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Abstract. In this paper we intend to study three concepts of
(h, k)-splitting for skew-evolution semiflows, which model discrete-
time variational systems in Banach spaces. We also aim to give
connections between them, emphasized by counterexamples and
we propose an open problem.

AMS Subject Classification (2000). 34D09; 34D05.
Keywords. discrete-time skew-evolution semiflow, (h, k)-
splitting, strong (h, k)-splitting, weak (h, k)-splitting.

1 Introduction

There has been an extraordinary development in the theory of asymp-
totic properties regarding the evolution operators. Results concerning the
asymptotic behaviors of dynamical systems were published firstly in [17],
whereas further points of view might be found in [11]. Some extensions in
the infinite dimensional case are illustrated in [8], [16] and in [18] and for the
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case of discrete-linear systems, the works [1], [3] and [4] are worth of men-
tioning, where the theory of difference equations was further developed and
interesting new results were obtained. Other various and relevant concepts
of dichotomy are presented and analyzed in [2], [5], [6], [7], [14], [19] and [20].
The term of skew-evolution semiflow, which was first mentioned in [13],
should be studied in the nonuniform case, as it relies on three variables.
Only two of these variables make the generalization possible for skew-product
semiflows and evolution operators. The study of asymptotic behaviors for
skew-evolution semiflows in the nonuniform setting appears to be normal and
connected to the other third variable. The term is also relevant to the stabil-
ity theory both from a uniform and nonuniform point of view and it has been
mentioned by some researchers, such as P. Viet Hai (see [9] and [10]) and T.
Yue, X. Q. Song and D. Q. Li (see [23]). Their studies have revealed newer
concepts of skew-evolution semiflows and led to further aspects of asymptotic
behaviors and applications. A part of these characteristics of skew-evolution
semiflows are depicted in [21], [22] and [23]. As an additional remark, we
can also state that some recent results in studying the exponential splitting
property for evolution operators were successfully pointed out in [15].
Three concepts of (h, k)-splitting for skew-evolution semiflows which model
discrete-time variational systems in Banach spaces are going to be analyzed
in the present paper. We will also exemplify different types of splitting prop-
erties, by providing definitions and counterexamples, making connections and
last but not least, pointing out an open problem which this study addresses,
which concerns the implication between the uniformly strong (h, k)-splitting
and the strong (h, k)-splitting concepts.

2 Preliminaries

Let (X, d) be a metric space, V a Banach space and B(V ) the Banach space
of all bounded linear operators acting on V . We denote by

∆ =
{

(m,n) ∈ N2
+ : m ≥ n

}
.

Definition 2.1. A mapping ϕ : ∆ × X → X is called a discrete evolution
semiflow on X if the following conditions hold:

(des1) ϕ(m,m, x) = x, for all (m,x) ∈ N×X;

(des2) ϕ(m,n, ϕ(n, p, x)) = ϕ(m, p, x), for all (m,n), (n, p) ∈ ∆, x ∈ X.
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Definition 2.2. A mapping Φ : ∆×X → B(V ) is called a discrete evolution
cocycle over the evolution semiflow ϕ if:

(dec1) Φ(m,m, x) = I, for all m ∈ N, x ∈ X (where I : V → V - is the
identity operator on V ).

(dec2) Φ(m,n, ϕ(n, p, x))Φ(n, p, x) = Φ(m, p, x), for all (m,n), (n, p) ∈ ∆
and for all x ∈ X.

If Φ is a discrete evolution cocycle over the discrete evolution semiflow ϕ,
then the pair C = (ϕ,Φ), defined by:

C : ∆×X × V → X × V, C(m,n, x, v) = (ϕ(m,n, x),Φ(m,n, x)v)

is called a discrete skew-evolution semiflow on X × V .

Definition 2.3. A sequence h : N → [1,+∞) is said to be a growth rate
if h is nondecreasing and lim

n→∞
h(n) = +∞.

Note. In what follows, h, k : N → [1,+∞) will denote two arbitrary
growth rates and they will be used in several examples.

3 Sequences of projections on Banach spaces and two
leading examples

Definition 3.1. An operator valued mapping P : N ×X → B(V ) is called
a sequence of projections if

P (n, x)P (n, x) = P (n, x), for all (n, x) ∈ N×X.

If P : N × X → B(V ) is a sequence of projections, then the sequence
Q : N × X → B(V ) defined by Q(n, x) = I − P (n, x) is also a sequence
of projections, called the complementary sequence of projections of
P : N×X → B(V ) .

Definition 3.2. Given N : N → [1,+∞) a growth rate, we say that the
sequence of projections P : N × X → B(V ) is N-bounded if there exist
γ ≥ 0 such that

‖P (n, x)‖ ≤ N(n)γ, for all (n, x) ∈ N×X.

If γ = 0 then we say that the sequence P : N×X → B(V ) is bounded.



38 D. Borlea An. U.V.T.

Below, two examples of sequences of projections will be presented, with
the aid of which several constructions of discrete linear systems will be made
in order to delimit the presented concepts from this paper.

Example 3.1. Consider the Banach space

V = l∞(N,R) =

{
v : N→ R : sup

j∈N
|v(j)| < +∞

}
endowed with the norm

‖v‖∞ = sup
j∈N
|v(j)|.

We define P : N×X → B(V ) by

P (n, x)v = v · χ3N for all (n, x, v) ∈ N×X × V,

where χA is the characteristic function of the set A ⊂ N.
We have that P : N × X → B(V ) is a sequence of projections with its

complementary given, for all (n, x, v) ∈ N×X × V , by

Q(n, x)v = (χ3N+1 + χ3N+2) · v.

Moreover, we have that

‖P (n, x)‖ = ‖Q(n, x)‖ = 1, for all (n, x) ∈ N×X.

Example 3.2. We will denote by O the set of nonnegative odd numbers and by
E the set of nonnegative even numbers. Consider p : N→ [1,∞), p(n) = pn,
to be a nondecreasing sequence. Consider the Banach space

V = l2(N,R) =

{
v : N→ R :

∞∑
j=0

|v(j)|2 <∞

}

endowed with the norm

‖v‖2 =

(
∞∑
j=0

|v(j)|2
) 1

2

.

Let P : N×X → B(V ) be defined by

P (n, x)v(j) = (v(j) + pnv(j + 1)) · χE(j), for all n, j ∈ N, v ∈ V, x ∈ X.

For n ∈ N, x ∈ X and v ∈ V we denote by

un = P (n, x)v.
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It follows that for all j ∈ N the following relations hold:{
un(2j) = v(2j) + pnv(2j + 1)

un(2j + 1) = 0.

Hence

P (n, x)un(j) = (un(j) + pnun(j + 1)) · χE(j) =

{
un(j), j = 2l

0, j = 2l + 1

from where we deduce that

P (n, x)un = un

which shows us that P (n, x) is a projection on V .
In addition, for every n ∈ N, x ∈ X and v ∈ V the following estimations
hold:

‖P (n, x)v‖2 =

(
∞∑
j=0

|un(j)|2
) 1

2

=

(
∞∑
j=0

|un(2j)|2
) 1

2

=

(
∞∑
j=0

|v(2j) + pnv(2j + 1)|2
) 1

2

≤

≤ (1 + pn)‖v‖2
which implies the following upper-bound estimation for the family of projec-
tions P : N×X → B(V ) :

‖P (n, x)‖ ≤ 1 + pn, for all (n, x) ∈ N×X. (3.1)

Consider now the sequence v0 ∈ V given by

v0(j) =
1

j + 1
· χE(j), j ∈ N.

We have that

‖P (n, x)v0‖2 =

(
∞∑
j=0

|v0(j) + pnv0(j + 1)|2χE(j)

) 1
2

=

=

(
∞∑
j=0

|v0(2j) + pnv0(2j + 1)|2
) 1

2

=

=

(
∞∑
j=0

p2n
1

(2j + 1)2

) 1
2

= pn‖v0‖2
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from where we deduce the following double inequality:

pn ≤ ‖P (n, x)‖ ≤ 1 + pn, for all (n, x) ∈ N×X. (3.2)

The complementary sequence of P is given by

Q(n, x)v(j) = −pnv(j + 1)χE(j) + v(j)χE(j), (x, v, n, j) ∈ X × V × N2.

We observe that if (m,n) ∈ ∆, x ∈ X and v ∈ V the following estimations
hold:

‖Q(n, x)v‖22 =
∞∑
j=0

|v(j)|2 =
∞∑
j=0

|pnv(2j + 1)|2 +
∞∑
j=0

|v(2j + 1)|2 =

= (1 + p2n)
∞∑
j=0

|v(2j + 1)|2

from where we deduce that

‖Q(n, x)v‖2 =
(
1 + p2n

) 1
2

(
∞∑
j=0

|v(2j + 1)|2
) 1

2

≤

≤
(
1 + p2m

) 1
2

(
∞∑
j=0

|v(2j + 1)|2
) 1

2

= ‖Q(m,x)v‖2. (3.3)

Consider now m,n ∈ N, x ∈ X and v ∈ V . We denote by

un = P (n, x)v and vn = Q(n, x)v.

It follows that

v(2j) = −pnx(2j + 1) and v(2j + 1) = x(2j + 1), for all j ∈ N.

From the definition of P , we have that

P (m,x)P (n, x)v(j) = P (m,x)un(j) = (un(j) + pmun(j + 1))χE(j) =

= un(j)χE(j) = un(j)

Q(m,x)Q(n, x)v(j) = Q(m,x)vn(j) = −pmvn(j + 1)χE(j) + vn(j)χE(j) =

= −pmv(j + 1)χE(j) + v(j)χE(j) = Q(m,x)v(j)

Q(m,x)P (n, x)v(j) = Q(m,x)un(j) = −pmun(j + 1)χE(j) + un(j)χE(j) = 0.

We conclude that for all (m,n, x) ∈ N2 ×X the following relations hold:

P (m,x)P (n, x) = P (n, x),

Q(m,x)Q(n, x) = Q(m,x),

Q(m,x)P (n, x) = 0. (3.4)
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4 Concepts of (h, k)-splitting for linear discrete-time
skew-evolution semiflows

If C is a discrete skew-evolution semiflow on X × V and P : N×X → B(V )
is a sequence of projections, then we will say that (C,P ) is a splitting pair.

Definition 4.1. Let P : N×X → B(V ) be a sequence of projections. We say
that the splitting pair (C,P ) admits a (h, k)-splitting and we denote (h, k)−
s if there exist a nondecreasing sequence N : N → [1,∞) and constants
α, β ∈ R with α < β and γ ≥ 0 such that for all (m,n, x) ∈ ∆ × X the
following conditions hold:

(hs1) h(n)α‖Φ(m,n, x)P (n, x)‖ ≤ N(n)γh(m)α;

(ks2) k(m)β ≤ N(n)γk(n)β‖Φ(m,n, x)Q(n, x)‖.

If γ = 0 then we say that the pair (C,P ) admits a uniformly (h, k)-splitting
and we denote u− (h, k)− s.

If in the above definition, we have that α < 0 < β, then we say that
(C,P ) admits a (h, k)-dichotomy.

An example of a discrete linear system admitting a (h, k)-splitting is given
in Example 4.1.

Example 4.1. (A splitting pair which admits a (uniform) (h, k)-splitting)
Consider the Banach space

V = L2((1,∞),R)⊕ l∞(N,R)

endowed with the norm

‖v‖ = max{‖f‖2, ‖s‖∞}, v = (f, s) ∈ V.

Define, for every (m,n, x) ∈ ∆×X,

Φ(m,n, x)(f, s) = (fnm, s
n
m)

where

fnm(τ) = f

((
h(n)

h(m)

)2

· τ

)
, τ ∈ (1,∞)

and

snm(j) =
k(n)

k(m)
· 1, j ∈ N.



42 D. Borlea An. U.V.T.

Let P : N×X → B(V ) be defined by

P (n, x)(f, s) = (f, 0), for all (f, s) ∈ V, (n, x) ∈ N×X.

Then (C,P ) is a splitting pair. Let (f, s) ∈ X.

‖Φ(m,n, x)P (n, x)(f, s)‖ = ‖Φ(m,n, x)(f, 0)‖ = ‖fnm‖2 =

=

 ∞∫
1

∣∣∣∣∣f
((

h(n)

h(m)

)2

· τ

)∣∣∣∣∣
2

dτ

 1
2

=

=


∞∫

(h(m)
h(n) )

2

|f(ξ)|2 ·
(
h(n)

h(m)

)4

dξ


1
2

≤

≤
(
h(n)

h(m)

)2

‖f‖2 =

=

(
h(n)

h(m)

)2

‖P (n, x)(f, s)‖;

‖Φ(m,n, x)Q(n, x)(f, s)‖ = ‖Φ(m,n, x)(0, s)‖ = ‖snm‖∞ =

=
k(n)

k(m)
‖Q(n, x)(f, s)‖∞

from where we obtain that the pair (C,P ) admits a (uniform) (h, k)− s with
N ≡ 1, α = −2 and β = −1.

Remark 4.2. If (C,P ) admits a (h, k)-dichotomy, then it follows that (C,P )
admits a (h, k)-splitting. The converse is not generally true. Indeed, Example
4.2 proves this fact, by taking into account that β < 0. The same is true
for the associated uniform concepts, which is pointed out by the fact that in
Example 4.1, again, β is not strictly positive.

Proposition 4.3. If (C,P ) admits a (h, k) − s with constants N ≥ 1 and
γ ≥ 0 given by Definition 4.1, then

max{‖P (n, x)‖, ‖Q(n, x)‖} ≤ 2N(n)γ, for all (n, x) ∈ N×X.

Proof. It follows from (hs1) by taking m = n and from the fact that

‖Q(n, x)‖ ≤ 2‖P (n, x)‖.
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Corollary 4.4. If (C,P ) admits a u− (h, k)− s then P : N×X → B(V ) is
bounded.

Remark 4.5. If the pair (C,P ) admits a u − (h, k) − s then it also admits
a (h, k)− s. The converse is not generally true, fact illustrated by Example
4.2.

Example 4.2. On the Banach space V = l2(N,R), consider the sequence of
projections given by Example 3.2. By taking pn = N(n), with N : N →
[1,∞) begin an arbitrary growth rate (in order to have infinite limit) and

Φ(m,n, x) =

(
h(m)

h(n)

)−2
P (n, x)+

k(n)

k(m)
Q(m,x), for all (m,n, x) ∈ ∆×X.

Taking into account (3.4), we observe that (C,P ) is a splitting pair, with

Φ(m,n, x)P (n, x) =

(
h(m)

h(n)

)−2
P (n, x) and

Φ(m,n, x)Q(n, x) =
k(n)

k(m)
Q(m,x), (4.1)

for all (m,n, x) ∈ ∆×X. It follows that for all (m,n, x) ∈ ∆×X,

‖Φ(m,n, x)P (n, x)‖ =

(
h(m)

h(n)

)−2
‖P (n, x)‖ ≤

(
h(m)

h(n)

)−2
·N(n)

which implies that

h(n)−2‖Φ(m,n, x)P (n, x)‖ ≤ h(m)−2N(n)

and

N(n)‖Φ(m,n, x)Q(n, x)‖ ≥ ‖Φ(m,n, x)Q(n, x)‖ =
k(n)

k(m)
‖Q(m,x)‖ ≥ k(n)

k(m)
,

which shows us that (C,P ) admits a (h, k) − s, with N = γ = 1, α = −2
and β = −1. Having in mind that

sup
n∈N
‖P (n, x)‖ = +∞

by Corollary 4.4, we conclude that (C,P ) does not admit a u− (h, k)− s.

Definition 4.6. Let P : N × X → B(V ) be a sequence of projections.
We say that the pair (C,P ) admits a strong (h, k)-splitting and we denote
s−(h, k)−s if there exist a nondecreasing sequence N : N→ [1,∞), α, β ∈ R
with α < β and γ ≥ 0 such that for all (m,n, x, v) ∈ ∆×X×V the following
properties hold:
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(shs1) h(n)α‖Φ(m,n, x)P (n, x)v‖ ≤ N(n)γh(m)α‖P (n, x)v‖;

(sks2) k(m)β‖Q(n, x)v‖ ≤ N(n)γk(n)β‖Φ(m,n, x)Q(n, x)v‖.

If γ = 0 then we say that the pair (C,P ) admits a uniformly strong (h, k)-
splitting and we denote u.s− (h, k)− s.

If in the above definition, we have that α < 0 < β, then we say that
(C,P ) admits a strong (h, k)-dichotomy.

An example of a system admitting a strong (h, k)-splitting is given in
Example 4.1.

Remark 4.7. If (C,P ) admits a strong (h, k)-dichotomy, then it follows that
(C,P ) admits a strong (h, k)-splitting. The converse is not generally true.

Remark 4.8. If the pair (C,P ) admits a strong (h, k)-splitting, then for all
(m,n, x) ∈ ∆×X the following implication is true:

Φ(m,n, x)Q(n, x)v = 0⇒ Q(n, x)v = 0.

The following remarks point out some connections between the behaviors
described above.

Remark 4.9. If the pair (C,P ) admits a u.s− (h, k)− s, then it also admits
a s− (h, k)− s. The converse is momentarily an open problem.

Remark 4.10. If the pair (C,P ) admits a s − (h, k) − s, it does not imply
that it also admits a (h, k) − s. The following holds for the concepts of
u.s − (h, k) − s and u − (h, k) − s. In order to justify these facts, we point
out Example 4.3.

Example 4.3. Let V = l2(N,R), N : N→ [1,∞) an arbitrary growh rate and
as in Example 4.2, take

Φ(m,n, x) =

(
h(m)

h(n)

)−2
P (n, x) +

k(n)

k(m)
Q(m,x), (m,n, x) ∈ ∆×X

and
pn = eN(n), n ∈ N.

From (4.1) we deduce that (C,P ) admits a u.s − (h, k) − s, hence it also
admits a s− (h, k)− s. If we assume that the pair (C,P ) admits a (h, k)− s
then, by Proposition 4.3, we would obtain that there exist N : N→ [1,∞) a
growth rate and γ ≥ 0 such that

‖P (n, x)‖ ≤ N(n)γ, for all (n, x) ∈ N×X.
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Having in mind the choice of the sequence p and (3.2), we obtain the contra-
diction

eN(n) = pn ≤ ‖P (n, x)‖ ≤ N(n)γ, for all (n, x) ∈ N×X.

Hence (C,P ) is not (h, k)− s therefore it is also not u− (h, k)− s.
Remark 4.11. If the pair (C,P ) admits a (h, k) − s, it does not necessarily
follows that it admits a s − (h, k) − s. The same holds for the concepts of
u − (h, k) − s and u.s − (h, k) − s. In order to justify these facts, we point
out Example 4.4.

Example 4.4. On V = l∞(N,R) let P : N × X → B(V ) the sequence of
projections defined in Example 3.1. We define, for (m,n, x) ∈ ∆ × X and
(v, j) ∈ V × N we have that

Φ(m,n, x)v(j) =


(
h(m)
h(n)

)2
v(j)χ3N(j) +

(
k(m)
k(n)

)3
v(j)χ3N+1(j), if m ≥ n+ 1

v(j), if m = n,

where 3N + k = {3n+ k : n ∈ N} ⊂ N, for each k ∈ N.
Then (C,P ) is a splitting pair with the property that for all (m,n, x, v) ∈
∆×X × V and j ∈ N the following representations hold:

Φ(m,n, x)P (n, x)v(j) =

(
h(m)

h(n)

)2

v(j)χ3N(j)

and

Φ(m,n, x)Q(n, x)v(j) =


(
k(m)
k(n)

)3
v(j)χ3N+1(j), if m ≥ n+ 1

v(j) (χ3N+1(j) + χ3N+2(j)) , if m = n.

It follows that

‖Φ(m,n, x)P (n, x)v‖∞ =

(
h(m)

h(n)

)2

sup
j≥0
|v(j)χ3N(j)| =

(
h(m)

h(n)

)2

‖P (n, x)v‖∞

from where

‖Φ(m,n, x)P (n, x)‖ ≤
(
h(m)

h(n)

)2

.

If m ≥ n+ 1, let v1 ∈ V given by

v1(j) =
1

j + 1
χ3N+1(j), j ∈ N.
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Then

‖Φ(m,n, x)Q(n, x)v1‖∞ =

(
k(m)

k(n)

)3

‖Q(n, x)χ3N+1v1‖∞ =

(
k(m)

k(n)

)3

‖v1‖∞

from where (
k(m)

k(n)

)3

≤ ‖Φ(m,n, x)Q(n, x)‖.

The case m = n is obvious. Hence (C,P ) admits a u− (h, k)− s, hence it is
also (h, k)− s.
Assume by a contradiction that the pair (C,P ) admits a s− (h, k)− s. Let
(1, 0, x) ∈ ∆×X. Obviously, the sequence

v2 : N→ R, v2(j) =
1

j + 1
χ3N+2(j), j ∈ N

belongs to l∞(N,R). We have that

Q(0, x)v2 = v2 6= 0

and for all j ∈ N,

Φ(1, 0, x)Q(0, x)v2(j) = 2v2(j)χ3N+1(j) =
2

j + 1
χ3N+2(j) · χ3N+1(j) = 0.

By Remark 4.8, we obtain that (C,P ) cannot admit a s− (h, k)− s, neither
a u.s− (h, k)− s.

Definition 4.12. Let P : N × X → B(V ) be a sequence of projections.
We say that the pair (C,P ) admits a weak (h, k)-splitting and we denote
w − (h, k) − s if there exist a nondecreasing sequence N : N → [1,∞) and
constants α, β ∈ R with α < β and γ ≥ 0 such that for all (m,n, x) ∈ ∆×X
the following hold:

(whs1) h(n)α‖Φ(m,n, x)P (n, x)‖ ≤ N(n)γh(m)α‖P (n, x)‖;

(wks2) k(m)β‖Q(n, x)‖ ≤ N(n)γk(n)β‖Φ(m,n, x)Q(n, x)‖.

If γ = 0 then we say that the pair (C,P ) admits uniformly weak (h, k)-
splitting and we denote u.w − (h, k)− s.

If in the above definition, we have that α < 0 < β, then we say that
(C,P ) admits a weak (h, k)-dichotomy.
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Remark 4.13. If (C,P ) admits a weak (h, k)-dichotomy, then it admits a weak
(h, k)-splitting. The converse is not generally true. Indeed, from Proposition
4.16, we have that the splitting pair admits a weak (h, k)-splitting, with
α = 2 hence it cannot admit a weak (h, k)-dichotomy.

Remark 4.14. Consider (C,P ) to be a splitting pair. The following assertions
hold true:

(i) If (C,P ) admits a u.w− (h, k)− s then it also admits a w− (h, k)− s.

(ii) If the pair (C,P ) admits a s−(h, k)−s then it also admits a w−(h, k)−s.
Moreover, if (C,P ) admits a u.s − (h, k) − s then it also admits a
u.w − (h, k)− s.

(iii) If the pair (C,P ) admits a (h, k)−s then it also admits a w− (h, k)−s.

Indeed, below we justify the above assertions.

(i) The necessity is obvious. The fact that the converse doesn’t generally
hold, for the moment, remains an open problem. We do not own an
example of a splitting pair (C,P ) which is w − (h, k) − s, but is not
u.w − (h, k)− s.

(ii) It is obvious, by passing to the operator norm in Definition 4.6.

(iii) Let N : N→ [1,∞), α, β ∈ R with α < β and γ ≥ 0 given by Definition
4.6. By Proposition 4.3, we have that

1 ≤ max{‖P (n, x)‖, ‖Q(n, x)‖} ≤ 2N(n)γ, for all (n, x) ∈ N×X.

Let (m,n) ∈ ∆. From the fact that

h(n)α‖Φ(m,n, x)P (n, x)‖ ≤ N(n)γh(m)α ≤ 2N2(n)2γh(m)α‖P (n, x)‖

and

k(m)β‖Q(n, x)‖ ≤ N(n)γk(n)β‖Φ(m,n, x)Q(n, x)‖ · ‖Q(n, x)‖ ≤
≤ 2N2(n)2γk(n)β‖Φ(m,n, x)Q(n, x)‖,

it follows that (C,P ) admits a w − (h, k)− s.

Taking into account the facts from the above proposition, (iii), we can
state the following result.

Corollary 4.15. If the pair (C,P ) admits a u−(h, k)−s then it also admits
a u.w − (h, k)− s.
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More connections are shown in the following proposition.

Proposition 4.16. For a given splitting pair (C,P ), the following assertions
hold:

(i) If the pair (C,P ) admits a w− (h, k)− s, it does not necessarily follow
that it admits a (h, k)− s.

(ii) If the pair (C,P ) admits a w− (h, k)− s, it does not necessarily follow
that it admits a s− (h, k)− s.

Proof. The arguments that sustain the above assertions are presented below.

(i) Indeed, by considering the splitting pair (C,P ) from Example 4.3, we
have that it admits a u.s − (h, k) − s, hence u.w − (h, k) − s which
implies the fact that it is also w − (h, k) − s. From the facts proven
in the same example, we have that (C,P ) cannot admit a (h, k) − s,
neither u− (h, k)− s.

(ii) By considering the splitting pair from Example 4.4 and taking into
account that

‖P (n, x)‖ = ‖Q(n, x)‖ = 1

for all (n, x) ∈ N×X, it follows that for all (m,n, x) ∈ ∆×X,

‖Φ(m,n, x)P (n, x)‖ ≤
(
h(m)

h(n)

)2

and (
k(m)

k(n)

)3

‖Q(n, x)‖ ≤ ‖Φ(m,n, x)Q(n, x)‖.

It follows that (C,P ) admits a u.w−(h, k)−s (with N = 1 as a constant
sequence, α = 2 < β = 3), hence w − (h, k) − s. From the assertions
proven in Example 4.4, we have that (C,P ) is not s− (h, k)− s hence
neither is it u.s− (h, k)− s.

Remark 4.17. The connections between the concepts studied in this paper is
given by the following diagram:

u− (h, k)− s :; u.s− (h, k)− s :⇒ u.w − (h, k)− s ⇐; u− (h, k)− s
6⇑⇓ ? ⇑⇓ 6⇑⇓ 6⇑⇓

(h, k)− s :; s− (h, k)− s :⇒ w − (h, k)− s ⇐; (h, k)− s
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