

4 16 28 32 44 65 23 37 42 53 75 

0.80 

2 5 8 6 9 100 9 12 11 14 100 

3 4 7 5 8 96 8 12 9 13 98 

4 3 6 4 7 84 8 10 8 11 91 

0.50 

2 37 34 53 51 99 58 54 72 69 100 

3 20 15 36 32 87 36 29 53 48 93 

4 15 10 29 24 63 28 20 45 38 76 

 

It is surprising that in the case of Mardia’s and Srivastava’s tests, greater 

disturbances are sometimes detected with less power than smaller disturbances. 

This is explained by the following formula for coefficient of kurtosis for a 

mixture (Henze, 1994):  

 
 22

4

,2

1

61
2




 ppp ,   qq  1 .   
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The plot for   224 )1)(61( qf  with 4  is given in Figure 5. 

Thus the mixture with 8.0q  has almost the same kurtosis as the normal 

distribution.  

 

Figure 5. Plot of the function f(q), 4  

5. Conclusions 

On the basis of the simulation studies we can state that none of the tests is 

uniformly the best. Nevertheless, some specific remarks can be formulated.  

(1) The results in Table 1 show that the true sizes of tests based on M1 and S1 

are much lower than the nominal significance level . However, the true sizes 

of test procedures based on the corrected statistics M2 and S2 are very close to 

the significance level, especially for 05.0 . It should be mentioned that the 

true size of the Henze–Zirkler test for 10n  is a little smaller than .  

(2) From the results in Table 2 we can conclude that the corrected M2 and S2 

tests for heavy-tailed distributions, such as the product of the t distributions and 

the multivariate t distributions, are more powerful than the original M1 and S1 

tests respectively. The power of M2 and S2 is greater than the power of the 

Henze–Zirkler test. For 25n  M2 is the best test, while for 10n  S2 is 

mostly the best. Generally, we can see that for all tests the disturbance from 

normality is more easily detected in the case of multivariate t than in the case of 
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a product of t distributions with the same degrees of freedom. This is not 

surprising if we consider the tests based on kurtosis, because MPVII 

distribution differs in kurtosis from the multivariate normal distribution more 

than the product of t distributions with the same degrees of freedom. However, 

we can notice that the same rule also applies to the Henze–Zirkler test. 

(3) The results in Table 3 show that for light-tailed distributions, such as the 

product of the uniform distributions and the multivariate uniform distribution, 

the corrected tests M2 and S2 can be less powerful than the original M1 and S1 

respectively. Mardia-type tests are much better than Srivastava-type ones, and 

mostly better than the Henze–Zirkler test. The power of Mardia-type tests 

increases with p, while the power of the Henze–Zirkler test decreases with p. 

All tests detect non-normality more easily for MPII(0) than for the product of 

the uniform distributions.  

(4) Regarding the results in Table 4 we can notice that for mixtures of normal 

distributions the corrected tests M2 and S2 are more powerful than M1 and S1 

respectively, except for the case of 5.0q . In this case the kurtosis for the 

mixture is lower than normal )2( pp  (see Figure 5). The Henze–Zirkler test 

is the best at detecting non-normality except for the case of 95.0q , i.e. for a 

small disturbance of normality. In this case S2 is the best. The tests based on 

kurtosis are completely useless when 80.0q , as the kurtosis of such a 

mixture does not differ from the normal )2( pp . The power of all tests 

decreases with p.  

(5) On the basis of the results presented, one more remark can be made. 

Horswell and Looney (1992) claimed that affine-invariant procedures are better 

than coordinant-dependent ones for correlated variables, whereas coordinant-

dependent procedures are better when the variables are uncorrelated. This seems 

not to be valid when we observe the results in Tables 2–4. In all cases the 

variables are uncorrelated, and yet affine-invariant Mardia tests can be better 

than coordinant-dependent Srivastava tests. However, it should be remembered 

that Horswell and Looney (1992) did not consider Srivastava’s test in their 

paper.  
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