Blood ammonia and lactate responses to incremental exercise in highly-trained male sprinters and triathletes

Open access

Summary

Study aim: To compare the blood ammonia and lactate concentrations in sprinters and triathletes during an incremental treadmill exercise test and in the 30 minutes of recovery. Material and methods: The study included 10 male sprinters and 14 male triathletes who compete at the national and international level. A treadmill test until exhaustion was administered. Blood samples for ammonia and lactate were obtained when the athletes were at rest, during and immediately after exercise, and between 5 and 30 min after exercise.

Results: The ammonia concentration and time course were similar in the sprinters and triathletes (F = 1.81, p ≥ 0.05, η2 = 0.08). An exercise-related increase in blood ammonia was almost linear, regardless of the exercise intensity. In the case of lactate, the interactions between the concentrations measured in the sprinters and triathletes were statistically significant (F = 5.78, p ≤ 0.001, η2 = 0.21). Post-hoc tests revealed that the lactate concentrations differed significantly between the sprinters and triathletes in the 18th min (p ≤ 0.01) and the 21st min (p ≤ 0.001) of the exercise test. The blood lactate increased in a nonlinear manner (slowly at lower intensities and rapidly at higher intensities). During the 30 min recovery period, both the ammonia and lactate levels decreased linearly. However, in the sprinters, the peak values were maintained in the first stage of recovery (5 min post-exercise).

Conclusions: The study showed that the blood ammonia concentration may be a useful marker of exercise-related metabolic responses in sprint-trained as well as in endurance-trained competitive athletes. Blood ammonia levels were more intensity-sensitive across the whole intensity range during the incremental exercise when compared to the blood lactate levels.

1. Ament W., J.R. Huizenga, E. Kort, T.W. van der Mark, R.G. Grevink, G.J. Verkerke (1999) Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int. J. Sports Med., 20(2): 71-77. DOI: 10.1055/s-2007-971096.

2. Banister E.W., M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge, B.J.C. Mutch (1997) The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur. J. Appl. Physiol., 51: 195-202. DOI: 10.1007/BF00455182.

3. Billat V.L., A. Demarle, J. Slawinski, M. Paiva, J.P. Koralsztein (2001) Physical and training characteristics of the top-class marathon runners. Med. Sci. Sports Exerc., 33(12): 2089-2097.

4. Degoutte F., P. Jouanel, E. Filaire (2003) Energy demands during a judo match and recovery. Br. J. Sports Med., 37: 245-249. DOI: 10.1136/bjsm.37.3.245.

5. Dudley G.A., R.L. Terjung (1985) Influence of aerobic metabolism on IMP accumulation in fast-twitch muscle. Am. J. Physiol., 248: C37-C42.

6. Duffield R., B. Dawson (2003) Energy system contribution in track running. New Stud. Athlet., 18(4): 47-56.

7. Duffield R., B. Dawson, C. Goodman (2004) Energy system contribution to 100-m and 200-m track running events. J. Sci. Med. Sport, 7(3): 302-313. DOI: 10.1016/S1440-2440(04)80025-2.

8. Duffield R., B. Dawson, C. Goodman (2005) Energy system contribution to 1500- and 3000-metre track running. J. Sports Sci., 23(10): 993-1002. DOI: 10.1080/02640410400021963.

9. Ferri A., S. Adamo, A. La Torre, M. Marzorati, D.J. Bishop, G. Miserocchi (2012) Determinants of performance in 1,500-m runners. Eur. J. Appl. Physiol., 112: 3033-3043. DOI: 10.1007/s00421-011-2251-2.

10. Finsterer J. (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord., 13: 218. DOI: 10.1186/1471-2474-13-218.

11. Gorostiaga E.M., I. Navarro-Amézqueta, J.A.L. Calbet, L. Sánchez-Medina, R. Cusso, M. Guerrero, et al. (2014) Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J. Strength Cond. Res., 28(10): 2775-2785. DOI: 10.1519/JSC.0000000000000496.

12. Graham T.E., L.P. Turcotte, B. Kiens, E.A. Richter (1997) Effect of endurance training on ammonia and amino acid metabolism in humans. Med. Sci. Sports Exerc., 29: 646-653.

13. Green J.M., J.H. Hornsby, R.C. Pritchett, K. Pritchett (2014) Lactate threshold comparison in anaerobic vs aerobic athletes and untrained participants. Int. J. Exerc. Sci., 7(4): 329-338.

14. Hancock C.R., E. Janssen, R.L. Terjung (2006) Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. J. Appl. Physiol., 100: 406-413. DOI: 10.1152/japplphysiol.00885.2005.

15. MacRae H.H., T.D. Noakes, S.C. Dennis (1995) Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise. Pflugers Arch., 430(6): 964-970.

16. Mutch B.J., E.W. Banister (1983) Ammonia metabolism in exercise and fatigue: a review. Med. Sci. Sports Exerc., 15(1): 41-50.

17. Nybo L., M.K. Dalsgaard, A. Steensberg, K. Møller, N.H. Secher (2005) Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J. Physiol., 563(Pt 1): 285-290. DOI: 10.1113/jphysiol.2004.075838.

18. Ogino K., T. Kinugawa, S. Osaki, M. Kato, A. Endoh, Y. Furuse, K. Uchida, M. Shimoyama, O. Igawa, I. Hisatome, C. Shigemasa (2000) Ammonia response to constant exercise: differences to the lactate response. Clin. Exp. Pharmacol. Physiol., 27(8): 612-617. DOI: 10.1046/j.1440-1681.2000.03312.x.

19. Philp A., A.L. Macdonald, P.W. Watt (2005) Lactate – a signal coordinating cell and systemic function. J. Exp. Biol., 208: 4561-4575. DOI: 10.1242/jeb.01961.

20. Ravier G., B. Dugué, F. Grappe, J.D. Rouillon (2006) Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int. J. Sports Med., 10: 810-817.

21. Sahlin K., M. Tonkonogi, K. Söderlund (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol., 80(5): 417-422.

22. Schumacker Y.O., P. Mueller (2002) The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med. Sci. Sports Exerc., 34: 1029-1036. DOI: 10.1097/00005768-200206000-00020.

23. Snow R.J., M.F. Carey, C.G. Stathis, M.A. Febbraio, C.G. Hargreaves (2000) Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J. Appl. Physiol., 88: 1576-1580.

24. Sola-Penna M. (2008) Metabolic regulation by lactate. IUBMB Life, 60(9): 605-608. DOI: 10.1002/iub.97.

25. Spencer M.R., P.B. Gastin (2001) Energy system contribution during 200- to 1500-m running in highly trained athletes. Med. Sci. Sports Exerc., 33(1): 157-162. DOI: 10.1097/00005768-20010100000024.

26. Terjung R.L, P.C. Tullson (1992) Ammonia metabolism during exercise. In: Lamb D.R. and C.V. Gisolfi (eds.) Energy Metabolism in Exercise and Sport. Dubuque, IA: Brown

[ Benchmark, pp. 235-268.

27. Wilkinson D.J., N.J. Smeeton, P.W. Watt (2010) Ammonia metabolism, the brain and fatigue, revisiting the link. Prog. Neurobiol., 91: 200-219. DOI: 10.1016/j.pneurobio.2010.01.012.

28. Yuan Y., R. So, S. Wong, K.M. Chan (2002) Ammonia threshold – comparison to lactate threshold, correlation to other physiological parameters and response to training. Scand. J. Med. Sci. Sports, 12: 358-364. DOI: 10.1034/j.1600-0838.2002.00185.x.

29. Zieliński J., K. Kusy (2012) Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J. Appl. Physiol., 112: 542-551. DOI: 10.1152/japplphysiol.01292.2011.

30. Zieliński J., K. Kusy (2015) Hypoxanthine: A universal metabolic indicator of the training status in competitive sport. Exerc. Sport Sci. Rev., 43(4): 214-221. DOI: 10.1249/JES.0000000000000055.

31. Zieliński J., B. Krasińska, K. Kusy (2013) Hypoxanthine as a predictor of performance in highly trained athletes. Int. J. Sports Med., 34(12): 1079-1086. DOI: 10.1055/s-0033-1337947.

32. Zieliński J., K. Kusy, T. Rychlewski (2011) Effect of training load structure on purine metabolism in middle-distance runners. Med. Sci. Sports Exerc., 43(9): 1798-807. DOI: 10.1249/MSS.0b013e318215d10b.

Biomedical Human Kinetics

The Journal of University of Physical Education, Warsaw

Journal Information

CiteScore 2018: 0.38

SCImago Journal Rank (SJR) 2018: 0.144
Source Normalized Impact per Paper (SNIP) 2018: 0.432

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 313 21
PDF Downloads 178 149 6