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A second-order formalism leading to an equation describing the 

same dynamics as the Schrödinger one is developed under some 

compatible initial conditions.  

 
 

 

 

It is well-known that the Euler-Lagrange [1] and Hamilton [2] equations are involved in 

many aspects of theoretical physics. On the one hand, the Schrödinger equation [3]-[4] can be 

derived from the first-order Lagrangian 
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On the other hand, the Hamiltonian formulation of the Schrödinger equation was involved in 

many applications of quantum mechanics [5]-[9]. 

In this paper we develop a second-order formalism leading to an equation that describes 

the same dynamics as the Schrödinger one under some compatible initial conditions. In the 

sequel, we restrict ourselves to the one-particle Schrödinger equation with a time independent 

potential )(xV . 

From the canonical approach of (1), one infers the second-class constraints 
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and the canonical Hamiltonian 
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The notations   and   signify the canonical momenta conjugated with  , respectively   
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where the symbol  ,  denotes the Poisson bracket. Thus, the Hamiltonian equations of motion 

can be written as 
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where the Dirac bracket [10]-[12] takes the form  
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After eliminating the second-class constraints (the independent co-ordinates of the reduced 

phase-space are   and  ), with the help of (5) we find that the dynamics is governed by the 

equations of motion 
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which are nothing but the Schrödinger equations for   and  . 

Now, we start with the Hamiltonian 
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from which we derive the Hamilton equations
1
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Regarding the equations (9-12) we choose the initial conditions
2
 

                                                 
1
It is easy to see that the Hamiltonian (8) describes a non-degenerate system. 

2
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Substituting (9) in (12) and (10) in (11) we derive the equations 
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which lead to 
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where )(xk  and )(xk  are some functions determined by the initial conditions. Writing down 

(17-18) for 0= tt  and using the initial conditions, we deduce the relations 

 ,)(=0=)( xx
kk  (19) 

such that (17-18) lead to 
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Inserting (20) in (9-10) we arrive at (7). In consequence, we have proved the next result: 1c ) 

)),(,),(,),(,),(( tttt xxxx
   are solutions of equations (9-12) subject to the initial 

conditions (13-14) if and only if )),(,),(( tt xx
  are solutions of equations (7) subject to the 

initial conditions (13). 

It is easy to show that the Hamiltonian (8) comes from the non-degenerate second-order 

Lagrangian 
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which is different from that used in [13]. At the Lagrangian level the initial conditions (13-14) 

take the form  
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Due to the fact that the Lagrangian (21) is non-degenerate the following standard result holds: 

1c ) )),(,),(( tt xx
  are solutions to the Euler-Lagrange equations 0=/0  , 

0=/0

  subject to the initial conditions (22-23) if and only if 

)),(,),(,),(,),(( tttt xxxx
   are solutions of equations (9-12) in the presence of the 

initial conditions (13-14). 

Thus, results 1c ) and 2c ) lead to th following conclusion: the solutions to the Euler-

Lagrange equations 0=/0  , 0=/0

  subject to the initial conditions (22-23) 

coincide with the solutions to the equations (7) corresponding to the initial conditions (13). 
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