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We consider the Schrödinger equation with pseudo-Gaussian
potential and point out that it is basically made up by a term
representing the harmonic oscillator potential and an addi-
tional term, which is actually a power series that converges
rapidly. Based on this observation the system can be consid-
ered as a perturbation of harmonic oscillator. The perturbation
method is used to approximate the energy levels of pseudo-
Gaussian oscillator. The results are compared with those ob-
tained in the analytic and numeric case.

1. Introduction

The solution of Schrödinger equation (SE) continues to attract interest of physicists

and mathematicians. Solving this equation is not always a simply matter, thus different

methods have been developed to solve this equation. SE can be solved exactly for a

small number of potentials, which are nevertheless of extreme theoretical importance to

develop theoretical models. Applied physics faces the reality of complicated potentials,

which cannot be solved exactly, for these SE have to be solved in suitable ways more or

less exactly. In addition to such models there is a wide class of partially solvable models,

which admit exact solutions only for some states or particular values of the parameters in

the Hamiltonian. In the last years there has been a vast literature about such problems.

Among these we mention anharmonic oscillators with either polynomial [1, 2] or rational

[3] potentials, and perturbed Coulomb [4] and Laurent-like [5] potentials. Although in

such cases one obtains some eigenvalues and eigenfunctions exactly, it is not always a
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simple matter to obtain normalization factors, and thereby expectation values, in closed

form [6]. Partially solvable models are also a useful benchmark to test the accuracy of

approximate methods.

The exact solution of Schrödinger equation for the pseudo-Gaussian potential was

presented in [7]. It was found that this potential belongs to the class of partially solvable

models. Furthermore it was shown that the pseudo-Gaussian potential expands into a

polynomial, systems known in literature as quasi-exact systems.

In this paper, based on an observation upon the pseudo-Gaussian Hamiltonian, we

apply Rayleigh-Schrödinger perturbation theory to calculate the eigenvalues and eigen-

functions. The model with this potential was named pseudo-Gaussian oscillator (PGO)

[8, 9]. Using perturbation theory, one can use the known solutions of simple Hamilto-

nians to generate solutions for a range of more complicated systems. In our case the

PGO potential can be written as a sum between harmonic oscillator (HO) potential and

a power series, considered as a perturbaton.

2. The physical model

We will present the physical model as it was introduced in [9, 10] with the coefficients

Ck. This model have been used to find energy levels for a system described by Klein-

Gordon equation. Let us consider the radial part of the three-dimensional Schrödinger’s

time-independent equation, Hψ = Eψ, the square-integrable complex functions ψ of real

variable are called eigenfunctions and the numbers E are called eigenvalues of the energy.

The Hamiltonian operator H, acting on the space of eigenfunctions, given in atomic units,

H = −1
2
∆ + V (r), introduces the central real valued potential V (r) on Euclidean real

space with spherical coordinates as:

V s
λ,µ(r) =

(
λ+

s∑
k=1

Ckr
2k

)
exp(−µr2) , (1)

having the coefficients Ck,

Ck =
(λ+ k)µk

k!
. (2)

The properties of this model are completely determined by the dimensionless parameters

λ ∈ R, µ ∈ R+ and the positive integer s = 1, 2, ..., named the order of PGO. We note that

the genuine Gaussian potential corresponding to the order s = 0 is not included in this

family. The potentials defined by the eqs. (1) and (2) have the remarkable property to

approach to the HO potential when r → 0 together with Gaussian asymptotic behavior,

i.e. limr→∞ V
s
λ,µ(r) = 0. We also have to notice that, for each order, s, the Taylor

expansion of these potentials does not have terms proportional with r4, r6, ..., r2s.

V s
λ,µ(r) = λ+ µr2 +O(r2s+2) (3)

8



In figure (1) it is shown the graph of both PGO and HO, one can see their similar shape

in a vicinity of origin and the Gaussian asymptotic behavior of PGO beside HO, which

goes to infinity.

Figure 1: The pseudo-Gaussian oscillator potential graph (s = 3) compared with harmonic oscillator potential

one.

Taking into consideration that l(l + 1) represents the eigenvalue of the square of the

angular-momentum operator L2, the radial part of the Schrödinger equation for the sta-

tionary states can be written as:[
d2

dr2
+

(2)

r

d

dr
+ (E − V (r))− l(l + 1)

r2

]
ψ(r) = 0, (4)

with ψ(r) the radial wave-function. Considering the potential (1) we can study the radial

three dimensional Schrödinger eigenvalue problem. We can eliminate the first derivative

by setting

ψ(r) ≡ r−1R(r) (5)

and (4) becomes: [
d2

dr2
+ (E − V (r))− l(l + 1)

r2

]
R(r) = 0. (6)

We can calculate the series (3) of potential (1) with coefficients (2), and after some

algebra we get the form:

V s
λ,µ(r) = λ+ µr2 +

∑
k=s+1

Ĉkr
2k, (7)

with coefficients Ĉk coming from the Taylor expansion and having the following form [7]:

Ĉk ∝ (−1)s+k
(

1

(k − 1)!
+
λ

k!

)
(k − s)

k
2 . (8)

The potential (1) with terms grouped as in (7), allows us to recognize that it is basically

made up by a term representing the HO potential VHO = λ+r2, with λ an arbitrary energy

level and an additional term, which is actually a power series, Vint =
∑

k=s+1 Ĉnr
2k.
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The analytical solutions of PGO system, where introduced in [7] and the values of

energy levels were calculated. It was also shown that the PGO potentials belong to the

class of partially solvable models, so it is a useful benchmark to test the accuracy of

the quasi-exact approach with an approximate methods. In this way we propose the

Raleigh-Schrödinger perturbation theory to approximate the eigenvalues. We want to

see how different particular restriction on the quasi-exact approach affects on the eigen-

values by comparing them with the results obtained both by perturbative and numeric

method. This approach is not singular, for example in the paper [11], the solutions of the

Schrödinger equation for harmonic oscillator with a singular perturbation are presented.

3. Perturbed PGO system.

In our case the perturbation theory deals with the eigenvalue problem of the Schrödinger

equation Hψ = Eψ, where H = H0 +H′ contains a zeroth order part H0 and the pertur-

bation H′. The standard perturbation procedure gives that expanding strictly in powers

of the smallness of H′, we have the matrix solution:

E =E(O) + E(1) + E(2) + . . .

ψ =ψ(O) + ψ(1) + . . .

E(O)
n |n >=H0|n >,

E(1)
n = < n|H′|n >, (9)

ψ(1)
n =

∑
m

|m >
< m|H′|n >
E

(O)
n − E(O)

m

(10)

where |n > are the complete set of eigenstates ψ
(0)
n of H0. The expression for E

(1)
n is

simple enough, just a single integral needs to be done in order to find the first order

perturbation energy. Unfortunately the expression for E
(2)
n is complicated, in order to

find the second order perturbation energy we have to solve an infinite sum over integrals

E(2)
n |n >=

∑
m

< n|H′|m >< m|H′|n >
E

(O)
n − E(O)

m

(11)

that one seldom can evaluate beyond first-order energy shift without making some gross

approximations. This made us to stop to the first order perturbations, but fortunately

we can add a correction to the second order one as is stated in [12]:

E(2)
n =

∫
ψ(0)∗
n (H′ − E(1)

n )ψ(1)
n dr (12)

With this correction we the applied perturbation theory to PGO system, introduced

in previous section. Let D denote the differential operator on the Hilbert space, the

unperturbed Hamiltonian writes: H0 = D2 + (λ+ µr2)× I and for perturbation we have
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the Hamiltonian :

H′ =
∑
k=s+1

Ĉnr
2k × I, (13)

where coefficients Ĉn were introduced by rel. (8).

Precautions have to be taken because it is a degenerate system. In this case it is

possible, that the denominator E
(O)
n − E(O)

m of relations (10), (11) and so on, to become

zero. In this sense we consider variation of principal quantum number n keeping l = 0.

According to the aufbau principle corresponding to free atom there are no crossing energy

states, thus a state with angular momentum (l+ 1) is not more strongly bound than the

one with l. The accidental degeneracy lifting along with the crossing energy states was

studied by one of the authors in the case of confinement [10]. Another fact is that small

perturbation can determine major changes in the form of the wave function. This can

be somehow avoided by taking combinations that most closely resemble the final form

of the wave functions. This is possible due to the fact that any linear combination of

degenerate eigenfunctions is also an eigenfunction of the Hamiltonians. Continuing in the

previous manner, keeping l = 0, we can apply the theory for the non-degenerate system.

Otherwise we have to consider all degenerate eigenstates of Hamiltonian and extract the

energy values by solving the secular determinant.

Finally we suppose that by perturbation there are no transitions to continuum states.

With this observations and restriction we proceed to calculate the energy levels.

To calculate the first order correction to the energy, we need to evaluate eq. (9) this

is the integral:

E(1)
n =

∫
Rn(r) [H′Rn(r)] dr (14)

the general solution of radial HO is

ψnlm(r, θ, φ) = Nnlr
le−νr

2

Ln
(l+ 1

2
)(2νr2)Ylm(θ, φ) (15)

so the radial part reads:

Rn(r) = Nnlr
le−νr

2

Ln
(l+ 1

2
)(2νr2) (16)

where ν ≡ µ
2~ ;

Nnl =

√√
2ν3

π

2n+2l+3 n! νl

(2n+ 2l + 1)!!
(17)

is a normalization constant; and Ln
(l+ 1

2
)(2νr2) are generalized Laguerre polynomials. The

integral (14) can be written now as:

E(1)
n = N2

nl

∫
D
e−2 νr

2

Ln
(l+ 1

2
)
[
H′Ln

(l+ 1
2
)
]
dr. (18)

We have evaluated this integral numerically,in the case N = 7, λ = −5.6, µ = 0.2 and

l = 0. The obtained values are written in the table (1):
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Table 1: Calculated perturbative values.

n 0 1 2 3 4 5 6 7 8
< n|H′|n > 0.481 0.365 0.027 0.345 1.022 1.585 1.709 1.844 -2.816

Here we are at the point to remind that, according with the definition of PGO potential,

the terms proportional with r4, r6, ..., r2s vanish from the power series. In this way the first

coefficient Ĉk k = s+1 of the power series has always a negative value as rel. (8) reveals.

The calculated results are presented in figure (2) along with the data obtained in the exact

case [7] and data obtained in the generating functional approach [8] but recalculated with

the coefficients Ck (2), introduced in [9], which makes the PGO potential shallowest, so

in consequence the energy levels will be lifted from the case. presented in [8]
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Figure 2: The eigenvalues given by Rayleigh-Schrödinger perturbation theory.

In conclusion we have explored the technique of evaluating energy levels of PGO by

perturbation theory, from the point of view of Schrödinger’s differential equation. The

method seems adaptable to the problem, just only in some cases. In our approach we

are based on the comparison with other methods and the shape of polynomial interpo-

lating the energy poles is somehow preserved for all methods. We can see that even the

generating functional method [8] is more accurate than the perturbative one. The values

obtained by perturbation method are the worst approximation by any other method,

however the arrangement of energy levels is preserved. This means the tendency of en-

ergy levels to be more distant to each other and under HO levels as approaching to zero

level is maintained.
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