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The Schrödinger equation with pseudo-Gaussian potential is
investigated. The pseudo-Gaussian potential can be written
as an infinite power series. Technically, by an ansatz to the
wave-functions, exact solutions can be found by analytic ap-
proach [12]. However, to calculate the solutions for each state,
a condition that will stop the series has to be introduced. In
this way the calculated energy values may suffer modifications
by imposing the convergence of series. Our presentation, based
on numerical methods, is to compare the results with those ob-
tained in the analytic case and to determine if the results are
stable under different stopping conditions.

1. Introduction

The solution of the fundamental equation of quantum mechanics, namely the Schrödinger

equation (SE) has continued to attract interest of physicists and mathematicians. Solving

this equation is not always an easy task, thus different methods have been developed to

solve it. One of these is the numeric approach which has a long history, but recently

SE has been the subject of a great activity to achieve a fast and reliable algorithm that

generates a stable numerical solution. SE is a differential equation of type:

d

dx2
ψ(x) = (V (x)− E)ψ(x), (1)

and there is a real need to be able to solve it by any method. In the above equation

ψ(x) is a complex valued square integrable function, V (x) a real valued function, named
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potential, and E stands for energy values of the physical system. These, energy values, are

real numbers iff the Hamiltonian is a hermitic operator on the space of functions ψ(x).

SE cannot be solved exactly for any potential function, except for a small number of

potentials, which are nevertheless of extreme theoretical importance. For most potential

function the equation has to be solved by different suitable ways. Several lines of approach

have been followed in the study of SE for different types of potentials such as: variational

[1, 2] and perturbational schemes [3], also combined with direct numerical methods [4]

and series solutions [5] as well as the recently approach to solve SE into momentum

representation [6]. Also there is a geometic approach to solve SE, known as geometric

quantisation [7]. There is a class of potentials which allows to obtain the spectrum

algebraically under certain conditions, or at least a finite part of the eigenvalues are

obtained algebraically while the rest must be obtained numerically. The polynomial

potentials belong to this class and these systems are referred to as quasi-exactly solvable

ones [8].

In a previous work [12], we have found that the pseudo-Gaussian potential belongs

to quasi-exactly solvable systems. We have shown that the pseudo-Gaussian potential

expands into an infinite power series, that converges due to the asymptotic behavior.

The general analytical solution of SE with this potential has been proposed as an infinite

power series. A general condition was imposed in order to have a convergent solution.

This provides the quantification rule for energy levels. In order to write down the solution

for a specific energy level (particular quantum number, 0.1. . . .). it was shown that the

general solution has to be truncated. In this condition there are a finite number of terms

in the analytical solution. The purpose of this presentation is to investigate the stability

for the values of energy levels considering different numbers of terms in the analytical

solution and comparing them with those obtained by computational technique. We have

chosen the finite difference methods for computing approximate eigenvalues of equation

(1). In this case of quasi-exactly solvable systems a numerical verification upon the

convergence of the solution is required.

In the next section we present the main features of pseudo-Gaussian system, known as

pseudo-Gaussian oscillator (PGO) [9, 10, 11]. In the last section we talk about numerical

method and the obtained results are presented.

2. The physical model. General solutions

Let us consider the radial part of the three-dimensional Schrödinger’s time-independent

equation, Hψ = Eψ, the square-integrable complex functions ψ of real variable are called

eigenfunctions and the numbers E are called eigenvalues of the energy. The Hamiltonian

operator H, acting on the space of eigenfunctions, given in atomic units, H = −1
2
∆+V (r),

introduces the central real valued potential V (r) on Euclidean real space with spherical

coordinates as:

V s
λ,µ(r) =

(
λ+

s∑
k=1

Ckr
2k

)
exp(−µr2) , (2)
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having the coefficients Ck, [11]:

Ck =
(λ+ k)µk

k!
. (3)

The properties of this model are completely determined by the dimensionless parameters

λ ∈ R, µ ∈ R+ and the positive integer s = 1, 2, ..., named the order of PGO. We note

that the genuine Gaussian potential corresponding to the order s = 0 is not included in

this family. The potentials defined by the eqs. (2) and (3) have the remarkable property

to approach to the HO potential when r → 0 and together with Gaussian asymptotic

behavior, i.e. limr→∞ V
s
λ,µ(r) = 0. We also have to notice that, for each order, s, the

Taylor expansion of these potentials does not have terms proportional with r4, r6, ..., r2s.

V s
λ,µ(r) = λ+ µr2 +O(r2s+2) (4)

In figure (1) it is shown the graph of both PGO and HO, one can see their similar shape

in a vicinity of origin and the Gaussian asymptotic behavior of PGO beside HO, which

goes to infinity.

Figure 1: The pseudo-Gaussian oscillator potential graph (s = 3)

compared with harmonic oscillator potential one.

Taking into consideration that l(l + 1) represents the eigenvalue of the square of the

angular-momentum operator L2, the radial part of the Schrödinger equation for the sta-

tionary states can be written as:[
d2

dr2
+

(2)

r

d

dr
+ (E − V (r))− l(l + 1)

r2

]
ψ(r) = 0, (5)

with ψ(r) the radial wave-function. Considering the potential (2) we can study the radial

three dimensional Schrödinger eigenvalue problem. We can eliminate the first derivative

by setting

ψ(r) ≡ r−1R(r) (6)

and (5) becomes: [
d2

dr2
+ (E − V (r))− l(l + 1)

r2

]
R(r) = 0. (7)
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We can calculate the series (4) of potential (2) with coefficients (3), and after some

algebra we get the form:

V s
λ,µ(r) = λ+ µr2 +

∑
k=s+1

Ĉkr
2k, (8)

with coefficients Ĉk coming from the Taylor expansion and having the following form:

Ĉk ∝ (−1)s+k
(

1

(k − 1)!
+
λ

k!

)
(k − s)

k
2 . (9)

The potential (2) with terms grouped as in (8), allows us to recognize that it is basically

made up by a term representing the HO potential VHO = λ+r2, with λ an arbitrary energy

level and an additional term, which is actually a power series, Vint =
∑

k=s+1 Ĉnr
2k.

The analytical solutions were developed in [12]

ψn(r) = Nn r
l(l+1)−1 exp[pn(r)]. (10)

Nn denotes a polynomial of degree n, whose coefficients ai are determined from the

normalization condition, this means the eigenfunctions obey the condition of square-

integrable functions, ∫ ∞
0

|ψn(r)|2 r2dr = 1. (11)

The condition of stopping the power series yields the quantification condition. This means

that the power series, coming from potential, has to be finite too. The potential will be a

polynomial of finite degree. We compare energy values obtained numerically with those

obtained analytically for different polynomial.

3. Computing methods and results

Let us introduce a finite set of grid points, considering a domain [a, b] and ri =

a+(i−1)h, i = 1 . . . n with h = (b−a)/(n−1), n ≥ 5. We shall also designate Ri = R(ri),

Vi = V (x). The method described hereafter are based on the central difference formula:

Ri−1 − 2Ri +Ri+1 = h2R
(2)
i (12)

By replacing R
(2)
i using (1) with the potential (8), the system of linear equations (12)

can be written in the matrix form:

(J + h2V) R = Eh2 R (13)
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Figure 2: The eigenvalues given by finite difference, implicit and also predictor corrector method.

where J = (jn,m) is a tridiagonal matrix such that:

jn,n = 2 n = 0 . . . N, (14)

j0,1 = 0 odd-parity solutions,

jn,m = −1 |n−m| = 1, n = 1 . . . N. (15)

The matrix V is diagonal:

V = diag[v0, v1, . . . pN ]

and

R = diag[r0, r1, . . . rN ]T

In this way our equation can be expressed as an algebraic eigenvalue one. To solve this

algebraic eigenvalue problem, we first transform the matrix J into a symmetric one. Due

to the already special form of J, this can be done by means of one similarity transfor-

mation.We then reduce this matrix to a tridiagonal one by transformations described in

Wilkinson [14]. To compute eigenvalues and eigenvectors of this symmetric, tridiagonal

matrix, we have used our Mapple subroutine. Finally we expand the eigenfunctions

R(r) =
N∑
i=0

< Ri|ui > ui(r) (16)

in terms of the harmonic oscillator eigenfunctions, ui

ui(r) = rl+1e−νr
2

L
l+1/2
k (2νr2) (17)

Where L
l+1/2
k are Laguerre polynomial and ν = mω/2~. We present in figure (2) the

values for eigenvalues given by finite difference using implicit and also predictor corrector
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method.

As can be observed the eigenvalues for energy levels are in good accordance with the

theory prediction. Unlike the generating function method [9, 10, 11], it is obtained a

better prediction starting from the first energy levels. The results being more accurate

with a predictor-corrector improvement of the method. The numbers < Ri|ui >, obtained

from numerical subroutine, are the coefficients of the projection of eigenfunctions (16) on

the HO basis (17).

In this presentation we have shown that the solution of quasi-exactly PGO system

presented in [12] is stable and it is in concordance with both the numerical approximation

presented here and with generting functional aproach presentedin [9].
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