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Local Convergence Analysis of an Efficient

Fourth Order Weighted-Newton Method

under Weak Conditions
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Abstract. Local convergence analysis of a fourth order method
considered by Sharma et. al in [19] for solving systems of nonlinear
equations. Using conditions on derivatives upto the order five,
they proved that the method is of order four. In this study using
conditions only on the first derivative , we prove the convergence
of the method in [19]. This way we extended the applicability
of the method. Numerical example which do not satisfy earlier
conditions but satisfy our conditions are presented in this study.
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1 Introduction

In [19], Sharma et. al, studied the iterative method defined by

yn = xn −
2

3
F ′(xn)−1F (xn)

xn+1 = yn − AnF
′(xn)−1F (xn), (1.1)

where x0 is the initial point and

An =
1

2
[−I +

9

4
F ′(yn)−1F ′(xn) +

3

4
F ′(xn)−1F ′(yn)]

for approximating the solution x∗ of

F (x) = 0, (1.2)

when F : D ⊆ Ri → Rj is a continuously differentiable operator. Using
Taylors expansion and assumptions on the derivatives up to fifth order, they
have proved that the sequence {xn} defined by the method (1.1) converges to
x∗ with an order of convergence four. Due to the wide range of applications,
the study of (1.2) is an important problem in mathematics [1–22]. But the
conditions on the higher order derivatives, restrict the applicability of method
(1.1) to solve (1.2) (see the numerical examples).

In this study we consider the method (1.1) for approximating a solution
x∗ of (1.2) by when F : D ⊆ B1 → B2 is a continuously Fréchet differen-
tiable operator. Here B1,B2 are Banach spaces. Let B(a, ρ), B̄(a, ρ) stand
respectively for the open and closed balls in B1 with center a ∈ B1 and of
radius ρ > 0.

Next, we shall give an example to show that method (1.1) cannot be
applied if we use the analysis in [19].

EXAMPLE 1.1. Let B1 = B2 = C[0, 1], D = B̄(x∗, 1) and consider the non-
linear integral equation of the mixed Hammerstein-type [1,2,6–9,12] defined
by

x(s) =

∫ 1

0

G(s, t)(x(t)3/2 +
x(t)2

2
)dt,

where the kernel G is the Green’s function defined on the interval [0, 1]×[0, 1]
by

G(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (1.2), where
F : C[0, 1] −→ C[0, 1]) is defined by

F (x)(s) = x(s)−
∫ 1

0

G(s, t)(x(t)3/2 +
x(t)2

2
)dt.
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Notice that

‖
∫ 1

0

G(s, t)dt‖ ≤ 1

8
.

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0

G(s, t)(
3

2
x(t)1/2 + x(t))dt,

so since F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1

8
(
3

2
‖x− y‖1/2 + ‖x− y‖).

One can see that, higher order than F ′ derivatives of F do not exist in
this example, so the method (1.1) cannot be applied if we use the analysis in
[19]. Later in Section 3 we show that indeed one can use the method (1.1)
to solve the above equation.

Our goal is to weaken the assumptions in [19] and apply the method (1.1)
for solving equation (1.2) in Banach spaces, so that the applicability of the
method (1.1) can be extended.

In Section 2, we present the local convergence of method (1.1). Numerical
examples are given in the last section of the paper.

2 Local convergence

Let w0 : R+ ∪ {0} −→ R+ ∪ {0} be a continuous and nondecreasing function
with w(0) = 0 and let

r0 = sup{t ≥ 0 : w0(t) < 1}. (2.1)

Let w, v : [0, r0) −→ R+ ∪ {0} be continuous and nondecreasing functions
with w(0) = 0. Define functions ϕ1 and ψ1 on the interval [0, r0) by

ϕ1(t) =

∫ 1

0
w((1− θ)t)dθ + 1

3

∫ 1

0
v(θt)dθ

1− w0(t)
,

and
ψ1(t) = ϕ1(t)− 1.

Suppose that
v(0) < 3. (2.2)
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Then, by the definition of r0, ϕ1, ψ1 and (2.2), we have ψ1(0) = v(0)
3
− 1 < 0

and ψ1(t)→ +∞ as t→ r−0 . By applying the intermediate value theorem on
function ψ1 on the interval [0, r0], we get that function ψ1 has zeros in the
interval (0, r0). Denote by r1 the smallest such zero. Define also parameters
r̄0 by

r̄0 = max{t ∈ [0, r0] : w0(ϕ1(t)t) < 1}. (2.3)

Furthermore, define functions ϕ2 and ψ2 on the interval [0, r̄0) by

ϕ2(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

+
9

8

(w0(t) + w0(ϕ1(t)t))
∫ 1

0
v(θt)dθ

(1− w0(t))(1− w0(ϕ1(t)t))

+
3

8

(w0(t) + w0(ϕ1(t)t))
∫ 1

0
v(θt)dθ

(1− w0(t))2

and

ψ2(t) = ϕ2(t)− 1.

Then, we have that ϕ2(0) = −1 < 0 and ϕ2(t) −→ +∞ as t −→ r̄−0 . Denote
by r2 the smallest zero of function ϕ2 on the interval (0, r̄0). Define the radius
of convergence r by

r = min{r1, r2}. (2.4)

Then, we have that for each t ∈ [0, r)

0 ≤ ϕi(t) < 1, i = 1, 2. (2.5)

We shall use the conditions denoted by (C) in our local convergence anal-
ysis of method (1.1):

(C1) F : D ⊂ B1 −→ B2 is a continuously Fréchet-differentiable operator;

(C2) there exists x∗ ∈ D such that F (x∗) = 0 and F ′(x∗) is invertible;

(C3) there exists function w0 : R+ ∪ {0} −→ R+ ∪ {0} continuous and
nondecreasing with w0(0) = 0 such that for each x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖).

Set D0 = D ∩B(x∗, r0), where r0 is given by (2.1).
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(C4) there exist functions w, v : [0, r0) −→ R+ ∪ {0} with w(0) = 0 such
that for each x, y ∈ D0 :

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖)

and
‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖);

(C5) Condition (2.2) holds;

(C6) B̄(x∗, r) ⊂ D, where the radius of convergence r is given by (2.4).

THEOREM 2.1. Suppose that the condition (C) hold. Then, the sequence
{xn} generated for x0 ∈ B(x∗, r) − {x∗} by method (1.1) is well defined in
B(x∗, r), remains in B(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r (2.6)

and
‖xn+1 − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖. (2.7)

Furthermore, if there exists R > r such that∫ 1

0

v(θR)dθ < 1, (2.8)

then the limit point x∗ is the only solution of equation F (x) = 0 in D1 =
D ∩ B̄(x∗, R).

Proof. Estimates (2.6) and (2.7) shall be shown using mathematical induc-
tion. Using (2.1), (C3) and the choice x0 ∈ B(x∗, r) − {x∗} we have in turn
that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) ≤ w0(r) < 1. (2.9)

Estimate (2.9) and the Banach lemma on invertible operators [2, 18] give
F ′(x0) is invertible and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− w0(‖x0 − x∗‖)
. (2.10)

Hence y0 exists. By (C2) we can write that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ, (2.11)
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where x∗+θ(x0−x∗) ∈ B(x∗, r), since ‖x∗+θ(x0−x∗)−x∗‖ = θ‖x0−x∗‖ < r
for each θ ∈ [0, 1]. Then, in view of the second inequality in (C4) and (2.11),
we get that

‖F ′(x∗)−1F (x0)‖ ≤
∫ 1

0

v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖. (2.12)

If follows from the first substep of method (1.1) for n = 0 that

y0 − x∗ = (x0 − x∗ − F ′(x0)−1F (x0)) +
1

3
F ′(x0)

−1F (x0) (2.13)

Then, by (2.4), (2.5) (for i = 1), (C4), (2.10), (2.12) and (2.13), we have in
turn that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

×‖
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ‖

+
1

3
‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤

(∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ + 1

3

∫ 1

0
v(θ‖x0 − x∗‖)dθ

1− w0(‖x0 − x∗‖)

)
‖x0 − x∗‖

= ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.14)

so (2.6) holds for n = 0 and y0 ∈ B(x∗, r). As in (2.10), we have for y0 = x0
that F ′(y0) is invertible and

‖F ′(y0)−1F ′(x∗)‖ ≤
1

1− w0(‖y0 − x∗‖)

≤ 1

1− w0(ϕ1(‖x0 − x∗‖)‖x0 − x∗‖)
. (2.15)

We also have that x1 exists. We can have by the second substep of method
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(1.1) for n = 0 :

x1 − x∗

= x0 − x∗ − F ′(x0)−1F (x0) +
3

2
F ′(x0)

−1F (x0)

−9

8
F ′(y0)

−1F ′(x0)
−1F ′(x0)F (x0)

−3

8
F ′(x0)

−1F ′(y0)F
′(x0)

−1F (x0)

= x0 − x∗ − F ′(x0)−1F (x0) +
9

8
(F ′(x0)

−1 − F ′(y0)−1)F (x0)

+
3

8
F ′(x0)

−1(I − F ′(y0)F ′(x0)−1)F (x0)

= x0 − x∗ − F ′(x0)−1F (x0)

+
9

8
F ′(x0)

−1[(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(x0))]F ′(y0)−1F (x0)

+
3

8
F ′(x0)

−1[(F ′(x0)− F ′(x∗)) + (F ′(x∗)− F ′(y0))]F ′(x0)−1F (x0).

(2.16)

By (2.4), (2.5) (for i = 2), (2.10) and (2.14)–(2.16), we get in turn that

‖x1 − x∗‖
≤ ‖x0 − x∗ − F ′(x0)−1F (x0)‖

+
9

8
‖F ′(x0)−1F ′(x∗)‖[‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖

+‖F ′(x∗)−1(F ′(x∗)− F ′(x0))‖]‖F ′(y0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

+
3

8
‖F ′(x0)−1F ′(x∗)‖[‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖

+‖F ′(x∗)−1(F ′(x∗)− F ′(y0))‖]‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤
∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)

+
9

8

(w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖))
∫ 1

0
v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

(1− w0(‖x0 − x∗‖))(1− w0(‖y0 − x∗‖))

+
3

8

(w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖))
∫ 1

0
v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

(1− w0(‖x0 − x∗‖))2
≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.17)
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so (2.7) holds and x1 ∈ B(x∗, r). The induction for (2.6) and (2.7) can be
completed if we replace x0, y0, x1 by xk, yk, xk+1 in the preceding estimates.
Then by the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, (2.18)

where c = ϕ2(‖x0 − x∗‖) ∈ [0, 1), we deduce that limk−→∞ xk = x∗ and
xk+1 ∈ B(x∗, r). Finally, the uniqueness of the solution x∗ in D1 can be shown

by defining Q =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗))dθ where y∗ ∈ D1 with F (y∗) = 0.

Using (C1) and (2.8) we obtain in turn that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0

v(θ‖x∗ − y∗‖)dθ ≤
∫ 1

0

v(θR)dθ < 1, (2.19)

so linear operator Q is invertible. Then, the identity

0 = F (x∗)− F (y∗) = Q(x∗ − y∗), (2.20)

we get that x∗ = y∗.
�

REMARK 2.2. (a) In the case when w0(t) = L0t, w(t) = Lt and D0 = D,
the radius rA = 2

2L0+L
was obtained by Argyros in [11] as the conver-

gence radius for Newton’s method under conditions (C1)-(C2). Notice
that the convergence radius for Newton’s method given independently
by Rheinboldt [18] and Traub [22] is given by

ρ =
2

3L
< rA.

As an example, let us consider the function f(x) = ex − 1. Then
x∗ = 0. Set Ω = B(0, 1). Then, we have that L0 = e − 1 < L = e, so
ρ = 0.24252961 < rA = 0.324947231.

Moreover, the new error bounds [2] are:

‖xn+1 − x∗‖ ≤
L

1− L0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones [18,22]

‖xn+1 − x∗‖ ≤
L

1− L‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we
do not expect the radius of convergence of method (1.1) given by r3 to
be larger than rA.
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(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the gen-
eralized conjugate method(GCM) for combined Newton/finite projec-
tion methods and in connection to the mesh independence principle
in order to develop the cheapest and most efficient mesh refinement
strategy [1, 7].

(c) Let B1 = B2 = R. The results can be also be used to solve equations
where the operator F ′ satisfies the autonomous differential equation
[2–5]:

F ′(x) = P (F (x)),

where P : B1 −→ B2 is a known continuous operator. Since F ′(x∗) =
P (F (x∗)) = P (0), we can apply the results without actually knowing
the solution x∗. Let as an example F (x) = ex− 1. Then, we can choose
P (x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that method (1.1) are not changing if we use the
new instead of the old conditions [19]. Moreover, for the error bounds
in practice we can use the computational order of convergence (COC)

ξ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 0, 1, 2, . . . .

(e) In view of (C3) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + w0(‖x− x∗‖)

the second condition in (C4) can be dropped to be replaced by

v(t) = 1 + w0(t)

or
v(t) = 1 + w0(r0),

since t ∈ [0, r0).
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(f) Condition (2.2) can be dropped if we define parameter d by

d := ϕ1(r2)r2 (2.21)

and the ball B(x∗, r∗), where

r∗ = max{d, r2}.

Suppose that

(C′5) B̄(x∗, r∗) ⊆ D.

Denote by (C′) conditions (C1), (C2), (C3), (C4) and (C′5). Then, we
have :

THEOREM 2.3. Suppose that the conditions (C′) hold. Then, the
conclusions of Theorem 2.1 hold except (2.6) which is replaced by

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ d. (2.22)

Proof. By simply following the proof of Theorem 2.1 and using (2.22)
and (C′5) we arrive at (2.22) instead of (2.6). The rest of the proof as
identical to the one in Theorem 2.1 is omitted.

�

3 Numerical Examples

We present two examples in this section.

EXAMPLE 3.1. Let B1 = B2 = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define
function F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Using (C1)–(C4), we can choose w0(t) = L0t, w(t) = e

1
L0 t, v(t) = e

1
L0 , L0 =

e− 1.
Then, the radius of convergence r is given by

r1 = 0.1544, r2 = 0.0183 = r.
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EXAMPLE 3.2. Returning back to the motivational example given at the
introduction of this study, we can choose (see also Remark 2.2 (e) for function
v) w0(t) = w(t) = 1

8
(3
2

√
t + t) and v(t) = 1 + w0(r0), r0 w 4.7354. Then, the

radius of convergence r is given by

r1 = 0.5092, r2 = 0.00000009 = r.
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