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In this paper we discuss interplays between the Aharonov-Bohm 

effect and the transport properties in mesoscopic ring structures based 

on graphene. The interlayer interaction leads to a change of the 

electronic structure of bilayer graphene ring such that the electronic 

energy dispersion law exhibits a gap, either by doping one of the layers 

or by the application of an external perpendicular electric field. Gap 

adjustments can be done by varying the external electric field, which 

provides the possibility of obtaining mesoscopic devices based on the 

electronic properties of bilayer graphene. This opens the way to 

controllable manipulations of phase-coherent mesoscopic phenomena, 

as well as to Aharonov-Bohm oscillations depending on the height of 

the potential step and on the radius of the ring. For this purpose one 

resorts to a tight-binding model such as used to the description of 

conductance. 

 

 

1.  Introduction 

Transport properties in mesoscopic ring structures based on graphene have received 

much attention during the last years [1-5]. Graphene (the monolayer graphite) is a recently 

fabricated material consisting of an individual layer of carbon atoms arranged in a two 

dimensional hexagonal lattice [1,3]. The honeycomb lattice (Fig.1), provides non-trivial 

physical phenomena which cannot be observed in the ordinary square lattice [6]. 
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Fig.1.Band structure of graphene. Data are given by:  

length=10, width=10, C-C bond length 1.42A, C-C transfer energy 3.013eV. 

 

The especial electronic and magnetic behavior of graphene is defined by the atomic 

structure of graphene edges. There are two types of graphene structure, namely zigzag and 

armchair types. These structures differ according to their orientations and the directions of the 

edges, as shown in Fig.2. Note that the geometry of the underlying lattice is displayed on the 

left.  

Electrons in graphene behave as 2D Dirac fermions and mimic the dynamics of hyper-

relativistic electrons [7]. The electronic, magnetic and transport properties of graphene are 

strongly dependent of their atomic structure edges and opens the way to the controllable onset 

of phase-coherent mesoscopic phenomena like quantum interference effects, Aharonov-

Bohm oscillations and resonant tunneling [8-10]. 

 

Fig.2. (a) Band structure for arm-chair orientation. Tight binding calculations show that armchair orientation can be 

semiconducting or metallic depending on width (chirality (m,n)). m=30, n=0, length=10 , C-C bond length 1.42 A and C-C 

transfer energy 3.013eV. (b) Band structure for zig-zag orientation. Tight-binding calculations show that zigzag orientation 

is always metallic.  m=30, n=30, length=10, C-C bond length 1.42A, C-C transfer energy 3.013eV. 
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2. Model and formulations 

Graphene is also called a „honeycomb lattice” because carbon atoms are arranged in 

hexagons. The hexagonal lattice is characterized by lattice vectors like  2/,2/31 aaa   and, 

 2/,2/32 aaa  where a = 2.46Å.  

The calculation of band structure of graphene using tight binding approximation shows 

that it has semimetal behaviour [11]. 

The general hopping Hamiltonian of a 2D lattice under the influence of the magnetic 

field is [12]. 
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,
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where, )( 

ij aa is the annihilation (creation) operator at site j (i), H.c. stands for the Hermitian 

conjugation, whereas jit ,  denotes the hopping integral between sites i and j. The sites i and j 

being located in a plan produce a hexagonal square. Diagonalizing the hamiltonian equation 

and performing the summations yields the wavefunctions of graphene as [11] 
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which leads to the eigenvalues 
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where htavF 2/3 stands for the Fermi-velocity. Correspondingly, the energy bands derived 

by virtue of the tight binding Hamiltonian are [11] 
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Tight binding model shows, that graphene has full valence band and empty conduction 

band, while the top of the valence band has exactly the same energy as the bottom of the 

conduction band. Therefore graphene is called a zero band-gap semiconductor or semimetal, 

since electronic properties get ranged between the ones of metal and semiconductors. The 

energy bands of graphene at low energies are described by a 2D Dirac-like equation with 

linear dispersion near K/K′-points in k space. 
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3. Aharonov-Bohm oscillations 

The description of Aharonov-Bohm oscillations for the case of hexagonal graphene ring 

terminated in zigzag edges is based on an extended tight-binding model, now by using a 

single π-band [13]. 

The magnetic phase factor is [12-14] 
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j
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where, A


denotes the vector potential associated with the applied perpendicular magnetic 

field B, ehc /0   is the magnetic flux quantum and 22 dydxdl  . The magnetic flux is 

given by 

 

 SdB


  , (6) 

where the area 2RS  , with R being the radius of the 1D ideal ring. Advances in the 

measurement of small persistent currents and magnetic moments have also to be mentioned 

[14]. The Aharonov-Bohm oscillations and the persistent currents are dependent on the 

magnetic flux  , like the case of small mesoscopic metallic rings. Fixing the number of 

electrons the total magnetization is given by the sum over states as [15] 
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while the corresponding persistent current is given by [16] 
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The total energy 
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which concerns non-interacting electrons [17], is given by the sum over all occupied single-

particle energies. The index σ runs over spins, as usual. In calculating Etot, only the single-

particle tight binding energies for which εi(B)>0 are considered [18].  

For graphene the levels involving 2s, 2px, 2py orbitals are either far below or far above 

the Fermi energy. Accordingly, the conduction and valence band levels right around the 

Fermi energy (which are responsible for electrical conduction) are essentially formed out of 

the 2pz orbitals [19]. This means that the conduction and valence band states can be described 

quite well by a model that uses only one orbital, i.e. the 2pz orbital, per carbon atom. This 
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results in a (2×2) matrix , say [h(k)], which can be written down by summing over unit cells, 

as well as over the four neighboring unit cells. The matrix element is assumed equal to −t 

between neighboring carbon atoms and zero otherwise. 

The Aharonov Bohm patterns characterizing the magnetization curves exhibit 

alternately integer (ф0) and halved periods (ф0/2), as long as the highest occupied state lies 

wihin the sixfold energy band. The ф0/2 period reflects the zigzag nature of underlying 

interior states as shown in Fig.3. 

The Aharonov-Bohm effect is a fundamental phenomenon of quantum interference 

related to the transmission of particles through a closed loop pierced by a magnetic flux. Now 

we succeeded to prove that one deals with both integer (hc/e) and half-integer (hc/2e) values 

for the period of the AB oscillations as a function of the magnetic flux, which complies with 

the case of mesoscopic metal rings. Odd-even (in the number of Dirac electrons, N) parity 

effects characterized by sawtooth-type patterns have also been discussed before [20-21]. 

 

 

Fig.3. Magnetization as a function of the the magnetic flux ф (spin is included). (a) For N = 41one obtains a shifted halved-

period sawtooth pattern. (b) For N = 42 one obtains a shifted sawtooth with integer period. 

 

4. Density of states 

The study of evolution of the DOS from graphene to a nanotube is based on size 

quantization effectes which arise as the dimensions are reduced [19]. One starts by 

establishing the DOS as 
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where )(EN stands for the total number of electrons. The energy levels can be described by a 

parabolic dispersion relation with some effective mass m c : 
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in which case dkddEdkdEd /)/(/  . Next we have to say that the energy subbands for 

zigzag nanotubes are given by  

 220
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Further one has  
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where the circumferential vector, exhibits an orientation rolling up in y-direction like 

)2ˆ( bmyC 


 [19]. Here d is the diameter of the nanotube (nm), so that we have mbd 2 and 

mdC  2 . It is clear that (12) leads to 
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which can be rewritten as 
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Inserting xkk  , and 22

vkkat  , one obtains: 
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so that 
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where 2/3 0aa  . In order to obtain the total DOS we have to sum over all subbands 
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Then we have to realize that the DOS for zigzag nanotubes with the summation index ν 

replaced by an integral reads [19] 
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Fig.4. Density of states D(E) for a zigzag nanotube (solid curves) compared with the one of graphite (crosses).  

(a) m = 100 (corresponding to d = 7.695 nm). (b) m = 1000 (d = 76.96 nm). 

 

It is obvious that in small nanotubes DOS is totally different from graphene, while in 

larger nanotubes this is less distinctive as shown in Fig.4, especially if we recall that 

experimental observations are typically convoluted with thermal broadening effects [19]. 

Recently, experiments using scanning tunneling microscope probes [21], have measured the 

density of electronic states (DOS), tube diameter, and helicity simultaneously, thereby 

confirming theoretical predictions. 

In addition, sharp peaks in the DOS are observed, which are the characteristic 

signatures of the one-dimensional (1D) nature of conduction within a 1D system. The 1D 

nature of the electron system in nanotubes has been observed by resonant Raman scattering 

experiments, too [23].  

 

5. Conclusions 

The electronic structure of nanotubes can be derived from the electronic structure of 

graphene, by calculating how rolling of the sheet affects the electronic structure. From the 

periodic boundary conditions of the nanotubes, the wave vector in Ch direction becomes 

quantized, while the wave vector along the nanotubes axis remains continuous. This will 

 (a)   (b) 
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results in a set of 1D energy dispersion relations which are cross-sections of those for 2D 

graphene. 

The Aharonov-Bohm effect in graphene rings such as discussed above is a fundamental 

phenomena for quantum theory and it’s important for applications in mesoscopic 

interferometric devices. 

The semiconducting DOS gap depends on the size of a nanotube [19]. Those with small 

diameters have a large gap and those with large diameters have a small gap. This is especially 

true at high temperatures, when nanotubes with a large diameter begin to behave like 

graphene.  
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