Humusica: Soil biodiversity and global change

Open access

Abstract

Born in Trento (Italy, 2003) for the purpose of standardising vocabulary and units of humus form classification, after publishing a first synthetic classification e-book (Zanella et al. 2011) they do not cover all site conditions in the European area. Although having basic concepts and general lines, the European (and North American, Canadian, the Humus group decided to use its classification for handling global change (Zanella and Ascher-Jenull 2018). The process is detailed in many scientific articles published in three Special Issues (Humusica 1, 2 and 3) of the journal Applied Soil Ecology. Conceptually, the whole of Humusica answers three crucial questions: A) What is soil? Soil is a biological ecosystem. It recycles dead structures and implements mineral material, furnishing more or less re-elaborated organic, mineral and organic-mineral elements to support living organisms. Article chapters: 1. Essential vocabulary; 2. Soil covers all the Earth’s surfaces (soil as the seat of processes of organic matter storage and recycling); 3. Soil may be involved in the process of natural evolution (through organisms’ process of recycling biomass after death). B) If soil has a biogenic essence, how should it be classified to serve such managerial purposes as landscape exploitation or protection? A useful classification of soil should consider and propose useful references to biologically discriminate soil features. Article chapters: 4. Soil corresponds to a biogenic structure; 5. TerrHum, an App for classifying forest humipedons worldwide (a first attempt to use a smartphone as a field manual for humus form classification). C) How can this soil classification be used for handling the current global change? Using the collected knowledge about the biodiversity and functioning of natural (or semi-natural) soil for reconstructing the lost biodiversity/functioning of heavily exploited or degraded soils. Article chapters: 6. Agricultural soils correspond to simplified natural soils (comparison between natural and agricultural soils); 7. Organic waste and agricultural soils; 8. Is traditional agriculture economically sustainable? Comparing past traditional farm practices (in 1947) and contemporary intensive farm practices in the Venice province of Italy.

AUBERT M., BUREAU F., 2018, Forest humus forms as a playground for studying aboveground-belowground relationships: Part 1, theoretical backgrounds. Applied Soil Ecology. DOI:https://doi.org/10.1016/j.apsoil.2017.09.004.

BADA, J.L., LAZCANO, A., 2002, Some Like It Hot, But Not the First Biomolecules. Science, 14, 296 (5575): 1982–1983. DOI:10.1126/science.1069487.

BALESTRINI R., LUMINI E., 2018, Focus on mycorrhizal symbioses. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.09.001.

BARDGETT R.D., VAN DER PUTTEN W.H., 2014, Belowground biodiversity and ecosystem functioning. Nature 515: 505–511. DOI:10.1038/nature13855.

BENDER S.F., WAGG C., VAN DER HEIJDEN M.G.A., 2016, An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology and Evolution. DOI:10.1016/j.tree.2016.02.016.

BERNIER N., 2018, Hotspots of biodiversity in the underground: A matter of humus form? Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.09.002.

BHATIA C.R., 2008, Role of Microbial Diversity for Soil, Health and Plant Nutrition. [in:] Nautiyal, C.S., Dion, P. (Eds), Molecular Mechanisms of Plant and Microbe Coexistence. Springer Berlin Heidelberg, Berlin, Heidelberg: 53–74. DOI:10.1007/978-3-540-75575-3_2.

BLOUIN M., 2018, Chemical communication: An evidence for co-evolution between plants and soil organisms. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.10.028.

BRUSSARD L., 2012, Ecosystem services provided by the soil biota. [in:] Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones T.H., Ritz K., Six J. (Eds), Soil Ecology and Ecosystem Services, Oxford University Press, Oxford: 45–58.

CAESAR-TONTHAT T.C., 2002, Soil binding properties of mucilage produced by a basidiomycete fungus in a model system. Mycological Research 106: 930–937. DOI:https://doi.org/10.1017/S0953756202006330.

CARTENÌ F., BONANOMI G., GIANNINO F., INCERTI G., VINCENOT C.E., CHIUSANO M.L., MAZZOLENI S., 2016, Self-DNA inhibitory effects: Underlying mechanisms and ecological implications. Plant Signaling and Behaviour, 11, e1158381. DOI:10.1080/15592324.2016.1158381.

CENTENARO G., HUDEK C., ZANELLA A., CRIVELLARO A., 2018, Root-soil physical and biotic interactions with a focus on tree root systems: A review. Applied Soil Ecology, 123. DOI:10.1016/j.apsoil.2017.09.017.

CHITI T., GARDIN L., PERUGINI L., QUARATINO R., VACCARI F.P., MIGLIETTA F., VALENTINI R., 2012, Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and Fertility of Soils, 48: 9–17. DOI:10.1007/s00374-011-0599-4.

CLEAVES, H.J., CHALMERS, J.H., LAZCANO, A., MILLER, S.L., BADA, J.L., 2008, A Reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of Biospheres, 38: 105–115. DOI:10.1007/s11084-007-9120-3.

CORDELL D., DRANGERT J.-O., WHITE S., 2009, The story of phosphorus: Global food security and food for thought. Global Environmental Changes, 19: 292–305. DOI:https://doi.org/10.1016/j.gloenvcha.2008.10.009.

DAHAN M., TSIDDON D., 1998, Demographic transition, income distribution, and economic growth. Journal of Economic Growth, 3: 29–52.

DARWIN C., 1859, On the Origin of Species by Means of Natural Selection. John Murray, London, London.

DROSOS M., NEBBIOSO A., PICCOLO A., 2018, Humeomics: A key to unravel the humusic pentagram. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.07.027.

EISENHAUER N., ANTUNES P.M., BENNETT A.E., BIRKHOFER K., BISSETT A., BOWKER M.A., CARUSO T., CHEN B., COLEMAN D.C., DE BOER W., DE RUITER P., DELUCA T.H., FRATI F., GRIFFITHS B.S., HART M.M., HÄTTENSCHWILER S., HAIMI J., HEETHOFF M., KANEKO N., KELLY L.C., LEINAAS H.P., LINDO Z., MACDONALD C., RILLIG M.C., RUESS L., SCHEU S., SCHMIDT O., SEASTEDT T.R., VAN STRAALEN N.M., TIUNOV A.V., ZIMMER M., POWELL J.R., 2017, Priorities for research in soil ecology. Pedobiologia (Jena), 63: 1–7. doi:10.1016/j.pedobi.2017.05.003.

ELSER J., BENNETT E., 2011, A broken biogeochemical cycle. Nature, 478, 29.

FELLER C., BOULAINE J., 1987, La réapparition du mot humus au XVIIe siècle et sa signification agronomique. Rev. For. Française, 39: 487–495. DOI:10.4267/2042/25821.

FOUR B., ARCE E., DANGER M., GAILLARD J., THOMAS M., BANAS D., 2017, Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams. Environmental Science and Pollution Research, 24: 5452–5468. DOI:10.1007/s11356-016-8273-x.

FUSARO S., 2015, Evaluation, maintenance and improvement of biodiversity for environmental protection and crop. [in:] Squartini A., Paoletti G.M. (eds), Ph.D. Thesis. Università degli Studi di Padova (Italia).

FUSARO S., SQUARTINI A., PAOLETTI M.G., 2018, Functional biodiversity, environmental sustainability and crop nutritional properties: A case study of horticultural crops in north-eastern Italy. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.06.023.

GADD G.M., 2007, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3–49. DOI:https://doi.org/10.1016/j.mycres.2006.12.001.

GADD G.M., 2004, Mycotransformation of organic and inorganic substrates. Mycologist, 18: 60–70. DOI:https://doi.org/10.1017/S0269-915X(04)00202-2.

GADD G.M., SARIASLANI S., 2017, Advances in Applied Microbiology, Advances in Applied Microbiology. Elsevier Science, Amsterdam, Amsterdam.

GAILLARD J., THOMAS M., LAZARTIGUES A., BONNEFILLE B., PALLEZ C., DAUCHY X., FEIDT C., BANAS D., 2016, Potential of barrage fish ponds for the mitigation of pesticide pollution in streams. Environmental Science and Pollution Research, 23: 23–35. DOI:10.1007/s11356-015-5378-6.

GAVINELLI F., BARCARO T., CSUZDI C., BLAKEMORE R.J., MARCHAN D.F., DE SOSA I., DORIGO L., LAZZARINI F., NICOLUSSI G., DREON A.L., TONIELLO V., PAMIO A., SQUARTINI A., CONCHERI G., MORETTO E., PAOLETTI M.G., 2018, Importance of large, deep-burrowing and anecic earthworms in forested and cultivated areas (vineyards) of northeastern Italy. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.07.012.

GEISEN S., BONKOWSKI M., 2018, Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.05.021.

GIANNINI R., 2008, Selvicoltura e variabilità genetica: funzionalità e conservazione degli ecosistemi forestali. [in:] Atti III°Congresso Nazionale Di Selvicoltura, Taormina 16-19 Ottobre, Vol. I°, AISF, Taormina: 55–59.

GIANNINI R., SUSMEL L., 2006. Foreste, boschi, arboricoltura da legno. Forest@, 3: 454–487.

GRINHUT T., HADAR Y., CHEN Y., 2007, Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biology Review, 21: 179–189. DOI:https://doi.org/10.1016/j.fbr.2007.09.003.

GRUBER K., 2015, Deep influence of soil microbes. Nature Plants, 1. DOI:10.1038/nplants.2015.194.

HABASHI H., WAEZ-MOUSAVI S.M., 2018, Single-tree selection system effects on forest soil macrofauna biodiversity in mixed oriental beech stands. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.09.023.

VAN DER HEIJDEN M.G.A., HORTON T.R., 2009, Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97: 1139–1150. DOI:10.1111/j.1365-2745.2009.01570.x.

HIRSCHHORN J.N., DALY M.J., 2005, Genome-wide association studies for common diseases and complex traits. Nature Reviews. Genetics, 6(2): 95-108.

HOFFMAN Y., POMARÈDE D., TULLY R.B., COURTOIS H.M., 2017, The dipole repeller. Nature Astronomy, 1 (36). DOI:10.1038/s41550-016-0036.

INCERTI G., BONANOMI G., GIANNINO F., RUTIGLIANO F.A., PIERMATTEO D., CASTALDI S., DE MARCO A., FIERRO A., FIORETTO A., MAGGI O., PAPA S., PERSIANI A.M., FEOLI E., DE SANTO A.V., MAZZOLENI S., 2011, Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality. Applied Soil Ecology, 49: 148–157. DOI:10.1016/j.apsoil.2011.06.004.

ISTAT, 1953, Annuario statistico dell’agricoltura italiana / Istituto centrale di statistica del regno d’Italia 1947-1950 [WWW Document]. Ist. Cent. di Stat. - Repubb. Ital., URL https://ebiblio.istat.it/digibib/Agricoltura/RAV0031603AnnStatAgr1947_50.pdf [Accessed: 04.01.1994].

JABIOL B., FELLER C., GRÈVE M.H., 2005, Quand l’humus est à l’origine de la pédologie. Etudes Gest. des Sols, 12: 123–134.

JONES R.J.A., HIEDERER R., RUSCO E., MONTANARELLA L., 2005, Estimating organic carbon in the soil of Europe for policy support. European Journal of Soil Science, 56: 655–671. DOI:10.1111/j.1365-2389.2005.00728.x.

KROGH (contributor) P.H., 2010, European Atlas of Soil Biodiversity. European Commission. doi:10.2788/94222.

LAVELLE P., 2012, Soil as a Habitat. [in:] Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones T.H., Ritz K., Six J., Strong D.R., Van der Putten W.H. (eds), Soil Ecology and Ecosystem Services, Oxford University Press, Oxford.

LEVY-BOOTH D.J., CAMPBELL R.G., GULDEN R.H., HART M.M., POWELL J.R., KLIRONOMOS J.N., PAULS K.P., SWANTON C.J., TREVORS J.T., DUNFIELD K.E., 2007, Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 39: 2977–2991. DOI:https://doi.org/10.1016/j.soilbio.2007.06.020.

LOWENFELS J., LEWIS W., 2010, Teaming with Microbes: The Organic Gardener’s Guide to the Soil Food Web. Timber Press Portland London, London.

LUGATO E., BAMPA F., PANAGOS P., MONTANARELLA L., JONES A., 2014, Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology, 20: 3557‒3567. DOI:10.1111/gcb.12551.

MAASS S., CARUSO T., RILLIG M.C., 2015, Functional role of microarthropods in soil aggregation. Pedobiologia (Jena), 58: 59‒63. DOI:10.1016/j.pedobi.2015.03.001.

MAZZOLENI S., BONANOMI G., INCERTI G., CHIUSANO M.L., TERMOLINO P., MINGO A., SENATORE M., GIANNINO F., CARTENÌ F., RIETKERK M., LANZOTTI V., 2015, Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks? New Phytologist, 205: 1195–1210. DOI:10.1111/nph.13121.

MCLANAHAN S., 2004, Diverging destinies: How children are faring under the second demographic transition. Demography, 41: 607–627. DOI:10.1353/dem.2004.0033.

MENTA C., CONTI F.D., PINTO S., 2018, Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.05.020.

MOSCUFO M., DE MARTINIS G., 2017, Il valore della moneta in Italia dal 1861 al 2016, Tavole Statistiche pubblicate su sito web Istat. ISTAT, URL http://www.istat.it/it/archivio/198758 [Accessed: 04.06.2017].

MÜLLER R.D., SDROLIAS M., GAINA C., ROEST W.R., 2008, Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems, 9, n/a--n/a. DOI:10.1029/2007GC001743.

NANNIPIERI P., SEQUI P., FUSI P., 1996, Humus and enzyme activity. Humic Substances in Terrestrial Ecosystems: 293–328. doi:10.1016/B978-044481516-3/50008-6.

NARDI S., PIZZEGHELLO D., ERTANI A., 2018, Hormone-like activity of the soil organic matter. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.04.020.

ODLING-SMEE F.J., LALAND K.N., FELDMAN M.W., 2003, Niche Construction The Neglected Process in Evolution (MPB-37), Paperbook. ed. Princeton University Press, Princeton.

OLAETXEA M., DE HITA D., GARCIA C.A., FUENTES M., BAIGORRI R., MORA V., GARNICA M., URRUTIA O., ERRO J., ZAMARREÑO A.M., BERBARA R.L., GARCIA-MINA J.M., 2017, Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Applied Soil Ecology. DOI:https://doi.org/10.1016/j.apsoil.2017.06.007.

PELOSI C., RÖMBKE J., 2018, Enchytraeids as bioindicators of land use and management. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.05.014.

PERGOLA M., PERSIANI A., PALESE A.M., DI MEO V., PASTORE V., D’ADAMO C., CELANO G., 2018, Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.10.016.

PICCOLO A., MBAGWU J.S.C., 1999, Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society American Journal, 63: 1801–1810. DOI:10.2136/sssaj1999.6361801x.

PICCOLO A.; STEVENSON F.J., 1982, Infrared spectra of Cu, Pb, and Ca complexes of soil humic substances. Geoderma, 27: 195–208. DOI:0016-7061/82/0000-0000/$02.75.

PIETRAMELLARA G., ASCHER J., BORGOGNI F., CECCHERINI M.T., GUERRI G., NANNIPIERI P., 2009, Extracellular DNA in soil and sediment: fate and ecological relevance. Biology and Fertility of Soils, 45: 219–235. DOI:10.1007/s00374-008-0345-8.

PINSTRUP-ANDERSEN P., PANDYA-LORCH R., 1998, Food security and sustainable use of natural resources: a 2020 Vision. Ecological Economist, 26: 1–10. DOI:https://doi.org/10.1016/S0921-8009(97)00067-0.

POLVERIGIANI S., FRANZINA M., NERI D., 2018, Effect of soil condition on apple root development and plant resilience in intensive orchards. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.04.009.

PONGE J.-F., 2005, Emergent properties from organisms to ecosystems: towards a realistic approach. Biological Review, 80: 403–411. DOI:10.1017/s146479310500672x.

PONGE J.-F., PÉRÈS G., GUERNION M., RUIZ-CAMACHO N., CORTET J., PERNIN C., VILLENAVE C., CHAUSSOD R., MARTIN-LAURENT F., BISPO A., CLUZEAU D., 2013, The impact of agricultural practices on soil biota: A regional study. Soil Biology and Biochemistry, 67: 271–284. DOI:http://dx.doi.org/10.1016/j.soilbio.2013.08.026.

PUGA-FREITAS R., BLOUIN M., 2015, A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 114: 104–116. DOI:10.1016/j.envexpbot.2014.07.006.

RILLIG M.C., MUMMEY D.L., 2006, Mycorrhizas and soil structure. New Phytologist, 171: 41–53. DOI:10.1111/j.1469-8137.2006.01750.x.

RIPPLE W.J., WOLF C., GALETTI M., NEWSOME T.M., GREEN T.L., ALAMGIR M., CRIST E., MAHMOUD M.I., LAURANCE W.F., 2018, The Role of Scientists’ Warning in Shifting Policy from Growth to Conservation Economy. Bioscience (in press). DOI:10.1093/biosci/biy009.

RITZ K., YOUNG I.M., 2004, Interactions between soil structure and fungi. Mycologist, 18: 52–59. DOI:https://doi.org/10.1017/S0269-915X(04)00201-0.

SECHI V., DE GOEDE R.G.M., RUTGERS M., BRUSSAARD L., MULDER C., 2017, A community trait-based approach to ecosystem functioning in soil. Agriculture, Ecosystems and Environment 239. DOI:10.1016/j.agee.2017.01.036.

SPURGEON D.J., KEITH A.M., SCHMIDT O., LAMMERTSMA D.R., FABER J.H., 2013, Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecology, 13 (46). DOI:10.1186/1472-6785-13-46.

STELLIN F., GAVINELLI F., STEVANATO P., CONCHERI G., SQUARTINI A., PAOLETTI M.G., 2018, Effects of different concentrations of glyphosate (Roundup 360®) on earthworms (Octodrilus complanatus, Lumbricus terrestris and Aporrectodea caliginosa) in vineyards in the North-East of Italy. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.07.028.

STEVENSON F.J., 1983, Humus Chemistry: Genesis, Composition, Reactions. Nature, 303: 835–836. DOI:10.1016/0146-6380(83)90043-8.

TIEBEL K, HUTH F., WAGNER S., 2018, Soil seed banks of pioneer tree species in European temperate forests: a review. iForest - Biogeosciences and Forestry, 11: 48–57. DOI:10.3832/ifor2400-011.

TOPOLIANTZ S., PONGE J.F., VIAUX P., 2000, Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant and Soil, 225: 39–51. DOI:10.1023/A:1026537632468.

WEIGELHOFER G., FUCHSBERGER J., TEUFL B., WELTI N., HEIN T., 2012, Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in Agricultural Catchments. Journal of Environmental Quality, 41: 373–379. DOI:10.2134/jeq2010.0436.

WOHLLEBEN P., 2016, The Hidden Life of Trees: What They Feel, How They Communicate – Discoveries from a Secret World. Greystone Books, Canada.

ZANELLA A., 2018, Humans, humus, and universe. Applied Soil Ecology, 123. DOI:https://doi.org/10.1016/j.apsoil.2017.07.009.

ZANELLA A., ASCHER-JENULL J., 2018, Editorial. Applied Soil Ecology, 122: 1–9. DOI:https://doi.org/10.1016/j.apsoil.2017.11.029.

ZANELLA A., BERG B., PONGE J.-F., KEMMERS R.H., 2018a, Humusica 1, article 2: Essential bases - Functional considerations. Applied Soil Ecology, 122: 22–41. DOI:10.1016/j.apsoil.2017.07.010.

ZANELLA A., BOLZONELLA C., LOWENFELS J., PONGE J.F., BOUCHÉ M., SAHA D., KUKAL S.S., FRITZ I., SAVORY A., BLOUIN M., SARTORI L., TATTI D., KELLERMANN L.A., TRACHSEL P., BURGOS S., MINASNY B., FUKUOKA M., 2018b, Humusica 2, article 19: Techno humus systems and global change – conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 122: 271–296. DOI:10.1016/j.apsoil.2017.10.036.

ZANELLA A., GEISEN S., PONGE J.-F., JAGERS G., BENBROOK C., DILLI T., VACCA A., KWIATKOWSKA-MALINA J., AUBERT M., FUSARO S., DE NOBILI M., LOMOLINO G., GOMIERO T., 2018c, Humusica 2, article 17: Techno humus systems and global change - Three crucial questions. Applied Soil Ecology, 122: 237–253. DOI:10.1016/j.apsoil.2017.10.010.

ZANELLA A., JABIOL B., PONGE J.-F., SARTORI G., DE WAAL R., VAN DELFT B., GRAEFE U., COOLS N., KATZENSTEINER K., HAGER H., ENGLISCH M., BRETHES A., BROLL G., GOBAT J.M., BRUN J.-J., MILBERT G., KOLB E., WOLF U., FRIZZERA L., GALVAN P., KOLLI R., BARITZ R., KEMMERS R., VACCA A., SERRA G., BANAS D., GARLATO A., CHERSICH S., KLIMO E., LANGOHR R., 2011, European Humus Forms Reference Base 2011. E-Book. Dep., TESAF, Università degli Studi di Padova (Italy); HAL, Archives Ouvertes, CNRS (France), https://hal.archives-ouvertes.fr/file/index/docid/561795/filename/Humus_Forms_ERB_31_01_2011.pdf.

ZANELLA A., PONGE J.-F., BRIONES M.J.I., 2018d, Humusica 1, article 8: Terrestrial humus systems and forms - Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology, 122: 103–137. DOI:10.1016/j.apsoil.2017.07.020.

ZANELLA A., PONGE J.-F., FRITZ I., PIETRASIAK N., MATTEODO M., NADPOROZHSKAYA M., JUILLERET J., TATTI D., LE BAYON R.-C., ROTHSCHILD L., MANCINELLI R., ROTSCHILD L., MANCINELLI R., 2018e, Humusica 2, article 13: Para humus systems and forms. Applied Soil Ecology, 122: 181–199. DOI:10.1016/j.apsoil.2017.09.043.

ZANELLA A., PONGE J.-F., GOBAT J.-M., JUILLERET J., BLOUIN M., AUBERT M., CHERTOV O., RUBIO J.L., 2018f, Humusica 1, article 1: Essential bases - Vocabulary. Applied Soil Ecology, 122: 10–21. DOI:10.1016/j.apsoil.2017.07.004.

ZANELLA A., PONGE J.-F., HAGER H., PIGNATTI S., GALBRAITH J., CHERTOV O., ANDREETTA A., DE NOBILI M., 2018g, Humusica 2, article 18: Techno humus systems and global change - Greenhouse effect, soil and agriculture. Applied Soil Ecology, 122: 254–270. DOI:10.1016/j.apsoil.2017.10.024.

ZANELLA A., PONGE J.-F., JABIOL B., SARTORI G., KOLB E., GOBAT J.-M., LE BAYON R.-C., AUBERT M., DE WAAL R., VAN DELFT B., VACCA A., SERRA G., CHERSICH S., ANDREETTA A., COOLS N., ENGLISCH M., HAGER H., KATZENSTEINER K., BRÊTHES A., DE NICOLA C., TESTI A., BERNIER N., GRAEFE U., JUILLERET J., BANAS D., GARLATO A., OBBER S., GALVAN P., ZAMPEDRI R., FRIZZERA L., TOMASI M., MENARDI R., FONTANELLA F., FILOSO C., DIBONA R., BOLZONELLA C., PIZZEGHELLO D., CARLETTI P., LANGOHR R., CATTANEO D., NARDI S., NICOLINI G., VIOLA F., 2018h, Humusica 1, article 4: Terrestrial humus systems and forms - Specific terms and diagnostic horizons. Applied Soil Ecology, 122: 56–74. DOI:10.1016/j.apsoil.2017.07.005.

ZANELLA A., PONGE J.-F., JABIOL B., SARTORI G., KOLB E., LE BAYON R.-C., GOBAT J.-M., AUBERT M., DE WAAL R., VAN DELFT B., VACCA A., SERRA G., CHERSICH S., ANDREETTAL A., KÕLLI R., BRUN J.-J., COOLS N., ENGLISCH M., HAGER H., KATZENSTEINER K., BRÊTHES A., DE NICOLAS C., TESTI A., BERNIER N., GRAEFE U., WOLF U., JUILLERET J., GARLATO A., OBBER S., GALVAN P., ZAMPEDRI R., FRIZZERA L., TOMASI M., BANAS D., BUREAU F., TATTI D., SALMON S., MENARDI R., FONTANELLA F., CARRARO V., PIZZEGHELLO D., CONCHERI G., SQUARTINI A., CATTANEO D., SCATTOLIN L., NARDI S., NICOLINI G., VIOLA F., 2018i, Humusica 1, article 5: Terrestrial humus systems and forms - Keys of classification of humus systems and forms. Applied Soil Ecology, 122: 75–86. DOI:10.1016/j.apsoil.2017.06.012.

ZANELLA A., PONGE J.-F., JUILLERET J., BERNIER N., TOPOLIANTZ S., BLOUIN M., 2016, Soil Aggregate and Humus Sytems, in: ESSC 2016 (European Society for SoilConservation) Conference. Cluj-Napoca, Romania June 15-18. Oral Presentation in Session 6: Soil Conservation Issues in Organic Farming and Conservation Agriculture.

ZANELLA A., PONGE J.-F., MATTEODO M., 2018j, Humusica 1, article 7: Terrestrial humus systems and forms - Field practice and sampling problems. Applied Soil Ecology, 122: 92–102. DOI:10.1016/j.apsoil.2017.05.028.

ZANELLA A., PONGE J.-F., TOPOLIANTZ S., BERNIER N., JUILLERET J., 2018k, Humusica 2, article 15: Agro humus systems and forms. Applied Soil Ecology,122: 204–219. DOI:10.1016/j.apsoil.2017.10.011.

Bulletin of Geography. Physical Geography Series

The Journal of Nicolaus Copernicus University, Torun

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 486 44
PDF Downloads 240 240 17