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Summary

To model cross-sectional growth data the LMS method is widely applied.
In this method the distribution is summarized by three parameters: the
Box-Cox power that converts outcome to normality (L); the median (M);
and the coefficient of variation (S).
Here, we propose an alternative approach based on fitting finite mixture
models with several components which may perform better than the LMS
method in case the data show an unusual distribution. Further, we explore
fixing the weights of the mixture components in contrast to the standard
approach where weights are estimated. Having fixed weights improves the
speed of computation and the stability of the solution. In addition, fixing
the weights provides almost as good a fit as when the weights are estimated.
Our methodology combines Gaussian mixture modelling and spline smooth-
ing. The estimation of the parameters is based on the joint modelling of
mean and dispersion.
We illustrate the methodology on the Fourth Dutch Growth Study, which
is a cross-sectional study that contains information on the growth of 7303
boys as a function of age. This information is used to construct centile
curves, so-called growth curves, which describe the distribution of height
as a smooth function of age. Further, we analyse simulated data showing
a bimodal structure at some time point.
In its full generality, this approach permits the replacement of the Gaussian
components by any parametric density. Further, different components of
the mixture can have a different probabilistic (multivariate) structure,
allowing for censoring and truncation.

Key words: mixture models, growth curves, splines, IWLS algorithm,
flexible distributions



104 M. Molas, E. Lesaffre

1. Introduction

The Fourth Dutch Growth Study is a cross-sectional study which recorded
several variables for a sample of boys and girls, conducted in the Nether-
lands in 1997. Here we consider the height of 7303 boys, and we aimed to
estimate centile curves of height as a function of age. The age ranges from
0.032 to 21.7 years, with a mean of 9.29 years. The median height is 145
cm with range 48.5–205.8 cm. Further details of the study can be found in
Buuren and Fredriks (2001).

The standard method for estimating growth curves is the LMS method
(Cole and Green, 1992). This method transforms the data to normality,
and models the median, the coefficient of variation and the skewness as a
smooth function of covariates, e.g. age. It performs well in most situations.
However, when the data exhibits a special structure, such as bimodal, at
some ages, and unimodal at other ages, the LMS method might not be opti-
mal. Such data can arise when the total population divides into subgroups
that have different growth patterns.

Another approach useful in the presence of mixtures is available in the
R package gamlss.mx (Rigby and Stasinopoulos, 2005). This package
is based on an extension of generalized additive models for location scale
and shape to mixtures of distributions. Mixtures can be fitted such that
means and standard deviations depend on age. Further, the weights of each
mixture component are estimated.

We explore in this paper a simplified finite mixture modelling approach
(McLachlan and Peel, 2000), where weights are fixed and equal. This re-
duces the computation time, and offers greater stability of the solution. The
disadvantage of the simplified computational approach is a less than opti-
mal fit. The observed loss of fit is often small, and can even be avoided by
adding some extra mixture components. Further, by the addition of splines
we can enable smooth change of density along the covariates, where means
and variances of the component densities can be expressed as a non-linear
function of covariates. Further, one can tune the approach with respect to
the number of components, and the flexibility of splines in each part of the
model. The choice of the final model is based on the Akaike Information
Criterion (AIC).

In the next section we first review the estimation process of finite mix-
ture models, using the standard case of Gaussian mixtures. Generalization
to exponential family densities, multivariate distributions and censoring
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follows. In Section 3 we present an application of the modelling approach
to the Fourth Dutch Growth data. A limited numerical study is performed
in Section 4. Finally we give some concluding remarks.

2. Mixture models

2.1. Mixtures of Gaussian Distributions

Throughout this section we will use indices as follows: k = 1, . . . ,K for the
number of mixture components, i = 1, . . . , N for the number of observa-
tions, p = 1, . . . , Pβ to index both fixed parameters in the mean structure
and p = 1, . . . , Pγ for the parameters in the dispersion structure. A mixture
model evaluated at data point yi is given by:

g(yi) =
K∑
k=1

wkfk(yi), (1)

with fk(yi), (k = 1, . . . ,K) the mixture components.
In a Gaussian mixture model each fk(yi) is assumed to be a normal

density with mean µk and variance φk ≡ σ2k. Further, each mixture compo-
nent fk(yi) contributes to the total density with weight wk. Suppose that
the density described in (1) changes over a range of known factors (which
may be continuous, such as age, or discrete, such as treatment). Denote
by zi a vector of covariates pertaining to observation yi, where the location
parameters µk are a function of xi, and the variances φk are a function of
ri, with xi and ri subsets of zi, then we obtain the following model:

g(yi|x, r) =
K∑
k=1

wkfk(yi|xi, ri), (2)

where g(yi|xi, ri) is the distribution of the response yi. We assume that the
parameters in each of the K components are allowed to be distinct. This
is of interest for the Fourth Dutch Growth Study, as we wish to allow for
a change in the distributional shape of the mixture along with covariates.
The log-likelihood of all N subjects is

logL(β1, . . . ,βK ,γ1, . . . ,γK , w1, . . . , wk; y) =

=
∑N

i=1 log
[∑K

k=1wk · fk(yi|µk(xi), φk(ri))
]
,

(3)
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We distinguish three types of the parameters in the above likelihood: (1) lo-
cation parameters µk(xi) = xTi βk, (2) scale parameters φk(ri) = exp(rTi γk),
and (3) weights wk. The score equations with respect to β are expressed
as follows:

∂ logL

∂βkp
=

N∑
i=1

 wk
∂fk(yi|xi,ri)

∂βkp∑K
k=1wk · fk(yi|xi, ri)

 =
N∑
i=1

cki
∂ log(fk(yi|xi, ri))

∂βkp
, (4)

with cki = wk·fk(yi|xi,ri)∑K
k=1 wk·fk(yi|xi,ri)

, and p = 1, . . . , Pβ. The same score equations

are obtained for the parameters of the Pγ dimensional γk vectors with
entries γkp, p = 1, . . . , Pγ .

Similarly we can derive the score equations for weights wk:

∂ logL

∂wk
=

N∑
i=1

cki
∂ log(wk)

∂wk
−

N∑
i=1

cKi
∂ log(wk)

∂wk
, (5)

which are the score equations of a multinomial model where the parameters
are wk given the estimated posterior weights cki. When the weights do not
depend on covariates the solution for wk has a closed form, i.e.

ŵk =

∑N
i=1 cki
N

. (6)

However, when the weights are functions of covariates, iterative procedures
are necessary.

We propose here to keep weights fixed and equal wk = w. Then equa-
tions (5) do not need to be solved, but we estimate only location and scale
parameters. This speeds up the convergence, as no iteration for weights
is needed and fixing weights avoides problems such as infinite likelihood
(McLachlan and Peel, 2000 pp.94-97). Thus fixing equal weights enables
speeding up of the estimation and improvement of the numerical stability
of the solution. We refer to this approach as the “FMIX” approach.

For fk(yi|xi, ri) a Gaussian probability density function:

fk(yi|xi, ri) = Nk(µk(xi), φk(ri)), (7)

the score equations become

∂ logL

∂βkp
=

N∑
i=1

cki

(
yi − µki
φki

)
xip =

N∑
i=1

c̃ki(yi − µki)xip, (8)
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p = 1, . . . , Pβ, resembling score equations of a normal distribution with
unequal variances. The solution is provided by the weighted least squares
procedure:

β̂k = (XT C̃kX)−1XT C̃ky, (9)

k = 1, . . . ,K, with C̃k a diagonal matrix with entries c̃ki = cki
φki

.
For the variance structure parameters γk, the general framework was

described by Nelder and Pregibon (1987). The score equations have the
following forms:

∂ logL

∂γkp
=

N∑
i=1

cki

[
− 1

2φki
+

dki
2φ2ki

]
∂φki
∂γkp

=

N∑
i=1

[
cki
2

dki − φki
φ2ki

]
∂φki
∂γkp

, (10)

p = 1, . . . , Pγ , with dki the deviance residual, which for a normal distribu-
tion is equal to the squared residual (yi − µki)2. Equation (10) is a score
equation of a gamma generalized linear model (GLM), with response dki,
prior weight cki/2, and mean φki linked to the covariates. The parameters
can be estimated by Iterative Weighted Least Squares (IWLS); see also
Nelder and Wedderburn (1972).

The above two (I)WLS procedures can be combined into an interchange-
able IWLS algorithm to find estimates of βk and γk for each kth component
of the mixture. In total the following estimation procedure at iteration t is
proposed:

1. Weights cki are computed given (starting) values of βk(t − 1) and
γk(t− 1)

2. Each of K components is estimated by the above procedure yielding
βk(t) and γk(t)

3. Iterate [1] and [2] until convergence

This approach can be proven to be equivalent to the EM-algorithm. Briefly,
the E-step of the algorithm corresponds to finding the weights cki, while
the M-step is solving equations (4) and (5) given the posterior weights cki.
More details on the EM-algorithm in this setting can be found in McLachlan
and Peel (2000) (pp. 48–51).

Upon convergence, proper standard errors of each component location
and scale parameters can be computed numerically using the Hessian ma-
trix of the likelihood evaluated at the maximum.
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2.2. Mixtures of exponential family distributions

We can easily extend the previous approach to mixtures of other distribu-
tions from the exponential family:

f(yi) = exp

(
yiθi − b(θi)

φi
+ c(yi, φi)

)
. (11)

In general, the score equations (4) become:

∂ logL

∂βkp
=

N∑
i=1

cki

(
yi − µki
φkiV (µki)

)
∂µki
∂ηki

xip, (12)

where p = 1, . . . , Pβ. These are the score equations of a standard GLM with
a modified prior weight equal to c̃ki = cki/φki. Therefore a standard IWLS
algorithm can be used for the estimation; see e.g. Lee et al. (2006) (pp.
85–87). The estimation of the dispersion parameters γk requires the use of
deviance residuals, corresponding to the distribution used as a component
of the mixture (e.g. Poisson, binomial, . . .). To find the estimates of
dispersion parameters γkp with p = 1, . . . , Pγ the GLM assuming a gamma
distribution is fitted as in Section 2.1.

3. Applications

3.1. Fourth Dutch Growth Study

Here we present analyses of the cross-sectional Fourth Dutch Growth Study.
The objective is to model the centile curves of height as a function of age
among the 7303 boys in the study.

3.1.1. FMIX approach

We first illustrate the FMIX approach on a subset of boys aged 14 to 16.
We used 5 Gaussian mixture components. Every component has its own
mean and variance, and the weights are 0.2. The assumed density for each
height is then:

f(yi|µ1 . . . µ5, σ1 . . . σ5) =
1

5

5∑
i=1

1√
2πσi

exp

{
−1

2

(
yi − µi
σi

)2
}
.
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Figure 1. Fourth Dutch Growth Study: estimation of density for boys of age 14
to 16 with 1(a) fixed weights 1(b) estimated weights

The result of the fit is shown in Figure 1(a). For comparison we present the
fitted density when weights are estimated. The fitted density is presented
in Figure 1(b). Comparison of Figures 1(a) and 1(b) demonstrates the
flexibility with which mixtures are fitted.

Next we analysed the complete dataset to see the evolution of height
with age. The relationship is clearly non-linear, and therefore we used
splines to capture this behaviour.

We started with restricted cubic splines (Harrell, 2001 pp. 20–21) and
cubic B-splines (Eilers and Marx, 1996), but the B-splines converge quicker
and gave a better fit. In what follows we denote a B-spline of age with
n degrees of freedom as bs(age, n), with degrees of freedom (df) equal to
the spline order plus the number of interior breakpoints. The following
structure was used in the final model:

µk = bs(age, 10)βk,

σ2k ≡ φk = exp(bs(age, 3)γk),

with the optimal df determined by minimizing the AIC (smaller is better).
However no claim is made that we determined the optimal df. In Table
1 we present the AIC of various FMIX models. We considered models
with a different number of components and a different df in the mean and
variance structure. The optimal model contains four mixture components
with df=10 in the mean structure and df=3 in the variance structure. The
result of the estimation (fitted centile curves) is presented in Figure 2.

Figure 3 shows fitted densities at different pre-selected ages of boys.
To check the fit of the model worm plots (Buuren and Fredriks, 2001) are
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Figure 2. Fourth Dutch Growth Study: fitted centile curves with FMIX and
LMS approaches
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Figure 3. Fourth Dutch Growth Study: fitted densities at pre-selected boys

ages

created; see Figure 4. A worm plot presents the expected quantiles and
observed quantiles of a model for a range of covariate values, augmented
with confidence bands of the estimated quantiles.

The fit of the model seems appropriate, although there is still some
misfit for the height of boys younger than 35 days. Modelling height at this
young age is quite difficult since in this period of life boys exhibit growth
spurts. Further we computed the percentage of observations falling below
every centile curve. This computed percentage is very close to the nominal
centile i.e. below the 95%-ile lie about 95 percent of observations for the
whole span of age. Fitting the Gaussian mixture model with 10 bases
in the mean, 3 basis functions in the variance structure and 4 Gaussian
components with fixed weights took 2.8 minutes on a Pentium 2.33 GHz
core duo 2GB RAM.
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Figure 4. Fourth Dutch Growth Study: worm plots

3.1.2. LMS approach

A competitor to the FMIX approach, popular in growth curve modelling,
is the LMS method of Cole and Green (1992). The LMS models were fit-
ted using the gamlss function with distribution ’BCCG’ and an adequate
number of dfs in each of the structures (mean,variance,skewness). We com-
pared the AIC of LMS models in Table 1. The AIC is worse than that
of the FMIX models considered. The fitted centile curves with the LMS
approach are shown in Figure 2.

In the analysis of the Fourth Dutch Growth Study height of boys, the
visual fit of the LMS model and the mixture approach with 4 mixture
components with fixed weights did not differ much; see Figure 2. The LMS
method required less than 5 seconds to perform the fit.

3.1.3. General mixture modelling

The R package gamlss.mx enables for fitting of mixtures of distributions
with estimated weights, which also can depend on covariates. However
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Table 1. Fourth Dutch Growth Study: AIC of different models
Model AIC (lower is better)

M10V3K4E 44564.9
M10V5K7 44601.9
M10V5K5 44602.3
M10V3K5 44582.3
M10V3K4 44574.1
M10V3K3 44579.1

LMS-M10V3S1 44633.7
LMS-M10V5S1 44619.3

Abbreviations used: M10V5K7E - mixture model with 7 mixture components (K), 5 df of a

B-spline in variance structure (V) and 10 df B-spline in the mean structure (M); E denotes that

the weights of a mixture are estimated; LMS-M10V3S1 - an LMS model with 10 degrees of

freedom in the mean structure, 3 degrees of freedom in the variance structure and one

parameter in the skewness part of the distribution

when trying to fit the model with splines in the mean and variance structure
the program failed to converge (10 and 3 dfs subsequently). We developed
our own codes for fitting mixture models with estimated weights to analyze
the Fourth Dutch Growth Study. We allowed the weights to be estimated,
but not to depend on covariates. The fit of the model measured by AIC
was better (see Table 1); however the visual fit of the centile curves to the
data was not improved (results not shown). Fitting the model took 8.9.

3.1.4. Penalized Gaussian Mixture approach

In Ghidey et al. (2004) the penalized Gaussian mixture model (PGMM) is
introduced. This approach proposes to fix the means and variances of the
components of the mixture, allowing the weights of the individual distribu-
tions to be estimated. Additionally a penalty is imposed on the weights,
reducing the difference between the weight estimates of neighbouring dis-
tributions. An implementation of this approach can be found in the R
package smoothSurv. Applications in survival analysis can be found in
Komarek et al. (2005).

This model can be applied to positive continuous data, with the expo-
nent of the response as dependent variable. The shape of the distribution
(modelled by weights) remains the same over the range of covariates, while
the mean and scale are estimated from the data and can vary with inde-
pendent variables. An extension of the approach could allow the weights
to depend on the covariates, thereby allowing the shape of distribution to
change with a factor.



114 M. Molas, E. Lesaffre

The PGMM as described by Komarek et al. (2005) was applied to
the Fourth Dutch Growth Study; it took 8 hrs (on a 2.33GHz 2GB RAM
Intel duo core PC) to converge (results not presented). Due to the long
estimation time in the case of constant weights, we did not extend the
PGMM system to weights depending on covariates. Further, it is unclear
how to create the penalty term of the likelihood when weights change with
a covariate.

3.2. Simulated example

In this section we present an artificially simulated dataset, however the
example is motivated by the situation described by Muthen and Brown
(2009). They describe a 4-class drug trial model, where the patients are
assigned to either a drug group or a placebo group. Further, in each drug
group there are respondents to the treatment and non-respondents. There-
fore, while information on the drug assignment is available in covariates,
the information whether a patient is a respondent is a latent factor and
cannot be observed. Here we will consider one drug only, so that we have
respondents to the drug and non-respondents. For each group of respon-
dents and non-respondents we simulate a different trajectory. Further we
assume a cross-sectional situation. We assume that our response variable
is a hypothetical performance index measuring the treatment performance,
while the covariate is the age of the patient. We simulated a dataset for
5000 individuals, with a uniform distribution of age between 0 and 40. The
response originates from the following model:

µ1 = (2(40− age)3 + 3000)/(60− age)2 − 1.5,

for respondents and

µ2 = (2(40− age)3 − 3000)/(60− age)2,

for non-respondents. The dispersion parameters were set to one in both re-
spondents and non-respondents. To this dataset we fitted LMS, FMIX and
gamlss.mx models. Figure 5 shows the fitted centile curves obtained from
LMS, FMIX with 2 components, and gamlss.mx with standard starting
values. We plot there 2.5, 5, 10, 25, 35, 40, 45, 50, 55, 60, 65, 75, 90, 95,
97.5 percentile curves. We also computed the proportion of observations
falling below the fitted centile curves. For the LMS method 43.3% of ob-
servations are below the 40% centile curve, while in the FMIX approach it
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Table 2. TSimulated data: AIC of different models

Model AIC (lower is better)
LMS 20265

FMIX 17972
gamlssMX 17972

is 39.7%. 56% of observations are below the 60% centile curve for the LMS
method, and 59.7% in the FMIX model.

The FMIX method improves the fit of the LMS method by detecting
the mixture of respondents and non-respondents. The fits of FMIX and
gamlss.mx are comparable. This is due to the assumption that half the
patient population are respondents and half do not respond to the drug.
Therefore the correct weights are assumed in the FMIX approach. Table 2
presents the AIC values of the three approaches shown in this section. We
conclude that FMIX and gamlssMX gave very similar results.

4. Simulation study

We performed a limited numerical comparison of the performance of the
three methods: (1) FMIX, (2) mixture models with estimated weights us-
ing our code, and (3) mixture models with estimated weights using the
gamlss.mx package. Approaches (2) and (3) are theoretically the same;
however in practice they might perform differently because of for example,
a different convergence criterion or numerical algorithm. We sampled the
data from a mixture distribution. We considered three scenarios. In the
following text we specify mixture weights as integers, e.g. 75-25 means a
mixture of two components with contributions of 75% of the first compo-
nent and 25% of the second component.

In Scenario 1, we sampled data from a 75-25 mixture of normal distribu-
tions, with means -20 and 20, and standard deviations both 15. In Scenario
2 data are obtained by sampling from the 6-44-18-32 mixture of 4 Gaussian
distributions with respective means of -20,10,10,20 and standard deviations
all equal to 7. Finally in Scenario 3 we used the 10-17.5-22.5-22.5-17.5-10
mixture of 6 Gaussian distributions with means -30,-20,-10,10,20,30 and
standard deviations 3,5,7,7,5,3 respectively. In each scenario 6000 observa-
tions were sampled. No covariates were used in this simulation.

In each scenario models with a varying number of components were
fitted with the methods (1)-(3). In Scenario 1 we used 1-5,10,20 mixture
components in fitted models, while in Scenario 2: 1-4,6,10 components
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Figure 5. Simulated data fitted centile curves: LMS, FMIX, and gamlssMX
approach
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were considered. Finally in Scenario 3: 1-6,9,12,18,24 components were
considered. We computed the Kullback-Leibler (KL) divergence of the fit
of the models against the true distribution. We report ratios of the KL
distance of a given model to the best performing model in each scenario.
Furthermore we computed the AIC of each model. These two measures
were used for comparison of the appropriateness of the model. Note that
AIC weights simplicity of the model against the goodness of fit, while KL
distance is a measure showing how close to the truth the model is, but
without taking into account the complexity of the assumed model.

Under Scenario 1, the lowest KL distance was obtained for the mixture
model with 2 components and estimated weights (method 2). This was
the optimal model. However, there were still models close to the optimal.
The model with 4 components in method 1 attained a KL ratio of 1.11,
indicating that the Kullback-Leibler distance of this model was 1.11 times
the KL distance of the optimal model. The lowest AIC was obtained by a
2 components mixture model obtained with methods 2 and 3.

Under Scenario 2, the optimal KL distance was obtained for the mixture
model of 4 components with fixed weights (method 1). Further, all mixture
models with 6 components performed well (methods 1-3), as well as method
2 and 3 with 10 components. These had a ratio of KL distance below 1.16.
Note that with method 2 there were computational, difficulties i.e. the
boundary of parameter space when 3 or 4 components were used. Note
that the two-component model estimated with gamlss.mx converged with
a maximum log-likelihood value much lower (approximately 500 points)
than with other methods.

Under Scenario 3, the lowest KL distance was obtained for the model
with 9 components estimated with method 1. Method 2 with 6 components
performed equivalently well. Models estimated by method 2 with 9, 12 or
18 components achieved a ratio of their KL distance to the best model of
less than 1.11. In this scenario the AICs of gamlss.mx models were lower
than the AICs of FMIX or estimated weights models with the same number
of mixture components.

In summary, by using fixed weights (FMIX) we face fewer less computa-
tional problems and we avoid obtaining infinite likelihoods. It is seen that
FMIX models often perform as well as general mixture models when the
number of mixture components in the FMIX model is slightly larger than
the number of components used to generate the data.
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5. Conclusions

In this paper we propose the use of fixed weights in finite mixture models.
We assume each component of a finite mixture model is parameterized by a
separate set of parameters. Therefore, given prior weights (computed in the
E-step of the EM algorithm), every mixture component can be separately
maximized. Mixture models of this type might be fitted using existing
software for generalized linear models or generalized linear mixed models,
which allow the inclusion of appropriate weights. The described estimation
process is essentially the EM-algorithm of Dempster et al. (1977).

The assumption of separate maximization of the components can be
relaxed, and the estimation can allow joint parameters over the mixture
components. This could be of interest when one wishes to keep the same
shape of distribution over the range of the covariates, and vary its mean
only.

We used B-splines to model the non-linear distributions; however one
could be interested in a monotone centile curves. This can be achieved
by using the I-splines of Ramsay (1988) together with some reformulation
of the likelihood. Monotonic centile curves fitted to the Fourth Dutch
Growth study data are shown in Figure 2. However, the reformulation of
the maximization problem required the general Newton-Raphson algorithm
to be used instead of the interchangeable (I)WLS computational approach.

In comparison with the estimated weights approach, the speed of com-
putation and stability of the estimation are increased by fixing the weights
of the mixture, without much deteriorationing the fit of the model, as can
be seen in the Fourth Dutch Growth Study analysis.
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