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1 Introduction

The present study is concerned with the semilocal and local approximations
of an unique solution of nonlinear operator equations

x = F (x), (1.1)

where F is a nonlinear operator defined from D subset of a Banach space X
with values in X. The given problem can be rechristened as the problem of
approximating a fixed point x∗ of F . We can remember that the computation
of solutions of nonlinear operator equations (1.1) is one of the most important
and challenging problems in the field of numerical analysis, mathematical
analysis, nonlinear functional analysis, mathematical physics and engineering
etc. Also the given areas involve computation of fixed points of nonlinear
equations. Numerous authors(see [1,3,6,9–13,15,17–19] and references there
in) have given different type of convergence conditions to approximate fixed
points.

We can recall the problem of fixed points of nonlinear equations F (x) = 0.
The Banach theorems [12,13] provide convergence of the successive approxi-
mation methods xn+1 = F (xn) to x∗ by assuming sufficient conditions on F .
When F is Fréchet differentiable at initial point x0, Bartle [9] considered an
iterative method of the form

xn+1 = xn − (I − F ′(yn))−1(xn − F (xn)), n = 0, 1, 2, . . . (1.2)

where I is identity operator and {yn}⊂ X. The method reduces to usual
Newton’s method if we use yn = xn and modified Newton’s method if we
choose yn = x0. One can see that if we choose yn = F (xn) in Eq. (1.2), then
Stirling’s method [18] can be derived as given below

xn+1 = xn − (I − F ′(F (xn)))−1(xn − F (xn)), n = 0, 1, 2, . . . . (1.3)

The above method is a combination of Newton method and method of suc-
cessive approximation methods. In the present paper we will study conver-
gence of (1.3). Initially semilocal convergence of this method was studied by
Rall [18] under Lipschitz continuity conditions and further the result was ex-
tended by Parhi and Gupta [14] by considering Hölder continuity conditions
on F ′ under recurrence relations. By using majorizing sequence, Argyros [2]
studied semilocal convergence of this method using Lipschitz-type condi-
tions on F ′ and some additional informations on F . Parhi and Gupta [15,16]
studied semilocal convergence analysis under some restricted conditions on
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F . The most crucial hypothesis considered in these convergence analysis is
the satisfaction of the contraction condition on F ′

‖F ′(x)‖ < 1 (1.4)

on D and that is a major drawback in the usefulness of this method in finding
fixed points. Let us consider the following example on D = [−1, 1]

F (x) =
x2

2
. (1.5)

It can be easily concluded that ‖F ′(x)‖ ≤ 1, which restricts applicability of
the work given in [1, 2, 14–16]. Recently Aryros et.al. [7] studied local and
semilocal convergence of this method under Lipschitz-type conditions not
necessarily contractive type.

In this paper we have studied semilocal and local convergence of Stirling’s
method by giving some sufficient conditions. The method is used to find fixed
points of nonlinear operator equation. We have assumed Lipschitz continuity
type conditions on the first Fréchet derivative of the operator not necessarily
contractive type conditions on F ′. Here we will introduce a new type of
majorizing sequences instead of usual majorizing sequences and recurrence
relations. Finally the paper will be concluded with numerical examples and
a favorable comparison with known results.

The paper is organized as follows. Section 1 is the introduction. In sec-
tion 2, semilocal convergence of the method is given. The local convergence
analysis of the method has been carried out in section 3. In section 4, numer-
ical examples have been carried out and comparison has been done. Finally,
conclusions are included in section 5.

2 Semilocal Convergence

We first define a scalar sequence that shall be shown to be majorizing for
Stirling’s method (1.3). Let L0 > 0, L > 0 and η ≥ 0. Define scalar sequence
{tn} by

t0 = 0, t1 = η, tn+2 = tn+1 +
L(tn+1 − tn)2

2(1− L0tn+1)
. (2.6)

Next, we study the convergence of sequence {tn} using the preceding nota-
tion.
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Lemma 2.1. Suppose that

h = L1η <
1

2
,

where

L1 =
1

8

(
L+ 4L0 +

√
L2 + 8L0L

)
.

Then, sequence {tn} generated for t0 = 0 by (2.6) is increasing and converges
to its unique least upper bound t∗. Moreover the following estimate holds

d1 ≤ t∗ ≤ d2, (2.7)

where,

d1 =

1− exp
[
− L0η

(1− L0η)(1− δL0η)

]
L0

,

d2 =

1− exp
[ 2L0η

2− L0η
+

2δ1
2− δ1

]
L0

,

δ =
L

2L0(1− L0η)2
and δ1 =

L

2L0

( δ

1− δ

)2
.

Proof. We shall study the convergence of sequence {tn} by first simpli-
fying it. Define sequence {αn} by αn = 1 − L0tn. Then by (2.6) we can
write

α0 = 1, α1 = 1− L0η, αn+1 = αn −
L(αn − αn−1)2

2L0αn
.

Moreover, define sequence {βn} by βn = 1− αn
αn−1

. Then, we can write

β1 = L0η, βn+1 =
L

2L0

( βn
1− βn

)2
.

We have by (2.6) that δα1 < 1 and 0 < α2 < α1. Suppose that 0 < αk < αk−1
and δαk < 1. Then, we get in turn that

αk+1 =
L

2L0

( αk
1− αk

)2
< δα2

k < αk (2.8)

and
δαk+1 < δαk < 1. (2.9)
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Hence, {βn} is a decreasing sequence, so αn = (1−βn)αn−1 and tn =
1− αn
L0

are also decreasing sequences. In particular,

αn = (1− βn)αn−1 = · · · = (1− βn) . . . (1− β1)α0

= (1− βn) . . . (1− β1)

From 0 < β1 = L0η < 1, we get 0 < αn < 1. So tn =
1− αn
γ

<
1

γ
. That is

sequence {tn} is increasing, bounded by
1

L0

and as such it converges to its

unique least upper bound denoted by t∗. Next, we show (2.7). We can write

α∗ = lim
n→∞

αn =
∞∏
n=1

(1− βn),

or

log
1

α∗
=
∞∑
n=1

log
1

1− βn
.

Using the estimate

2
t− 1

t+ 1
≤ log t ≤ t2 − 1

2t
for t > 1,

we get first an upper bound for log
1

α∗
by (2.8) and (2.9) and the inequality

2n ≥ n+ 1 for n = 0, 1, 2, . . ..

log
1

α∗
≤

∞∑
n=1

βn(2− βn)

2(1− βn)
≤ 1

1− β1

∞∑
n=0

βn+1

≤ 1

δ(1− β1)

∞∑
n=1

(δθ1)
2n ≤ 1

δ(1− β1)

∞∑
n=1

(δβ1)
n

=
β1

(1− β1)(1− δβ1)
,

which together with t∗ =
1− α∗

L0

imply t∗ ≤ d2. The lower bound in (2.7) is

obtained simplifying the estimate:

log
1

α∗
≥ 2

∞∑
n=1

αn
2− αn

>
2α1

2− α1

+
2α2

2− α2

. �
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Lemma 2.2. Suppose that

h =
1

2
. (2.10)

Then, sequence {tn} is increasingly converging to
1

L0

.

Proof. We have αn = (1 − L0η)n, βn = L0η and tn =
1− (1− L0η)n

L0

.

Then, by (2.10), we get 0 < L0η < 1. �
The semilocal convergence analysis is based on the conditions (C):

(C1) F : D ⊂ X → X is a Fréchet differentiable operator and there exist
x0 ∈ D, c > 0, η ≥ 0 such that Γ0 = Γ(x0) = (I − F ′(F (x0)))

−1 ∈
L(X,X) with ‖I − F ′(F (x0))‖ ≤ c and ‖Γ0(x0 − F (x0))‖ ≤ η.

(C2) There exist a0 ∈ [0, 1), b0 > 0 such that for each x ∈ D, ‖F (x) −
F (x0)‖ ≤ a0‖x − x0‖ and ‖Γ0(F

′(F (x)) − F ′(F (x0)))‖ ≤ b0‖F (x) −
F (x0)‖.

(C3) Let D0 = D
⋂
U(x0, r0), r0 =

1

a0b0
. There exist b > 0, b1 > 0 such that

for each x, y ∈ D0, ‖Γ0(F
′(x) − F ′(y))‖ ≤ b‖x − y‖ and ‖F ′(F (x)) −

F ′(F (x0))‖ ≤ b1‖F (x)− F (x0)‖.

(C4) Hypotheses of Lemma 2.1 and Lemma 2.2 hold with L = 2b
(
c+

b1
b0

+
1

2

)
and L0 = η0b0.

(C5)
‖F (x0)− x0‖

1− a0
≤ t∗.

(C6) Ū(x0, t
∗) ⊆ D.

From now on we suppose that the conditions (C) hold. The main semilocal
convergence result for Stirling’s method (1.3) is given next.

Theorem 2.1. Suppose that the conditions (C) hold. Then, sequence {xn}
generated by Stirling’s method (1.3) is well defined, remains in U(x0, t

∗) for
each n = 0, 1, 2, . . . and converges to x∗ ∈ Ū(x0, t

∗) which satisfies x∗ = F (x∗)
with Q−order of convergence 2. Moreover, the following estimates hold

‖xn − x∗‖ ≤ t∗ − tn.

Furthermore, x∗ is the only fixed point of F in U(x0, t
∗∗), where t∗∗ =

2

b
−

(2α0 + 1)t∗.
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Proof. Let x ∈ Ū(x0, t
∗). We get by (C2) and (C5) that

‖F (x)− x0‖ ≤ ‖F (x)− F (x0)‖+ ‖F (x0)− x0‖
≤ α0‖x− x0‖+ ‖F (x0)− x0‖
≤ α0t

∗ + ‖F (x0)− x0‖ ≤ t∗,

so F (x) ∈ Ū(x0, t
∗). Using (C2) and the Lemmas, we have in turn that

‖Γ0(Γ(x)− Γ0)‖ = ‖Γ0(F
′(F (x))− F ′(F (x0)))‖

≤ b0a0‖x− x0‖ = L0‖x− x0‖ ≤ L0t
∗ < 1. (2.11)

It follows from (2.11) and the Banach Lemma on invertible operators [4, 8]
that Γ(x)−1 ∈ L(X,X) and

‖Γ(x)−1(I − F ′(F (x0)))‖ ≤
1

1− L0‖x− x0‖
(2.12)

We can write by Stirling’s method (1.3):

xk+1 − F (xk+1) = F (xk+1)− F (xk)− F (xk+1) + F (xk)

= F ′(yk)(xk+1 − xk)− (F (xk+1)− F (xk))

=

∫ 1

0

[F ′(yk)− F ′(xk + θ(xk+1 − xk))]

×(xk+1 − xk)dθ. (2.13)

Then, in view of (C2), (C3) and (2.13), we obtain in turn that

‖Γ0(xk+1 − F (xk+1))‖ ≤ b

∫ 1

0

‖yk − xk − θ(xk+1 − xk)‖‖xk+1 − xk‖dθ

≤ b
[
‖yk − xk‖+

1

2
‖xk+1 − xk‖

]
‖xk+1 − xk‖

≤ b
[(
‖I − F ′(F (x0))‖+ ‖F ′(yk)

−F ′(F (x0))‖
)
‖xk+1 − xk‖

+
1

2
‖xk+1 − xk‖

]
‖xk+1 − xk‖

≤ b
(
c+

b1a0
a0b0

+
1

2

)
‖xk+1 − xk‖2

=
L

2
‖xk+1 − xk‖2. (2.14)
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Now, we can connect the preceding estimates on sequence {xk} with {tk}.
Indeed, we get by (C1) and (2.6) that

‖x1 − x0‖ = ‖Γ0(x0 − F (x0))‖ ≤ η = t1 = t1 − t0.

By induction, from (1.3), (2.6), (2.12) and (2.14), we have in turn that

‖xk+1 − xk‖ = ‖Γk(xk − F (xk))‖
≤ ‖Γk(I − F ′(F (x0)))‖‖Γ0(xk − F (xk))‖

≤ L

2

(tk − tk−1)2

1− L0tk
= tk+1 − tk. (2.15)

Hence, {tk} defined by (2.6) is a majorizing sequence for {xk}. By Lemma
2.1 and Lemma 2.2, sequence {tk} is complete as convergent to t∗. It then
follows by (2.15) that sequence {xk} is also complete in a Banach space X
and as such it converges to some x∗ ∈ Ū(x0, t

∗)(since Ū(x0, t
∗) is a closed

set). By letting k →∞ in the estimate (see (2.14))

‖Γ0(xk+1 − F (xk+1))‖ ≤
L

2
‖xk+1 − xk‖2 ≤

L

2
(tk+1 − tk)2, (2.16)

we deduce that x∗ = F (x∗). Estimate ‖xn−x∗‖ ≤ t∗− tn follows from (2.15)
by using standard majorization techniques [6, 13]. Moreover, by (2.15) for

λ =
L

2(1− L0t∗)
we get that

‖xk+1 − xk‖ ≤
L

2(1− L0tk)
‖xk − xk−1‖2 ≤ λ‖xk − xk−1‖2,

which implies that the Q−order convergence of Stirling’s method (1.3) is
two. Furthermore, to show the uniqueness part, let y∗ ∈ U(x0, t

∗∗) with

F (y∗) = y∗. Define the operator Q by Q =
∫ 1

0
Γ0F

′(x∗ + θ(y∗ − x∗))dθ. In
view of (C2) and (C3) we obtain in turn that

‖I − (Γ0 −Q)‖ =
∥∥∥∫ 1

0

Γ0[F
′(x∗ + θ(y∗ − x∗))− F ′(F (x0))]dθ

∥∥∥
≤ b

∫ 1

0

‖x∗ + θ(y∗ − x∗)− F (x0)‖dθ

≤ b
[
‖F (x∗)− F (x0)‖+

1

2
‖x∗ − x0‖+

1

2
‖y∗ − x0‖

]
≤ b

[(
a0 +

1

2

)
t∗ +

1

2
t∗∗
]
< 1. (2.17)
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Then, by (2.17), (Γ0 −Q)−1 ∈ L(X,X). Finally, from the identity

0 = Γ0(y
∗ − F (y∗)− x∗ + F (x∗)) = (Γ0 −Q)(y∗ − x∗),

we conclude that x∗ = y∗. �

Remark 2.1. (a) The usual conditions on Stirling’s method corresponding
to (C2) (first condition) is given by [14, 18]:
(C2)

′ ‖F ′(x)‖ ≤ a, for each x ∈ D and a ∈ [0, 1). That is operator F must be
a contraction on D. Moreover, in the present study no such assumption is
made. Hence, the applicability of Stirling’s method (1.3) is expanded. Notice
also that we can have a0 ≤ a, b0 ≤ b, where b can be chosen to be b = cb1.
(b) Estimate (2.7) is similar to the sufficient convergence Kantorovich-type
condition for the semilocal convergence of Newton’s method given by us in
[5]. However, the constants L0 and L are the center-Lipschitz and Lipschitz
constants for operator F . The convergence of Stirling’s method was shown
in [18] under (C2)

′, D0 = D and a ∈ (0, 1
3
). Here, no such hypothesis is

made.
(c) The results can be improved even further, if set D0 is replaced by D1 =
D
⋂
U(x1, r0 − ‖x0 − F (x0)‖), since D1 ⊆ D and the iterates remain in D1.

The corresponding constants to b and b1 will be at least as small.
(d) In view of the proof of Theorem 2.1, scalar sequence {sn} defined by

s0 = 0, s1 = η, sn+1 = sn +
kn(sn − sn−1)2

1− L0sn

is also a majorizing sequence for Stirling’s method (1.3), where kn = 2b(c +
b1a0sn + 1

2
) < L, sn ≤ tn, sn+1 − sn ≤ tn+1 − tn and s∗ = lim

n→∞
sn ≤ t∗.

3 Local Convergence

The local convergence analysis of Stirling’s method (1.3) is based on the
conditions (H):

(H1) F : D ⊂ X → Y is a Fréchet differentiable operator and there exists
x∗ ∈ D such that F (x∗) = x∗ and Γ∗ = (I − F ′(x∗))−1 ∈ L(X,X)

(H2) There exist µ > 0, ξ0 > 0 such that for each x ∈ D

‖F (x)− F (x∗)‖ ≤ µ‖x− x∗‖

and
‖Γ∗(F ′(F (x))− F ′(F (x∗))‖ ≤ ξ0‖F (x)− F (x∗)‖
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(H3) Let D∗0 = D
⋂
U(x∗, R0), R0 =

1

ξ0µ
. There exists ξ > 0 such that for

each x, y ∈ D∗0
‖Γ∗(F ′(x)− F ′(y))‖ ≤ ξ‖x− y‖

(H4) Ū(x∗, R̄) ⊆ D, where R =
1

(µ+ 1
2
)ξ + µξ0

and R̄ = max{µR,R}.

Then, sequence {xn} generated for x0 ∈ U(x∗, R)−{x∗} by Stirling’s method
(1.3) is well defined, remains in U(x∗, R) for each n = 0, 1, 2, . . . and converges
to x∗ ∈ Ū(x∗, R). Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤
ξ(µ+ 1

2
)‖xn − x∗‖2

1− µξ0‖xn − x∗‖
. (3.18)

Furthermore, if R1 = 2
ξ
, then x∗ is the only fixed point of F on U(x∗, R1)

Proof. We shall show using mathematical induction that sequence {xn}
is well defined, remains in U(x∗, R) and converges to x∗ so that (3.18) is
satisfied. We have by (H1) and (H2) for x0 ∈ U(x∗, R) that

‖F (x0)− x∗‖ = ‖F (x0)− F (x∗)‖ ≤ µ‖x0 − x∗‖ ≤ R̄,

so F (x0) ∈ U(x∗, R̄). Then, by (H2)

‖Γ∗(I − F ′(F (x0))− Γ∗)‖ = ‖Γ∗(F ′(F (x0))− F ′(F (x∗))‖
≤ ξ0‖F (x0)− F (x∗)‖
≤ ξ0µ‖x0 − x∗‖ ≤ ξ0µR < 1. (3.19)

Hence, Γ(x0) ∈ L(X,X) and

‖Γ(x0)(I − F (F (x∗)))‖ ≤ 1

1− ξ0µ‖x0 − x∗‖
(3.20)

In particular, x1 is well defined by Stirling’s method for n = 0. We can write
by (H1) that

x1 − x∗ = x0 − x∗ − (I − F ′(F (x0)))
−1(x0 − F (x0))

= (I − F ′(F (x0)))
−1[F (x0)− F (x∗)− F ′(F (x0))(x0 − x∗)]

= (I − F ′(F (x0)))
−1
[ ∫ 1

0

(F ′(x∗ + θ(x0 − x∗))

−F ′(F (x0)))(x0 − x∗)dθ
]
. (3.21)
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We get in turn by (H2) and (H3)∥∥∥Γ∗

∫ 1

0

(F ′(x∗ + θ(x0 − x∗))− F ′(F (x0)))(x0 − x∗)dθ
∥∥∥

≤ ξ

∫ 1

0

‖x∗ + θ(x0 − x∗)− F (x0)‖‖x0 − x∗‖dθ

≤ ξ

∫ 1

0

‖F (x∗)− F (x0) + θ(x0 − x∗)‖‖x0 − x∗‖dθ

≤ ξ
(
µ+

1

2

)
‖x0 − x∗‖2. (3.22)

Then by (3.20)-(3.22), we also get that

‖x1 − x∗‖ ≤ ‖(I − F ′(F (x0)))
−1Γ∗‖ ×

‖Γ∗
∫ 1

0

(F ′(x∗ + θ(x0 − x∗))− F ′(F (x0)))(x0 − x∗)dθ‖

≤
ξ(µ+ 1

2
)‖x0 − x∗‖2

1− µξ0‖x0 − x∗‖
≤ ‖x0 − x∗‖ < R,

so (3.18) holds for n = 0 and x1 ∈ U(x∗, R). By simply replacing x0 by
xk in the preceding estimates we arrive at (3.18). In view of the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < R, where c =
ξ(µ+ 1

2
)‖x0 − x∗‖

1− µξ0‖x0 − x∗‖
∈ [0, 1), we

conclude that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, R). To show the uniqueness

part let x0 = x∗ in (2.17). �

Remark 3.1. The local results in the literature use (C2)
′ and D∗0 = D. But

(H2) is weaker than (C2)
′. Hence, we extend the applicability of Stirling’s

method (1.3) in the local case too.

4 Numerical Examples

In this section we present two numerical examples to illustrate our results.

Example 4.1. Again coming back to the motivational example given in Eq.
(1.5), let initial point be x0 = 0.1. Then we can have c = 0.995000, η =
0.095477, a0 = 0.505, b0 = 1.005025, r0 = 1.970297, b = 1.005025, b1 = 1.
Using this we can have L1η = 0.128465 < 1

2
. Therefore, hypothesis (C)

satisfies and our analysis can be applied and hence the radius of convergence
t∗ is given by t∗ = 0.119847.
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But if we recall the results given by Argyros, Maruster and George [7] on
Stirling’s method, we can can see that the radius of convergence given by them
is R = 0.02. Therefore our analysis greatly improves the previous result.

Example 4.2. Let B1 = B2 = R3, D = U(0, 1), x∗ = (0, 0, 0)T . For x =
(x1, x2, x3)

T , define function G on D

G(x) =
(
ex1 − 1,

e− 1

2
x22 + x2, x3

)T
.

Then consider the problem of finding fixed points of F (u) = G(u) + u. Here
we will use max-norm for our calculation.

Note that, the Fréchet-derivative of G is given by

G′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1


.

and F ′(u) = G′(u) + I. Then, we can choose µ = e + 1, ξ0 = e − 1 and

ξ = e
1
ξ0µ . Therefore R = 0.08832324882 and R̄ = 0.3284107311. We can

check that condition (H4) is satisfied. Hence the radius of convergence is
R = 0.08832324882

5 Conclusions

We have expanded the applicability of Stirling’s method (1.3) by considering
more precise majorizing sequences than in earlier works [2, 7] and without
using the restrictive contraction hypothesis [1, 2, 7, 14–16]. We provided nu-
merical examples which shows applicability of our work whereas earlier works
cannot apply to solve equations.
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