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SUMMARY  

One of the most important characteristics in determining the dendrometrical 
properties of a stand is the annual height increment of the trees. On the basis of these 
increments, natural phases of the trees’ life are defined. In the present study the 
data concern the height increments of the main trunk of 25-year-old Scots pine, as well 
as simulated data. Our research deals with the application of longitudinal data 
analysis. This analysis is usually used when measurements are taken at the 
same treatments at different time points. The calculations performed provide 
answers to the question of which annual height increments differ.  

Key words: contrast, height increment, longitudinal data analysis, Scots pine (Pinus 
sylvestris). 

1. Introduction 

In research conducted in pine forests, the height of trees is among the values 

measured. Since in successive years the measurements are performed on the 

same experimental units (trees), this data may not be regarded as independent. 

In experiments with repeated measurements the analysis of variance cannot be 

used to test the hypothesis of equality of means for years. In this situation 

profile analysis (also called longitudinal analysis) is used, in which two kinds of 

experimental factors are considered. Levels of some factors are tested on 

different experimental units, whereas levels of the other factors are examined on 

the same experimental units. In the trial analyzed in this paper, the first factor is 

associated with the division of the tested trees into Kraft classes (Assmann, 
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1968), while the other is the measurement of tree heights in successive years. In 

work by Graczyk et al. (2010) longitudinal analysis was used for the one-factor 

experiment, i.e. the successive years.  

The second factor, Kraft classes, combines the social position of the tree in 

the stand  with the degree of its crown formation. Particular units are allocated 

to appropriate classes  on the basis of visual assessment of the tree and its 

neighborhoods (Kaźmierczak  and Zawieja, 2008).  

2. Data 

Data was simulated on the basis of real height measurements of 24-year-old 

pines. A total of 25 trees were selected, following the methodology developed 

by Draudt (Lemke, 1971). Observations of height were made for seven years. 

Before being cut down the trees were classified into Kraft classes (Assmann, 

1968). Trees belonging to the same class are grouped with uniform growth 

energy. The considered 25 trees belonged to four different classes: first (I) 

predominant trees, markedly higher than surrounding trees, conspicuously 

protruding over the closed canopy, with very strongly developed crowns; 

second (II) dominant trees, forming the primary line of the closed canopy, with 

relatively well-developed crowns; third (III) co-dominant trees, slightly lower 

than dominant trees, with markedly less developed crowns, narrowed sideways; 

and fourth (IV) intermediate trees, markedly lower, with poorly developed, 

narrowed crowns, extending only in one direction. 

Based on this experimental data, the simulated data was generated. Namely, 

separately for each Kraft class, the vector of means and covariance matrices 

among years were determined. Next, using the Statistical Analysis Software 

SAS, multivariate data (where the dimensions were the years) was generated 

from a normal distribution with a given vector of means and given covariance 

matrix. Consequently the simulated data, for each class, was independent for 

different experimental units (trees) and was dependent on the inside of the 

experimental unit (the height of a given tree in subsequent years). 
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3. Method 

In the presented experiment the data is dependent on time, and the 

measurements are repeated on the same experimental units. In this situation, 

longitudinal analysis should be used to verify hypotheses about factors (Kraft 

classes, years and trees).  

In this analysis the influence of the p  commensurable responses on the n  

independent objects which are grouped adequately according to k  experimental 

conditions is determined. The commensurable responses are the measurements 

made in consecutive years, in other words the time points. Social positions 

(Kraft classes) are the changing experimental conditions. In each of these 

classes the same number of trees is located (these trees are independent objects). 

Therefore there are observed k  groups consisting of n  objects at p  time 

points. The applied model can be described as follows: 

                                                                                                 (1) 

where ijhy is the observation concerning the measurement of the i th object from 

the j th group at the h th time point, jhξ is the influence of the h th time point 

on the j th group, and ijhe  is the measurement error, ni ,...,2,1= , kj ,...,2,1= , 

ph ,...,2,1= . In the above model it is assumed that the error vectors 

],...,[ 1
'

ijpijij eee =  are independent, and have the multivariate normal distribution 

with expectation equal to zero and unknown nonsingular covariance matrix Σ , 

which is identical for each ni ,...,2,1= , kj ,...,2,1= , and is a matrix of full 

column rank. The model (1) can be also written in the matrix form eXξY += , 

where Y  is the observation matrix. The matrix rows Y  are in the form 

],...,[ 1 ijpijij yyy = , for observation ni ,...,2,1=  and group kj ,...,2,1= . 

The design matrix X  is a matrix built of k  blocks of n  rows and k  

columns each. In j th block the j th column is a column of ones, and the other 

columns are zero; hence the j th block is:  

 

 

ijhjhijh ey +ξ=
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Figure 1. The profile of  all generated tree heights from four Kraft classes 
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The matrix of unknown parameters ξ  can be written as  
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where  jhξ
 
( kj ,...,2,1= , ph ,...,2,1= ) is as above. 

Application of longitudinal analysis makes it possible to assess differences 

between average increments of trees depending on environmental conditions as 

well as time. Three hypothesis are verified here: 

1) 

















−

−
==

















−

−

−− kpkp

kk

pp ξξ

ξξ

ξξ

ξξ

1

21

111

1211

01 .........:H ,            (2) 

2) ∑∑ ==
==

p

h
kh

p

h
h

11
102 ...:H ξξ ,            (3) 

Profile

9

10

11

12

13

14

15

1 2 3 4 5 6 7

Years

m
ae

n
 o

f 
h

ei
g

h

I II III IV



 
 
 
 

Application of longitudinal analysis – simulated data 

 

 
 
 
 

125 

3) ∑∑ ==
==

k

j
jp

k

j
j

11
103 ...:H ξξ .            (4) 

In (2) it is examined whether the differences between a consecutive time point 

are the same for all of a group. This means that the parallelism of profiles is 

checked. In the figure 1 the profile (mean heights of trees at each time point, i.e. 

year) are given for all generated tree heights grouped in four Kraft classes. 

The hypothesis (2) can be written in matrix form as MξC   , where the 

kk ×− )1(  matrix  C is the matrix of contrasts for groups  
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and the )1( −× pp  matrix M  is the matrix of contrasts for time points, namely  
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In order to verify (2), one-factor multivariate analysis of variance is used for 
1p-  differences of expectations for consecutive variables (time points) in each 

of the groups. The largest root of Roy )1/( 11 λλθ −=  (Krzyśko, 2000 p. 194), 

based on the largest eigenvalue 1λ  of matrix 1−HE , whose dimensions are 

)1()1( −×− pp , must be determined for this purpose, where 

MYXXXXIYME

MYXXXCCXXCCXXXYMH

}]')'(['{'
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1111
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−−−−

−=
=

.                (5) 

The hypothesis (2) should be rejected if the calculated value of statistic θ  

exceeds the table value, where )1,1min( −−= pkS , 2/)1( −−= pkM  and 

2/)( pknkN −−=  (Krzyśko, 2000 p. 330). 
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If there is no reason to reject the hypothesis (2), the hypothesis (3) of the 

equality of group effects (equality of profile) should be verified. This hypothesis 

is checked by means of one-dimensional one-factor analysis of variance 

(Morrison, 1990). The matrix form of this hypothesis is 1  mξC , where 1m  is 

the column vector composed of p  ones. Matrices H  and E  are calculated by 

the formulas (5), substituting vector 1m  in the place of matrix M  (in this case 

matrices H  and E  have dimension (1×1)). Similarly as in the case of 

hypothesis (2) the only nonzero eigenvalue of the matrix 1−HE  can be 

calculated and compared with the critical value of the beta distribution. Because 

in this case 1)1,1min( =−= pS , it should be better to verify this hypothesis 

with analysis of variance conducted for the variables that are the sum of 

observations ∑= =
p
h ijhij yy 1. . If the hypothesis is rejected then in order to find 

significant differences among groups the Scheffe intervals can be used. The 

critical value for construction of Scheffe intervals are determined by the 

following formula  

knkkgctit Fkt −−−= ,1;, )1( α ,             (6)  

and the test statistics for the comparison of consecutive groups (l  with 1+l , 

where 1,...,1 −= kl ) take the form  

 
MSE

n
t klgl 2, yc= ,              (7) 

where MSE is the mean square for the error, lc  is the l th row of matrix C , 

and ky  is a vector whose elements are the means ∑ ∑= = =
− n

i
p
h ijhj ynpy 1 1

1
.. )(  

( kj ,...,1= ). 

Next the hypothesis (4) of equality of expectations p  of time points is 

verified. The matrix form for this hypothesis is Mξc   1 , where  1c  is the vector 

composed of k  ones. To comment on the equality of these expectations the 2T  
Hotelling statistic is used. Because 1)1,1min( =−= kS , matrix 1−HE  has 

only one nonzero eigenvalue, on which the test statistic is based: 

ppnkknkT yM'ME'y 12 ])[( −−= ,            (8) 
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where the elements of vector py  are the means ∑ ∑= = =
− n

i
k
j ijhh ynky 1 1

1
.. )(  

( ph ,...,1= ). If the above hypothesis is rejected, then multiple comparisons of 

time point expectations are performed using modified Hotelling statistics 

(Morion, 1990 str. 208).  

The critical value for simultaneous comparison of time points is 

2,1;, 2
))(1(

+−−−+−−
−−= pknkptcrit F

pknk

knkp
t α ,          (9) 

and the statistic for the l th ( 1,...,1 −= pl ) comparison (contrast 1+− ll yy ) is 

as follows 

ll
pltl

nk
t

mVarm
ym

'
', = ,           (10) 

where lm  is the l th column of matrix M , py  is as above and Var is the 

covariance matrix among time points. 

If there is no interaction between time points and groups, then hypothesis 

(2) is rejected. At least for one group the dependence of height increments on 

time is different than for the remaining ones. Moreover, the rejection of 

hypothesis 01H  automatically causes the rejection of hypotheses 02H  and 03H . 

Then, using for example simultaneous Roy confidence intervals (also used for 

multiple comparison in multivariate analysis of variance), the groups that 

influenced the rejection of (2) should be found (Morison, 1990 p. 302).  

If hypothesis (2) is rejected, then the equality of groups is checked 

separately for each time point using p  one-dimensional analysis of variance 

and multiple comparison for groups. In the case of rejection of the hypothesis of 

equality of group effects (3), multiple comparisons should be performed using 

Scheffe confidence intervals. Similar procedures should be applied for 

examination of the equality of expectations calculated for consecutive time 

points separately for each group. In this case the one-sample 
2
jT jjn yMMVarMMy ')'('=  statistic is used ( kj ,...,1= ). In this formula 

jy  is the vector of p  means ∑= =
− n

i ijhjh yny 1
1.  ( ph ,...,1= ) and Var  is the 



 
 
 
 

B. Zawieja 

 
 
 
 
128 

covariance matrix among time points in the j th group. The method of 

calculation of the above statistic and appropriate critical value 2
critT  are given in 

the paper by Graczyk et al. (2010). The statistic for the lth ( 1,...,1 −= pl ) 

comparison (contrast 1.. +− jljl yy ) is as follows llljl nT mVarmym ''= , 

where lm  is the l th column of matrix M . 

Similarly, in the situation where the hypothesis 01H  is not rejected but one 

of the hypotheses 02H  and 03H  (or both) is rejected, the significant differences 

among groups and time points are calculated. For this purpose Roy and Bose’s 

(1953) intervals are used, in the same way as in the case of rejection of all three 

hypotheses. The method for determining intervals is given in the paper by 

Graczyk et al. (2010). 

In the case of the discussed trial, in the model (1) we have 30,...,2,1=i , 

4,...,2,1=j , 7,...,2,1=h . The matrix Σ  is column full rank, ( ) 7=Σr . 

The matrix of unknown parameters is:  
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In our trial the hypothesis (2) takes the form: 
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For example, vector 



















−

−
−

1716

1312

1211

...

ξξ

ξξ
ξξ

 means the differences of height increments of 

trees at seven successive time points for the first social position group.  
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The hypothesis (3) regarding equality of effects in each of the four groups is 
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171211
7

1 1 ξ...ξξξh h +++=∑ =  means the sum of tree height increments at 

successive time points for the first group. Hypothesis (4) takes the form  
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41312111
4

1 1 ξξξξξj j +++=∑ =  means the sum of average increments of tree 

heights at the first time point for four groups. 

4. Results 

At the significance level 05.0=α  it was verified that the measurement error 

vectors were not correlated, i.e. they were independent. The correlation 

coefficients and their p -values are presented in Table 1. 

 
Table 1. Partial correlation coefficients and p-value of error vectors (the number  

of degrees of freedom is 116) 

 
Time 
point 

1 2 3 4 5 6 7 

Correlation coefficient 1 -0.135 0.079 0.160 0.035 0.155 0.117 
p-value 

1 
 0.148 0.397 0.086 0.703 0.096 0.211 

Correlation coefficient  1 -0.004 0.033 0.080 0.230 -0.252 
p-value 

2 
  0.965 0.726 0.392 0.013 0.006 

Correlation coefficient   1 0.0642 0.061 -0.167 -0.052 
p-value 

3 
   0.492 0.513 0.073 0.581 

Correlation coefficient    1 -0.007 0.021 0.077 
p-value 

4 
    0.938 0.825 0.411 

Correlation coefficient     1 0.051 -0.083 
p-value 

5 
     0.587 0374 

Correlation coefficient      1 -0.065 
p-value 

6 
      0.482 

Italics – significant coefficients at the level 05.0=α . 

 Using the multivariate test of Royston (1983) it was verified, at the 

significance level 05.0=α , that the errors had a normal multivariate 

distribution with zero expectation and equal covariance matrices. The value of 
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Royston’s test statistic was 861.10* =G  and the critical table value was 

067.142
7 =χ .  

For data related to the four Kraft classes a profile analysis was applied for 

model (1). The largest root of Roy θ  based on the largest eigenvalue of matrix 
1−HE  was θ =0.859. The critical table value (for parameters 3=S , 1=M , 

5.54=N ) was tabθ = 0.167 (Krzyśko, 2000 p. 331). Thus the hypothesis (2) of 

profile equality was rejected at the significance level 05.0=α . Simultaneously 

the hypotheses of equality of profiles (3) and of time point effects (4) were 

rejected.  

In order to find which tree groups (Kraft classes) influenced the lack of 

profile equality we used confidence intervals (Morion, 1900 paragraph 5.5). The 

critical value for differences between classes was =gcritt , 2.8370. The values of 

test statistics were respectively 3.859 for the comparison of class I and II, 5.450 

for the comparison of class II and III and 4.134 for the comparison of class III 

and IV. The results of comparisons of groups are presented in Table 2. Kraft 

classes formed pairs of homogeneous groups. 
 

Table 2. Multivariate multiple comparisons for groups of trees – Kraft classes.  
The hypothesis (3) is rejected 

Group – Kraft class I II III IV

a a   

 b b  
Homogeneous 

group 
  c c 

 

As the hypothesis (4) was rejected it means that time points (years) differed 

significantly. The critical value for their contrasts was tcritt , =3.7695, and the 

statistic values for consecutive contrasts are given in Table 3. 

Since all the hypotheses were rejected, separate analyses should be carried 

out for each class and each year.  
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Table 3. Comparisons (contrasts) of consecutive measurement years – time points 

7695.3, =tcritt . The hypothesis (4) is rejected 

contrasts 1-2 2-3 3-4 4-5 5-6 6-7 

lt  7.688 6.261 9.820 6.973 7.914 4.775 

In the first step there were performed p = 7 one-dimensional analyses of 

variance, separately for each measurement year, in order to verify equality of 

groups. The results are presented in Table 4. In the third, fourth, sixth and 

seventh measurement years all groups significantly differed from each other, 

however in the first and second year classes I and II as well as III and IV 

constituted homogeneous groups, and in the fifth year only classes I and II. 
 

Table 4. The homogeneous groups for Kraft classes in consecutive measurement years 
– time points  

Group -  Kraft Time point of height measurements 

class  1 2 3 4 5 6 7 

I  a   a   a  a  a    a  a 

II  a   a   b  b  a    b  b 

III   b   b  c  c   b   c  c 

G
ro

u
p

 –
 K

ra
ft

 

cl
as

s 

IV   b   b  d  d    c  d  d 

In the second step the profile analysis was performed separately for each of 

the four Kraft classes. The statistics 2jT  for all classes exceeded the critical 

value (the boundary significance level – p-value – was in each case smaller than 

0.0001), therefore for each group the null hypothesis of lack of differences 

between years was rejected. The statistic values 2
jT  in the groups were 

respectively: class I 2736.25, class II 547.73, class III 3962.83, class IV 687.47, 

and the critical value was =2
ctitT 18.184, for 05.0=α  and 61=−p , 

241=+− pn  degrees of freedom for the numerator and denominator 

respectively.  

In order to evaluate which years differed significantly in particular groups, 

Scheffe intervals were defined for comparisons between consecutive 

measurement years (for particular contrasts). In Table 5, instead of intervals, 
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there are given the values of jlT  statistics together with the corresponding 

critical value 2
critcrit TT = . In group I (Kraft class) year 1 and 2 as well as 4  

and 5 did not differ significantly, while in group II there were no notable 

differences between years – all contrasts were insignificant. In class III there 

were no significant differences between years 3 and 4 as well as 6 and 7, while 

in class IV significant differences were found only for the contrast between 

years 3 and 4. 

 
Table 5. Statistic values for comparisons (contrasts) of consecutive measurement years 

in groups – Kraft classes. 2643134.Tcrit =  

Group – Kraft class  
Points of time 

I II III IV 

1-2 4.24 3.58 4.56 2.91 

2-3 5.80 1.51 5.47 1.91 

3-4 8.07 3.91 3.05 6.26 

4-5 2.00 4.08 5.69 2.57 

5-6 8.11 2.46 5.20 1.68 

6-7 5.57 1.38 2.74 2.32 

5. Conclusions 

The analysis leads to the conclusion that tree height increments were not 

parallel in all groups, i.e. the Kraft classes differed regarding the increments of 

the studied characteristics. Moreover, both Kraft classes and consecutive 

measurement years showed that they formed homogeneous groups joining two 

neighboring classes in pairs, which is a relatively natural conclusion and proves 

that the method applied for the classification of trees was adequate. All con-

trasts between consecutive years were significant. Therefore it can be concluded 

that weather conditions significantly influenced tree height increments. 

The comparisons between groups performed separately for each 

measurement year showed that in four out of seven years no homogeneous 
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groups were found and each Kraft class differed from the others significantly. In 

the two first measurement years there were found two homogeneous groups: 

one consisting of classes I and II and the other of classes III and IV. Therefore it 

may be stated that the division of trees into groups was formed in the initial 

period (when the trees were 18–19 years old) and in the later period this 

division was sustained. It must be added, however, that this does not provide a 

complete picture of changes between the groups, since in the production forests 

dried trees are immediately removed and there is no data regarding such units.  

Due to the fact that all consecutive measurement years differed from each 

other significantly regarding the studied tree characteristics, the comparisons 

between years were conducted separately for each Kraft class. It appeared that 

in group II and IV most years (compared in pairs) did not differ significantly. 

However, in the other groups the situation was the opposite. The results may be 

partly explained by the natural tendency of dominating trees to grow faster and 

of the weaker trees (from class IV) to have smaller and smaller height 

increments, consequently leading to their becoming dry. However, the height 

increment of trees is influenced not only by their social position, but also by 

their age, the weather conditions and many other factors.  
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