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Summary

Study aim: Oxygen Uptake (VO2) is a valuable metric for the prescription of exercise intensity and the monitoring of training 
progress. However, VO2 is difficult to assess in a non-laboratory setting. Recently, an artificial neural network (ANN) was used 
to predict VO2 responses during a set walking protocol on the treadmill [9]. The purpose of the present study was to test the 
ability of an ANN to predict VO2 responses during cycling at self-selected intensities using Heart Rate (HR), time derivative of 
HR, power output, cadence, and body mass data. 
Material and methods: 12 moderately-active adult males (age: 21.1 ± 2.5 years) performed a 50-minute bout of cycling at 
a variety of exercise intensities. VO2, HR, power output, and cadence were recorded throughout the test. An ANN was trained, 
validated and tested using the following inputs: HR, time derivative of HR, power output, cadence, and body mass. A twelve-
fold hold-out cross validation was conducted to determine the accuracy of the model.
Results: The ANN accurately predicted the experimental VO2 values throughout the test (R2 = 0.91 ± 0.04, SEE = 3.34 ± 1.07 
mL/kg/min).
Discussion: This preliminary study demonstrates the potential for using an ANN to predict VO2 responses during cycling at 
varied intensities using easily accessible inputs. The predictive accuracy is promising, especially considering the large range 
of intensities and long duration of exercise. Expansion of these methods could allow a general algorithm to be developed for 
a more diverse population, improving the feasibility of oxygen uptake assessment.
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Introduction

Oxygen Uptake (VO2) is a valuable metric for athletes 
and clinical populations alike [6, 7, 13, 27, 42, 43, 52]. It is 
regularly used to prescribe exercise intensity and monitor 
changes in fitness over time [6, 14, 37]. Unfortunately, the 
measurement of VO2 in a non-laboratory setting is diffi-
cult, as it requires expensive equipment and a trained tech-
nician [8, 24, 34]. Conversely, heart rate (HR) is an easily 
obtained measure that is often used to prescribe and moni-
tor exercise intensities [6, 23, 26, 49, 51]. Since HR is in-
trinsically linked to VO2, it is conceivable to develop meth-
ods for estimating VO2 using HR data [6, 31, 36, 51]. 

HR monitors and wearable fitness devices are be-
coming increasingly popular and the data collected from 

these devices can potentially be used to make predictions 
of physiological parameters like VO2 [50]. A  variety of 
estimation methods for VO2 or VO2 max have been de-
veloped, but many of them rely on assumptions about the 
linearity of the relationship between HR and VO2 or age-
based predictions of maximum HR [2, 25, 35, 38, 44, 53]. 
Recently, more complex mathematical modeling and ma-
chine learning techniques have been explored as a way to 
provide more accurate estimations of VO2 because they 
are less dependent on such assumptions [2–5, 9–11, 31, 
32, 38, 46]. 

One form of machine learning that can be used to es-
timate VO2 without relying on linear assumptions is an 
artificial neural network (ANN). An ANN is a method of 
machine learning loosely based on the processes of a bio-
logical brain [1, 10]. Using inputs with known outputs, 
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it can be trained and then utilized to predict unknown 
outputs. A 2015 review by Akay et al. identified a variety 
of studies that attempted to use ANNs or other forms of 
machine learning to predict VO2 max from maximal, sub-
maximal, and non-exercise data [3]. Additionally, many 
studies have used ANNs to predict energy expenditure 
from accelerometer data [15, 28, 40, 41, 45].

However, only a few studies have attempted to predict 
real-time VO2 using an ANN and easy to obtain inputs. 
One study by García-Mossó et al. used seven features ex-
tracted from HR signals to predict energy expenditure in 
individuals with spinal cord injuries [19]. More recently, 
Beltrame et al. used an ANN to estimate VO2 during tread-
mill walking using easy-to-obtain inputs [10]. Their model 
used inputs of HR, speed, grade, body mass, gender, and 
time on/off of exercise [10]. Although highly successful, 
this model incorporated protocol-specific variables, mak-
ing it unable to accurately estimate VO2 during arbitrary 
exercise intensities. More recent studies by Beltrame et al. 
[9, 11] developed a random forest method to estimate VO2 
during activities of daily living. These studies were not 
confined by the testing protocol, but they did not have the 
same level of accuracy as the ANN model. The goal of the 
current study was to build upon the work of Beltrame et 
al. and see if an ANN can accurately estimate VO2 dur-
ing cycling at different exercise intensities using HR and 
exercise intensity data as inputs. To our knowledge, this is 
the first study to attempt to predict real-time VO2 during 
cycling using an ANN and simple, easy-to-obtain inputs. 
We hypothesized that an ANN would be able to accurately 
predict (R2 > 0.81) VO2 responses during cycling using 
power, cadence, HR, time derivative of HR, and body 
mass as inputs. 

Material and methods 

Participants
Twelve adult males participated in this study 

(age: 21.1  ±  2.5 yr; weight: 82.1 ± 11.7 kg; height: 
179.3  ±  8.9  cm). Based on previous pilot studies con-
ducted in our laboratory, we performed a power calcula-
tion and at least six participants were needed in order to 
detect a strong association (R2 = 0.81) for the ANN pre-
dictions. These calculations were made in G*Power with 
a two-tailed bivariate association at 80% power and a sig-
nificance level of 0.05 [18]. Twelve participants were re-
cruited to provide a safety factor of two and account for 
any potential dropout. The participants were considered 
healthy and classified as low-risk for cardiopulmonary ex-
ercise testing according to the American College of Sport 
Medicine (ACSM) guidelines for maximal cardiopulmo-
nary exercise testing and were not taking any medica-
tions that could alter their HR or VO2 responses [6]. The 

participants completed a  medical history questionnaire, 
underwent a  resting electrocardiogram (ECG), and re-
ceived clearance to participate in the study from a cardiol-
ogist on the research team. The participants were familiar 
with cycling but were not trained cyclists. All aspects of 
this study were approved by the institutional review board 
(IRB) at the University of North Carolina at Chapel Hill 
being in agreement with the Declaration of Helsinki; writ-
ten informed consent documents were obtained from par-
ticipants after they received detailed explanations of the 
experimental procedures, potential risks, and their right to 
withdraw from the study at any time. 

Instrumentation
HR data was collected beat by beat using a Garmin op-

tical HR strap (Garmin, Olathe, Kansas, USA). Breath by 
breath VO2 data was collected using a Parvo Medics True-
Max 2400 Metabolic System (Parvo Medics, Salt Lake 
City, UT USA). The metabolic system was calibrated prior 
to each test following the manufacturer specifications. The 
testing protocols were performed on a Lode Corival elec-
tronically braked cycle ergometer connected to a computer 
via USB (Lode, Gronigen, The Netherlands). Garmin Vec-
tor power meter pedals (Garmin, Olathe, Kansas, USA) 
were used to measure instantaneous power output (watts) 
and cadence (revolutions per minute). The HR, power out-
put, and cadence measurements were all synchronized by 
the Garmin Edge 510 cycling computer (Garmin, Olathe, 
Kansas, USA). 

Testing protocol
Each participant performed a fifty-minute bout of cy-

cling on the cycle ergometer. The participants were in-
structed to adhere to the testing protocol outlined in Ta-
ble 1 to the best of their abilities. This testing protocol was 
designed to challenge the model’s capability to accurately 
predict VO2 responses across a  broad range of transient 
exercise intensities over an extended time period. The 
participants abruptly changed their power outputs and ca-
dences throughout the test, resulting in significant transient 
fluctuations in their HR and VO2 responses. To achieve 
these fluctuations, participants were verbally instructed to 
maintain the cadences outlined by Table 1 and the power 
output was maintained by the computer, which electroni-
cally altered the resistance based on the exact cadence.

Data processing
Following data collection, primary data processing 

was completed using MATLAB version R2017B (Math-
works, Natick, Massachusetts, USA). Each of the 12 data 
files (one for each subject) were loaded into a MATLAB 
script, paired with their respective subject demographics, 
and segmented to create five basic variables: HR (bpm), 
VO2 (L/min), cadence (rpm), power output (Watts) and 
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mass (kg). After indexing the variables, the data was 
trimmed to match the length of the test and linearly in-
terpolated using MATLAB’s interp1 function to ensure 
a common time signature. Since it is an indirect calcula-
tion, VO2 data is inherently noisy [24]. Therefore, the VO2 
data was smoothed using a cubic smoothing spline func-
tion to increase the likelihood that the fluctuations in VO2 
were due to physiological changes rather than noisy data. 
The HR data was also smoothed using a cubic smoothing 
spine function to allow the accurate calculation of a new 
variable, the time derivative of HR. The time derivative of 
HR was calculated using MATLAB’s gradient function, 
which returns the numerical derivative of a variable. Op-
timal smoothing functions were chosen based on mutual 
information techniques [31]. Smoothing initially causes 
a drastic increase in mutual information (ie. reduction in 
uncertainty) between the observable and smoothed vari-
ables, but eventually plateaus [31]. Over-smoothing be-
yond this point will not cause greater increases in mutual 
information, but rather increases in error [31]. 

Artificial Neural Network (ANN) Regression 
After initial data processing, an ANN framework script 

was created in MATLAB. This script initialized a single-
hidden-layer, feedforward network utilizing MATLAB’s 
built-in ANN function fitnet. It was designed to accept 
data consisting of five inputs (power output, cadence, HR, 
time derivative of HR, and mass) with one correspond-
ing target variable (VO2). A diagram of this ANN can be 
seen in Figure 1. These metrics were chosen to provide 
inputs related to exercise intensity (power, cadence, and 

Time [min] Power Output [W] Cadence [rpm]
0–5 Self-selected Self-selected
5–8 150 60
8–9 Self-selected Self-selected
9–12 150 80
12–13 Self-selected Self-selected
13–16 150 100
16–19 Self-selected Self-selected
19–22 200 60
22–23 Self-selected Self-selected
23–26 200 80
26–27 Self-selected Self-selected
27–30 200 100
30–33 Self-selected Self-selected
33–36 100 60
36–37 Self-selected Self-selected
37–40 100 80
40–41 Self-selected Self-selected
41–44 100 100
44–49 Self-selected Self-selected
49–50 0 0

Table 1.  Testing protocol guidelines

min = minutes; W = watts; rpm = revolutions per minute. The parti-
cipants were instructed to adhere to the protocol to the best of their 
abilities.

Fig. 1.  Artificial neural network diagram with one layer of nine hidden neurons
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mass) and the response of the cardiovascular system (HR 
and time derivative of HR). The training and validation 
was performed using 12-fold hold-out cross validation, 
as described in the statistical analyses section to follow. 
Model performance during training was quantified using 
the Levenberg-Marquardt generalization algorithm, which 
solves non-linear least squares equations [20].

The performance of an ANN is influenced by the 
number of hidden neurons in the network’s architecture. 
Increasing the number of hidden neurons improves the 
memory of the model, but can lead to overfitting the data, 
consequently reducing its generalizability [29]. Optimal 
hidden layer size was determined by iteratively generating 
model architectures ranging from 1–20 hidden neurons 
(Figure 2). The optimal layer size was then chosen based 
on the testing performance (ie. high R2, low SEE) after 
a  twelve-fold leave-one-subject-out validation method. 
N = 9 and N = 11 had the highest R2 values; N = 9 had 
a lower SEE. Therefore, N = 9 was chosen as the optimal 
number of hidden neurons.

Statistical analyses
Due to the relatively small sample size (n = 12) valida-

tion of the generated networks was evaluated using a leave-
one-out method. This validation method was chosen in or-
der to test our model on entirely ‘unseen’ data, avoiding any 
possible cross-talk from intra-subject specific correlations. 
As a  measure of accuracy, model generated VO2 predic-
tions were compared to their corresponding experimentally 
obtained VO2 values by calculating the coefficient of deter-
mination (R2) and the standard error of the estimate (SEE). 
These calculations were performed in MATLAB.

Results

The ANN predicted VO2 time series responses with 
R2 = 0.91 ± 0.04 and SEE = 3.34 ± 1.07 ml/kg/min. Fig-
ure 3 depicts the line of identity plot (with R2 and SEE) 
for each of the 12 subjects. The ability of the ANN to track 
each individual VO2 responses throughout the fifty-minute 
testing protocol can be seen in Figure 4, which contains 
a time series plot for each subject.

Discussion

The simulation study demonstrated that a simple ANN 
can accurately predict VO2 responses throughout the 50-
minute cycling bout. This is especially promising con-
sidering the inherent variability in the collection of VO2 
data [24]. The data used to train and validate the model 
contained a wide of range of values for the variables of 
interest, and the predictions remained accurate over a long 

duration (50 min). Additionally, the system inputs can be 
applied to any arbitrary cycling case and do not require 
a rigid protocol to be followed. 

The ANN in the present study demonstrated compara-
ble accuracy to the walking ANN used by Beltrame; it was 
also less dependent on a rigid protocol. From a prediction 
standpoint, the output data varied less than the target VO2 
data throughout the test. This may be due to the fact that 
the model inputs are less susceptible to large fluctuations 
over brief time-periods such as is seen between breaths 
with measured VO2 data [24]. This, along with the ease of 
measurement, is a positive aspect of the proposed method 
of VO2 prediction.

Practical Applications
This preliminary study was conducted to lay the 

groundwork for the prediction of VO2 responses using 
HR and exercise intensity as data inputs rather than re-
lying on a  rigid protocol or the measurement of gas ex-
change. While the direct applications of the present study 
are limited, the potential future applications of this line of 
research are numerous. 

VO2 prediction has significant implications for train-
ing, rehabilitation, and evaluation in athletes and clinical 
populations alike [6, 7, 13, 27, 47]. Endurance athletes rely 
on accurate prescription of exercise intensity and real-time 
monitoring of training progress [13]. Athletes and coaches 
are always seeking to find the balance between high train-
ing loads and recovery. An ANN-based approach could 
potentially enable athletes to monitor their VO2 response 
during exercise without the use of expensive and cumber-
some equipment [47]. 

For clinical populations, VO2 data could be used to 
identify slow or abnormal VO2 responses, which can be 
indicative of poor aerobic fitness or various diseased states 
which translate into poor long-term outcomes [14, 16, 21, 
22, 27, 34, 37, 42]. Accurate VO2 estimations would also 
allow accurate estimations of exercise intensity. These 
could be used to easily monitor VO2 during exercise and 
improve the safety of exercise evaluations or training pro-
grams. In healthy individuals, real-time VO2 estimates 
from an ANN could improve the accuracy of energy ex-
penditure estimations in wearable devices, which have 
had poor accuracy to date [50]. Other predictions could 
also be attempted using real-time VO2 estimates including 
the prediction of cardiac output, stroke volume, and maxi-
mal oxygen uptake (VO2max) [33, 48].

VO2max is a  strong predictor of mortality in both 
healthy adults and those with chronic diseases [16, 22, 34, 
42]. Accurate VO2 predictions from an ANN could be used 
as inputs in a regression model to predict VO2max, revo-
lutionizing the assessment of VO2max by making it useful 
in settings where gas exchange is not feasible due to finan-
cial, spatial, or temporal constraints. Neural networks are 
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Fig. 2.  Plot depicting the influence that the number of hidden neurons has on the regression accuracy as evaluated by (a) R2 
and (b) SEE. The number of hidden neurons was adjusted from 1-20; each configuration was trained and evaluated to aid in the 
selection of an appropriate number of hidden neurons for the final ANN regression model

Fig. 3.  Line of identity plots comparing the VO2 model predictions from the ANN to the experimental VO2 data for each 
individual subject
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also relatively simple and do not require extreme comput-
ing bandwidth.

Limitations
The primary limitations of this study are the small 

sample size (n = 12) and narrow demographics of the sub-
ject pool. These make it difficult to extrapolate the results 
to other ages, genders, and fitness levels. The algorithm 
utilized in the current study can only be used for individu-
als who have similar demographics and a normal HR re-
sponse. Additionally, it can currently only be applied to 
cycling. However, the systems and methods utilized in 
this study could easily be applied to other exercise modes 
such as walking or running as long as there were inputs 

pertaining to the exercise intensity and response of the 
cardiopulmonary system. 

Future directions
Future studies should include a  larger, more diverse 

subject pool. They could also experiment with adding 
variables to the model (eg. muscle oxygen saturation) or 
combining a neural network with other forms of machine 
learning to attempt estimations of VO2max. VO2max is 
considered the single best measurement of overall health 
and fitness [16, 17]. It is a strong predictor of cardiovascu-
lar disease risk and all-cause mortality [12, 43]. Accurate 
assessment of VO2max without the need to perform a max-
imal cardiopulmonary exercise test would dramatically 

Fig. 4.  Time series plots comparing the VO2 model predictions from the ANN (dashed lines) to the experimental VO2 data 
(solid lines)
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increase the accessibility of VO2max and potentially allow 
it to become a vital sign [39]. 

Conclusions

This study provided evidence that an ANN can be 
used to accurately predict VO2 responses during cycling 
at varied submaximal intensities using HR and exercise 
intensity data. This technique can be expanded upon in the 
future to predict VO2 responses using simple, easily ac-
cessible inputs.

Conflict of interest: Authors state no conflict of interest.
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