
 
DOI:10.2478/bile-2013-0011 

Biometrical Letters 

Vol. 49 (2012), No. 2, 149-158 

The use of information and information gain  

in the analysis of attribute dependencies 

Krzysztof Moliński, Anita Dobek, Kamila Tomaszyk 

Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 

Poznań, Poland‚ e-mail: andobek@up.poznan.pl 

SUMMARY 

This paper demonstrates the possible conclusions which can be drawn from an analysis 

of entropy and information. Because of its universality, entropy can be widely used in 

different subjects, especially in biomedicine. Based on simulated data the similarities 

and differences between the grouping of attributes and testing of their independencies 

are shown. It follows that a complete exploration of data sets requires both of these 

elements. A new concept introduced in this paper is that of normed information gain, 

allowing the use of any logarithm in the definition of entropy. 
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1. Introduction 

The notion of entropy has been well known for many years. Introduced in the 

nineteenth century by Rudolf Clausius, it was initially used only in the physical 

sciences. With the appearance of the fundamental paper by Shannon (1948), 

which concerned the amount of information in a signal and the analysis of 

entropy as a fundamental part of the analysis of information, entropy has found 

applications in the life sciences. Nowadays the analysis of entropy and 

information is commonly used in the technical sciences, and is also utilized in 

environmental sciences such as ecology, or life sciences such as medicine, 

genetics and others (Bezzi, 2007; Brunsell, 2010; Moniz et al., 2007; Yan et al., 

2008; Jakulin et al. 2003). 

In the present paper we wish to demonstrate the use of analysis of entropy in 

exploring categorized or ordered data constituting an attribute of an examined 
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unit. Statistical analysis of discrete (quality) random variables is always much 

more laborious than the analysis of continuous (quantity) variables, mostly 

because the majority of known statistical methods assume the continuity of the 

analyzed variables. A partial solution to this problem is the well-known, and 

commonly used, transformation of variables. However, this procedure only 

gives an approximate solution. 

The analysis of entropy, representing the expected value of a random 

variable –log p(a) called information, is based on the event’s probability and in 

consequence does not demand the transformation of observations. Its 

applicability is quite extensive and depends on the research area. In this paper 

we focus on the analysis of information gain (Kullback and Leibler, 1951), and 

the function of entropy as used in the analysis of dependencies between random 

variables investigated in the context of a third dependent variable (McGill, 

1954; Jakulin and Bratko, 2003). In different types of experiments generally 

there may be a question of interactions, but in a particular case it may come 

down to, for example, the problem of genetic epistasis (Kang et al., 2008). 

2. Material and method 

The starting point for the described research was the analysis of data in which 

the variables represented genotypes in different loci in a group of infected 

individuals and in a group of controls. Therefore in the following consideration 

the set of possible values was reduced to three values {-1, 0, 1}. 

To illustrate the method and all the possible consequences and conclusions, 

a simulation of data was provided. Two sets of data containing 600 and 400 

records were generated. Each record contained nine elements representing the 

observation of attributes (variables), always from the set {-1, 0, 1}. As a starting 

point we took the generator of random variables from the normal distribution, 

and the numbers obtained were transformed to the given set of values. Because 

a natural association with the simulated set of three-valued data points are 

genotypes, as an additional condition for some attributes we took the Hardy–
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Weinberg equilibrium. Moreover, when generating the data we imposed strong 

correlations between some variables in both sets, namely for {1,2}, {3,4}, {5,6} 

and {7,8} in set I and for {1, 2} in set II. 

As was mentioned in the introduction, in the investigation of possible 

relations between variables we will use some functions of entropy and 

information. For a given variable A the entropy is an expression (Jakulin, 

2005) 
a

apapAH )(ln)()( , where the a are the values of the variable A and 

p(a) are the corresponding probabilities. As is well known, entropy is a measure 

of uncertainty. The higher the entropy, the less credible are the predictions 

about A. The notion of entropy may be generalized over two and more 

variables, for instance (Jakulin, 2005) 
a b

bapbapBAH ),(ln),(),(   

and also to conditional entropy, namely (Jakulin, 2005) 

 
b a

bapbapbpBAH )/(ln)/()()/( , which describes the uncertainty about 

A given the variable B. In what follows we will use also the notion of mutual 

information,  

         
   ,/

/,),(

ABHBH

BAHAHBAHBHAHBAI




 

which measures the dependency or correlation between two attributes (Moore et 

al., 2006).  If the second attribute is a label variable,  then I(A,B) measures the 

amount of information about A provided by the label variable B, and is called 

information gain (Jakulin and Bratko, 2004a). Again, the generalization of 

information gain to two variables gives interaction information (McGill, 1954) 

   BAICBAICBAIG ,/,);,(   

where 

       CBAHCHCBHCAHCBAI ,,)(,,  /,  . 

This measures the dependencies between two attributes in the context of the 

label variable. 

In the analysis of dependencies between variables we will use normed 

mutual information, namely I(A, B)/H(A, B). The higher the normed mutual 
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information, the stronger the correlation of attributes. As a result, the inverse of 

this parameter is a measure of distances of variables (Rajski, 1961) and 

therefore may be used for building a dendrogram illustrating the mutual 

connectedness of attributes. Similarly, we can interpret the absolute value of the 

inverse of information gain as a distance and build a dendrogram based on it. It 

seems to us, however, that similarly to normed mutual information, a better 

measure of distance is the inverse of normed interaction information, namely 
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CBAIG
CBAIGw

,,

);,(
);,(


  

The advantage of the normed distance is that it is not dependent on the type of 

logarithm used in the definition of entropy. 

In connection with the estimated parameters it is possible to verify two 

hypotheses: one about the independence of attributes, and one about the 

independence of attributes in the context of the label variable. The first 

hypothesis has the form   0,  :0 BAIH (against   0,  :1 BAIH ) and we 

will use the χ
2 

 test to test its truth. As was shown by Kang et al. (2008)  the 

statistic 2n I(A, B) has a χ
2

n(A)n(B)-5 distribution where n is the number of 

observations and n(A) and n(B) are the numbers of possible values for the two 

variables tested.  

To verify the hypothesis   0;,  :0 CBAIGH  (against 

  0;,  :1 CBAIGH ) we will again use the χ
2 

test. From the results of 

Matsuda (2000) and Jakulin and Bratko (2004b)  we know that the statistic 2n 

IG(A, B;C) has a χ
2
n(A)n(B)n(C) -1  distribution.  

3. Results and discussion 

The analysis of simulated data was performed using Microsoft Excel and some 

procedures from the R package. In the first step, the normed mutual information 

about each attribute and the label was calculated. As is shown in Table 1, the 

most informative attribute about the label value is variable 8, followed by 

variable 7. At the other end of the scale is variable 1. 
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Table 1. Normed mutual information about attributes and  label  

Attribute 1 2 3 4 5 6 7 8 9 

Information 0.000 0.045 0.039 0.074 0.030 0.078 0.102 0.159 0.017 

 

In the next step we calculated the matrices of normed mutual information 

for Set I, Set II, and their integrity, extended by a 10th variable, namely the 

label. In this way we wish to recognize the label on the basis of the remaining 

attributes. The dendrograms built upon these distances are represented by 

Figures 1–3.  

 
Figure 1. Grouping of attributes for data from Set I 

Firstly, what can be seen in the Figures are the consequences of simulation 

rules and the dependencies assumed from the beginning. Strongly correlated 

attributes are close together on the dendrograms. In Figure 1 and Figure 3 these 

are attributes  {1, 2}, {3, 4}, {5, 6} and {7, 8}. In Figure 2, which concerns Set 

II, it is only the pair {5, 6}. The dendrogram in Figure 3 also shows a strong 

connection between the label variable {10} and attributes 7 and 8, which carry 

most information about it.  
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Figure 2. Grouping of attributes for data from Set II 

The dendrograms for Set I and Set II group the variables into three sets, but 

their combination forms only two clusters. Figure 3 shows also that attributes 

{1, 2, 9} carry less possible information about the label.  

 

Figure 3. Grouping of attributes for data from Set I and Set II 
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Figure 4. Grouping of attributes based on information gain 

The last calculated distance matrix is the matrix of normed information 

gain, which was used in the construction of the last dendrogram in Figure 4. 

The analyzed attributes are grouped in two clusters. It should be noted that the 

variables {1, 2}, {3, 4} and {7, 8}, which are strongly correlated in Set I and are 

independent in Set II, carry a large amount of information about the label. By 

contrast, the pair {5, 6}, correlated in both sets, is separated on this dendrogram 

because this relation does not provide any information about the label attribute. 

Some comments are necessary in relation to the cluster {1, 2, 9}, which appears 

on all dendrograms. Its presence in Figure 4, concerning the information gain, 

may be explained by the fact that the tree attributes say the least possible about 

the label. 

Proceeding to the verification of statistical hypotheses connected with this 

experiment, we began with verification of the Hardy–Weinberg equilibrium, 

because some attributes were generated according to this rule. It appears that in 

both sets, also in cases of variables assumed not to be part of this rule, the 

statistical test does not allow us to reject the hypothesis about the equilibrium. 

This proves that for large samples the χ
2
 test is not reliable.  
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Table 2. The  χ
2
 values for  attribute independence tests 

Set I + Set II                 

Attributes 2 3 4 5 6 7 8 9 

1 1844.0 9.9 14.1 2.6 3.2 1.2 3.7 29.5 

2  11.8 16.6 3.0 3.5 2.1 7.2 28.7 

3   1185.1 8.7 12.3 6.3 5.2 4.1 

4    5.3 12.2 2.0 2.4 5.5 

5     1113.9 8.5 9.5 13.7 

6      2.4 3.5 10.5 

7       1334.4 4.3 

8        7.0 

Set I           

Attributes 2 3 4 5 6 7 8 9 

1 1106.4 6.0 8.4 1.6 1.9 0.7 2.2 17.7 

2  7.1 10.0 1.8 2.1 1.2 4.3 17.2 

3   711.0 5.2 7.4 3.8 3.1 2.4 

4    3.2 7.3 1.2 1.4 3.3 

5     668.3 5.1 5.7 8.2 

6      1.4 2.1 6.3 

7       800.6 2.6 

8        4.2 

Set II          

Attributes 2 3 4 5 6 7 8 9 

1 9.2 4.1 1.6 4.5 4.9 2.4 2.2 3.3 

2  9.7 1.6 2.4 1.8 0.6 1.5 12.0 

3   1.4 6.6 5.3 2.9 11.7 3.5 

4    2.8 1.9 2.7 1.9 3.6 

5     845.3 1.2 6.6 5.4 

6      1.4 7.3 5.4 

7       2.7 1.8 

8               7.2 

Bold denotes significance at a level of at least 0.05 
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The significance of normed mutual information from Table 1, tested by the 

χ
2
 test, shows a strong dependency between the distribution of attributes and 

label. An exception is the first attribute, for which the distribution is not 

dependent on the label.   

 
Table 3.   The  χ

2
 values for  attribute independence in the label context tests       

Attributes 2 3 4 5 6 7 8 9 

1 486.1 2.0 6.9 2.8 2.3 2.0 3.1 11.9 

2  10.2 1.8 1.4 5.8 18.3 28.3 6.8 

3   312.4 11.7 20.9 9.6 41.3 1.7 

4    7.8 24.9 28.0 32.2 1.2 

5     8.4 8.5 22.1 3.3 

6      29.9 48.3 5.0 

7       242.9 7.0 

8               11.6 

Bold denotes significance at a level of at least 0.05 

The results from testing the independence of attributes presented in Table 2 

and Table 3 confirm the statistical dependencies connected with the way of 

generating data, as well as some dependencies that may be observed on the 

dendrograms. This is particularly true for pairs of variables that are also close 

on the dendrograms. The dependence of variables {1, 2, 9} was also statistically 

proven. By forming conclusions based on dendrograms and the χ
2
 test we 

should be conscious of the different role of these two statistical instruments. 

While the dendrogram shows the sets of attributes, the statistical test χ
2
 is 

answers questions about dependencies between variables. As we may observe, 

the conclusions obtained by these two instruments are identical at some points, 

but at others they differ significantly. A complete analysis of a set of data 

requires both of these elements. 

Finally it should be pointed out that the data analysis presented in this paper 

may be used in the case of variables with an unrestricted number of values. The 
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attribute playing the role of a level variable may not be bivariate, but may also 

have more values. 
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