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Schatten Class Operators in L(L2
a(C+))

Namita Das and Jitendra Kumar Behera

Abstract. In this paper, we consider Toeplitz operators de-
fined on the Bergman space L2

a(C+) of the right half plane and
obtain Schatten class characterization of these operators. We
have shown that if the Toeplitz operators Tφ on L2

a(C+) belongs

to the Schatten class Sp, 1 ≤ p < ∞, then φ̃ ∈ Lp(C+, dν),

where φ̃(w) = 〈φbw, bw〉, w ∈ C+ and bw(s) = 1√
π

1+w
1+w

2Rew
(s+w)2

.

Here dν(w) = |B(w,w)|dµ(w), where dµ(w) is the area measure
on C+ and B(w,w) = (bw(w))2. Furthermore, we show that if
φ ∈ Lp(C+, dν), then φ̃ ∈ Lp(C+, dν) and Tφ ∈ Sp. We also use
these results to obtain Schatten class characterizations of little
Hankel operators and bounded operators defined on the Bergman
space L2

a(C+).
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1 Introduction

Let H be a separable Hilbert space. Let L(H) be the set of all bounded
linear operators from the Hilbert space H into itself and LC(H) be the set
of all compact operators in L(H). For any nonnegative integer n, the nth
singular value of T ∈ LC(H) is given by

sn(T ) = inf{||T −K|| : K ∈ L(H), rank K ≤ n}.
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Here ||.|| is the operator norm. Clearly, s0(T ) = ||T || and

s0(T ) ≥ s1(T ) ≥ s2(T ) ≥ · · · ≥ 0. (1.1)

For 0 < p <∞, the Schatten p-class ([16], [14]) of H, denoted by Sp(H)
or simply Sp, is defined as the space of all compact operators T on H with
its singular value sequence {sn}∞n=1 belonging to lp(the p-summable sequence
space). If 1 ≤ p <∞, the vector space Sp is a Banach space when equipped
with the norm

||T ||p =

(
∞∑
n=1

|sn|p
) 1

p

.

The space S1 is called the trace class and S2 is the Hilbert-Schmidt class.
For basic properties of Schatten class operators one can refer ([9], [17], [18],
[4]) . The linear functional trace is defined on S1 by

tr(T ) =
∞∑
n=1

〈Tξn, ξn〉, T ∈ S1,

where {ξn}∞n=1 is an orthonormal basis for H. Let C+ = {s = x + iy ∈ C :
x > 0} be the right half plane. Let dµ(s) = dxdy denote the two dimensional
area measure on C+. Let L2(C+, dµ) be the space of complex-valued, abso-
lutely square-integrable, measurable functions on C+ with respect to the area
measure. The Bergman space of the right half plane denoted as L2

a(C+) is
the closed subspace of L2(C+, dµ) consisting of those functions in L2(C+, dµ)
that are analytic. The functions H(s, w) = 1

(s+w)2
, s ∈ C+, w ∈ C+ are the

reproducing kernels [3] for L2
a(C+). Let L∞(C+) be the space of complex-

valued, essentially bounded, Lebesgue measurable functions on C+. Define
for f ∈ L∞(C+), ||f ||∞ = ess sup

s∈C+

|f(s)| <∞. The space L∞(C+) is a Banach

space with respect to the essential supremum norm. For φ ∈ L∞(C+), we
define the multiplication operator Mφ from L2(C+, dµ) into L2(C+, dµ) by
(Mφf)(s) = φ(s)f(s); the Toeplitz operator Tφ from L2

a(C+) into L2
a(C+) by

Tφf= P+(φf), where P+ denote the orthogonal projection from L2(C+, dµ)
onto L2

a(C+). The Toeplitz operator Tφ is bounded and ||Tφ|| ≤ ||φ||∞. For
more details see [8] and [11]. The big Hankel operator Hφ from L2

a(C+) into
(L2

a(C+))⊥ is defined by Hφf= (I − P+)(φf), f ∈ L2
a(C+). For φ ∈ L∞(C+),

the little Hankel operator ~φ is a mapping from L2
a(C+) into L2

a(C+) defined
by ~φf = P+(φf), where P+ is the projection operator from L2(C+, dµ)

onto L2
a(C+) = {f : f ∈ L2

a(C+)}. There are also many equivalent ways
for defining little Hankel operators on L2

a(C+). Let Sφ be the mapping from
L2
a(C+) into L2

a(C+) defined by Sφf= P+(J(φf)) where J is the mapping from
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L2(C+, dµ) into L2(C+, dµ) such that Jf(s) = f(s). Notice that J is unitary
and JSφf= J(P+(J(φf))) = JP+J(φf) = P+(φf) = ~φf for all f ∈ L2

a(C+).
Let Γφ be the mapping from L2

a(C+) into L2
a(C+) defined by Γφf= P+MφJf.

Thus Γφf = P+MφJf= P+(φ(s)f(s)) = P+(J(φ(s)f(s))) = SJφf for all
f ∈ L2

a(C+). Hence Γφf= SJφf. Thus we obtain ~φ = JSφ and Γφ = SJφ.
Since J is unitary, the three operators ~φ, Sφ and Γφ are referred to as little
Hankel operators on L2

a(C+) and a given result on little Hankel operators can
be stated using the operators ~φ, Sφ and Γφ. The operator ~φ is unbounded
in general. However, ~φ is bounded if φ ∈ L∞(C+) and we clearly have
||~φ|| ≤ ||φ||∞.

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C.
Let L2(D, dA) be the space of complex valued, square-integrable, measurable
functions on D with respect to the normalized area measure dA(z) = 1

π
dxdy.

Let L2
a(D) be the space consisting of those functions of L2(D, dA) that are

analytic. The space L2
a(D) is a closed subspace of L2(D, dA) and is called the

Bergman space of the open unit disk D. Let L∞(D) be the space of complex-
valued, essentially bounded, Lebesgue measurable functions on D with the
essential supremum norm. For φ ∈ L∞(D), the multiplication operator Mφ

from L2(D, dA) into L2(D, dA) is defined by Mφf = φf, the Toeplitz operator
Tφ from L2

a(D) into itself is defined by Tφ(f) = P (φf) for f ∈ L2
a(D), where

P is the orthogonal projection from L2(D, dA) onto L2
a(D). The sequence

of functions {en(z)}∞n=0 = {
√
n+ 1zn}∞n=0 form an orthonormal basis for

L2
a(D). Since the point evaluation at z ∈ D, is a bounded functional, there

is a function Kz in L2
a(D) such that f(z) = 〈f,Kz〉 for all f in L2

a(D). Let
K(z, w) be the function on D×D defined by K(z, w) = Kz(w). The function
K(z, w) = 1

(1−zw)2
, z, w ∈ D and is called the Bergman reproducing kernel

[19]. For a ∈ D, let ka(z) = K(z,a)√
K(a,a)

= 1−|a|2
(1−az)2 . The function ka, a ∈ D is

called the normalized reproducing kernel for L2
a(D).

It is not easy to verify that a linear operator is bounded, and it is even
more difficult to determine its norm. No conditions on the matrix entries aij
of an operator A have been found which are necessary and sufficient for A
to be bounded, nor has ||A|| been determined in the general case. For the
more general problem we also need analogues of the notion of operator norm.
For more details see ([19], [2]). The family of norms that has received much
attention during the last decade is the Schatten norm. It is well known that
[19] there are no compact Toeplitz operators on the Hardy space other than
the zero operator. In the Bergman space setting, however, there are lots of
nontrivial compact Toeplitz operators belonging to different Schatten classes.
In view of this it is of interest to know the Schatten class characterizations
of Toeplitz and Hankel operators defined on L2

a(C+). Such results play an
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important role in approximation theory [5]. Most of the results obtained so
far on the Schatten class characterizations of Toeplitz and Hankel operators
on the Bergman space of the disk (also on the Bergman space of the unit ball,
weighted Bergman spaces of the disk and on bounded symmetric domains)
are through the Berezin symbols of the corresponding operators. On the
Bergman space of the disk [19], the Schatten class characterizations of big
Hankel operators are given with the help of mean oscillation functions [19]. In
the literature, the Schatten class characterizations of little Hankel operators
are obtained in terms of a function

(V f)(z) = 3〈k̄z, hf̄kz〉,

where hf̄ is the little Hankel operators on the respective Bergman space and
kz is the corresponding normalized reproducing kernel.

In this paper, we have shown that the functions bw̄(s), B(s, w) and Bw̄(s)
as defined in §2 will play vital role in obtaining the Schatten class character-
izations for Toeplitz, big Hankel and little Hankel operators on L2

a(C+).

The layout of this paper is as follows. In §2, we introduce a class of unitary
operators defined on L2

a(C+) induced by the automorphisms ta(s) of C+.
These class of unitary operators play a major role in obtaining the Schatten
class characterization of Toeplitz operators defined on L2

a(C+). In §3, we
introduce the functions B(s, w), Bw(s) and bw(s), s, w ∈ C+ and establish
relations between them. These functions will play a crucial role in obtaining
the Schatten class characterizations of Toeplitz operators. In §4, we relate
Toeplitz operators defined on L2

a(D) and L2
a(C+). The symbol correspondence

is also given. We show that span {bw : w ∈ C+} is dense in L2
a(C+) and

prove that |̃φ|2(w)− |φ̃(w)|2 ≤ ||Hφ|| + ||Hφ||, where φ̃(w) = 〈φbw, bw〉, w ∈
C+. In §5, we prove that if A1 is an operator in the trace class of L2

a(C+)

then tr(A1) =
∫
C+
Ã1(w)dν(w) where Ã1(w) = 〈A1bw, bw〉. We also obtain

the Schatten class characterization of positive Toeplitz operators. In §6,
we present conditions to describe Schatten class Toeplitz operators on the
Bergman space L2

a(C+) of the right half plane. In §7, we find conditions
on C ∈ L(L2

a(C+)) such that C ∈ Sp, the Schatten p-class, 1 ≤ p < ∞
by comparing with positive Toeplitz operators defined the Bergman space
L2
a(C+) and applications of the result are also obtained. In §8, we show that

the Schatten class properties of the little Hankel operator ~f = JSf , f ∈
L2(C+, dµ) depends only on the anti-analytic part of the symbol and establish
that for 2 ≤ p < ∞, the little Hankel operator Sφ ∈Sp if and only if Vφ ∈
Lp(C+, dν) where dν(w) = |B(w,w)|dµ(w).
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2 A class of unitary operators on L2
a(C+)

In this section, we introduce a class of unitary operators defined on L2
a(C+).

These class of unitary operators play a major role in obtaining the Schatten
class characterization of Toeplitz operators defined on L2

a(C+).

Lemma 2.1. If a ∈ D and a = c+ id, c, d ∈ R, then the following hold:

(i) ta(s) = −ids+(1−c)
(1+c)s+id

is an automorphism from C+ onto C+.

(ii) (ta ◦ ta)(s) = s.

(iii) t′a(s) = −la(s), where la(s) = 1−|a|2
((1+c)s+id)2

.

Proof. This can be verified by direct calculations.

For a ∈ D, define Va : L2
a(C+) → L2

a(C+) by (Vag)(s) = (g ◦ ta)(s)la(s).
In Proposition 2.2, we show that Va is a self-adjoint, unitary operator which
is also an involution.

Proposition 2.2. For a ∈ D,

(i) Vala = 1.

(ii) V −1
a = Va and Va is an involution, i.e. V 2

a = IL(L2
a(C+)), where IL(L2

a(C+))

is an identity operator from L2
a(C+) into L2

a(C+).

(iii) Va is self-adjoint.

(iv) Va is unitary, ||Va|| = 1.

(v) VaP+ = P+Va.

Proof. The proposition follows from the definition of Va.

.

Proposition 2.3. Let a ∈ D and φ ∈ L∞(C+). Then VaTφVa = Tφ◦ta .

Proof. Notice that since (la ◦ ta)(s)la(s) = s, we have for f ∈ L2
a(C+),

VaTφVaf = VaTφ[(f ◦ ta)la]
= VaP+[φ(f ◦ ta)la]
= P+Va[φ(f ◦ ta)la]
= P+[(φ ◦ ta)f(la ◦ ta)la]
= P+[(φ ◦ ta)f ]

= Tφ◦taf.
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3 The function B(s, w)

In this section, we introduce the functions B(s, w), Bw(s) and bw(s), s, w ∈
C+ and establish relations between them. These functions will play a crucial
role in obtaining the Schatten class characterizations of Toeplitz operators.

Let W : L2
a(D)→ L2

a(C+) be defined by Wg(s) = 2√
π
g(Ms) 1

(1+s)2
, where

Ms = 1−s
1+s

. The map W is one-one and onto. Hence W−1 exists and W−1 :

L2
a(C+) → L2

a(D) is given by W−1G(z) = 2
√
πG(Mz) 1

(1+z)2
, where Mz =

1−z
1+z

. Suppose a ∈ D and w = 1−a
1+a

= Ma ∈ C+. Define bw(s) = 1√
π

1+w
1+w

2Rew
(s+w)2

.

Let B(s, w) = Bw(s) = 1
π

(1+a)2

(1−aMs)2
1

(1+s)2
.

Lemma 3.1. Let s, w ∈ C+. The following hold:

(i) (bw(w))2 = B(w,w).

(ii) |bw(s)| ||Bw|| = |Bw(s)|.

Proof. Let w ∈ C+ and w = Ma = 1−a
1+a

. Notice that

bw(s) =
1√
π

1 + w

1 + w

2Rew

[s+ w]2

=
2√
π

1− |a|2

[1− a(Ms)]2
1

(1 + s)2
,

and hence

bw(w) =
1

2
√
π

(1 + a)2

(1− |a|2)
.

Thus

bw(s)bw(w) =
(−1)

2π

(1 + a)2

(1− aMs)2
M ′ = B(s, w).

Thus bw(s) = B(s,w)
bw(w)

and (bw(w))2 = B(w,w). This proves (i). To prove (ii),
notice that

||Bw||2 =

∫
C+

|Bw(s)|2dµ(s)

=

∫
C+

|B(s, w)|2dµ(s)

= |bw(w)|2,

since ||bw||2 = 1. Thus ||Bw|| = |bw(w)| and hence |bw(s)| ||Bw|| = |Bw(s)|.



Vol. LV (2017) Schatten Class Operators 97

4 Toeplitz and Hankel operators in L2
a(C+)

In this section, we relate Toeplitz operators defined on L2
a(D) and L2

a(C+).
The symbol correspondence is also given. We show that span {bw : w ∈ C+}
is dense in L2

a(C+) and prove that |̃φ|2(w)− |φ̃(w)|2 ≤ ||Hφ||+ ||Hφ ||, where

φ̃(w) = 〈φbw, bw〉, w ∈ C+.

Lemma 4.1. Let G(s) ∈ L∞(C+). Then the Toeplitz operator TG defined
on L2

a(C+) with symbol G is unitarily equivalent to the Toeplitz operator Tφ
defined on L2

a(D) with symbol φ(z) = G
(

1−z
1+z

)
, where Mz = 1−z

1+z
.

Proof. The operatorW maps
√
n+ 1zn to the function 2√

π

√
n+ 1

(
1−s
1+s

)n 1
(1+s)2

which belongs to L2
a(C+). The Toeplitz operator TG maps this vector to

P+

(
G(s) 2√

π

√
n+ 1

(
1−s
1+s

)n 1
(1+s)2

)
which is equal to

WPW−1

(
G(s)

2√
π

√
n+ 1

(
1− s
1 + s

)n
1

(1 + s)2

)
= WP

(
G

(
1− z
1 + z

)
zn
√
n+ 1

)

= WTφ(zn
√
n+ 1),

where φ(z) = G
(

1−z
1+z

)
. Therefore TG is unitarily equivalent to Tφ.

Lemma 4.2. The space span {bw : w ∈ C+} is dense in L2
a(C+).

Proof. Suppose g ∈ L2
a(D) and g is orthogonal to Ka, a ∈ D. Then g(a) =

〈g,Ka〉 = 0 for all a ∈ D, i.e. g = 0. Hence span {ka : a ∈ D} is dense in
L2
a(D).

Let w ∈ C+ and w = Ma, a ∈ D. Since bw = Wka and W is an one-
one, onto map from L2

a(D) onto L2
a(C+), hence {bw : w ∈ C+} span L2

a(C+).
This can be verified as follows. Let f ∈ L2

a(C+). Then f = Wg, for some g ∈
L2
a(D). Now since g = lim

n→∞
gn, where the functions gn are linear combinations

of certain normalized Bergman kernels ka, a ∈ D, hence f = Wg = lim
n→∞

Wgn,

where Wgn is a linear combination of certain bw, w ∈ C+. Thus the set
span{bw : w ∈ C+} is dense in L2

a(C+).

For φ ∈ L∞(C+), we define φ̃(w) = 〈φbw, bw〉, w ∈ C+.

Theorem 4.3. For w ∈ C+, φ ∈ L∞(C+), the following inequality hold:

|̃φ|2(w)− |φ̃(w)|2 ≤ ||Hφ|| + ||Hφ||.
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Proof. Notice that

|̃φ|2(w) = 〈T|φ|2bw, bw〉

=

∫
C+

|φ(z)|2 |bw(z)|2dµ(z)

=

∫
C+

|(φ ◦ ta)(z)|2 |(bw ◦ ta)(z)|2|la(z)|2dµ(z)

=

∣∣∣∣∣∣∣∣(φ ◦ ta)((−1)√
π
M ′
)∣∣∣∣∣∣∣∣2 . (4.1)

Now

|φ̃(w)|2 = |〈Tφbw, bw〉|2

=

∣∣∣∣∫
C+

φ(z)|bw(z)|2dµ(z)

∣∣∣∣2
=

∣∣∣∣∫
C+

(φ ◦ ta)(z)|(bw ◦ ta)(z)|2|la(z)|2dµ(z)

∣∣∣∣2
=

1

π2
|〈(φ ◦ ta)M ′,M ′〉|2 . (4.2)

Further,

||Hφ|| = || (I − P+)(φbw) ||2

=
∣∣∣∣ (I − P+)Va[(φ ◦ ta)(bw ◦ ta)la]

∣∣∣∣2
=

(
1√
π

)2

|| (φ ◦ ta)M ′ − P+ [(φ ◦ ta)M ′] ||2

=
1

π
|| (φ ◦ ta)M ′ − P+ [(φ ◦ ta)M ′] ||2 . (4.3)
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Thus from (4.1) and (4.2), it follows that |̃φ|2(w)− |φ̃(w)|2 equals

1

π
||(φ ◦ ta)M ′||2 − 1

π2

∣∣〈(φ ◦ ta)M ′,M ′〉∣∣2
=

1

π

[∣∣∣∣(φ ◦ ta)M ′ − P+

[
(φ ◦ ta)M ′]∣∣∣∣2 +

∣∣∣∣∣∣∣∣P+

[
(φ ◦ ta)M ′]− 1

π

〈
(φ ◦ ta)M ′,M ′〉M ′

∣∣∣∣∣∣∣∣2
]

= ||Hφbw||2 +
1

π

∣∣∣∣∣∣∣∣P+

[
(φ ◦ ta)M ′]− 1

π

〈
(φ ◦ ta)M ′,M ′〉M ′

∣∣∣∣∣∣∣∣2

= ||Hφbw||2 + ||P+W (φ ◦M ◦ φa)− 〈W (φ ◦M ◦ φa),W1〉W1||2

= ||Hφbw||2 +
1

π

∣∣∣∣W−1
(
(φ ◦ ta)M ′)− PW−1

(
(φ ◦ ta)M ′)∣∣∣∣2

= ||Hφbw||2 +
1

π

∣∣∣∣W−1
(
(φ ◦ ta)M ′)−W−1P+

(
(φ ◦ ta)M ′)∣∣∣∣2

= ||Hφbw||2 +
1

π

∣∣∣∣(φ ◦ ta)M ′ − P+

(
(φ ◦ ta)M ′)∣∣∣∣2

= ||Hφbw||2 + ||Hφbw||2,

since W−1P+ = PW−1.

5 Trace class operators

In this section, we prove that if A1 is an operator in the trace class of L2
a(C+)

then tr(A1) =
∫
C+
Ã1(w)dν(w) where Ã1(w) = 〈A1bw, bw〉. We also obtain

the Schatten class characterization of positive Toeplitz operators.

Proposition 5.1. Suppose A1 ∈ L(L2
a(C+)) is a positive operator on L2

a(C+)
or A1 is an operator in the trace class of L2

a(C+). Then

tr(A1) =

∫
C+

Ã1(w)dν(w)

where Ã1(w) = 〈A1bw, bw〉 and dν(w) = |B(w,w)|dµ(w).
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Proof. Since A1 ∈ L(L2
a(C+)), hence A1 = WAW−1 for some positive oper-

ator A ∈ L(L2
a(D)). Further A is in trace class in L(L2

a(D)) if and only if A1

is in trace class in L(L2
a(C+)). Notice that

∫
C+

〈A1bw, bw〉dν(w) =

∫
C+

〈A1bw, bw〉|B(w,w)|dµ(w)

=
1

π

∫
C+

〈A1bw, bw〉
|1 + w|4

(2(w + w))2

4

|1 + w|4
dµ(w)

=

∫
D
〈Aka, ka〉

dA(a)

(1− |Mw|2)2
(where w = Ma, a ∈ D)

=

∫
D
〈Aka, ka〉K(a, a)dA(a)

=

∫
D

〈
A

(
∞∑
n=1

en(a)en(a)

)
, Ka

〉
dA(a)

=
∞∑
n=1

∫
D
〈Aen, Ka〉en(a)dA(a)

=
∞∑
n=1

〈Aen, en〉 = tr(A) = tr(A1).

Proposition 5.2. If φ is a nonnegative function on C+, then

tr(Tφ) =

∫
C+

φ(w)dν(w).

Proof. By Proposition 5.1 and Fubini’s theorem [15], we have

tr(Tφ) =

∫
C+

〈Tφbw, bw〉|B(w,w)|dµ(w)

=

∫
C+

|B(w,w)|dµ(w)

∫
C+

φ(z)|bw(z)|2dµ(z)

=

∫
C+

dµ(w)

∫
C+

φ(z)|B(z, w)|2dµ(z)

=

∫
C+

φ(z)dµ(z)

∫
C+

|B(z, w)|2dµ(w)
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=

∫
C+

φ(z)dµ(z)

∫
C+

|Bz(w)|2dµ(w)

=

∫
C+

φ(z)||Bz||2dµ(z)

=

∫
C+

φ(z)|B(z, z)|dµ(z).

The result follows.

For h > 1, the generalized Kantorovich constant K(h, p) is defined by

K(h, p) =
hp − h

(p− 1)(h− 1)

(
p− 1

p

hp − 1

hp − h

)p
,

for any real number p and when there is no confusion, we write K(h, p) =
K(p).

Theorem 5.3. Let A be a strictly positive operator satisfying MI ≥ A ≥
mI > 0, where M > m > 0. Put h = M

m
> 1. Then the following inequalities

hold for every unit vector x and are equivalent:

K(p)〈Ax, x〉p ≥ 〈Apx, x〉 ≥ 〈Ax, x〉p, (5.1)

for any p > 1 or any p < 0 and

〈Ax, x〉p ≥ 〈Apx, x〉 ≥ K(p)〈Ax, x〉p, (5.2)

for any p ∈ (0, 1].

Proof. For proof see [7].

The Kantorivch constant K(p) ∈ (0, 1] for p ∈ [0, 1], K(p) is symmetric
with respect to p = 1

2
and K(p) is an increasing function of p for p ≥ 1

2
and

K(p) is a decreasing function of p for p ≤ 1
2
, and K(0) = K(1) = 1. Further

K(p) ≥ 1 for p ≥ 1 or p ≤ 0 and 1 ≥ K(p) ≥ 2h
1
4

h
1
2 +1

for p ∈ [0, 1].

Proposition 5.4. Let φ ∈ L∞(C+). Suppose Tφ ∈ L(L2
a(C+)) is strictly

positive satisfying MI ≥ Tφ ≥ mI > 0, where M > m > 0. The following
hold:

1. If 0 < p <∞ and Tφ ∈ Sp then φ̃ ∈ Lp(C+, dν).
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2. If 0 < p ≤ 1, φ̃ ∈ Lp(C+, dν) then Tφ ∈ Sp.

3. Let p ∈ [1,∞) be such that K(p) <∞. If φ̃ ∈ Lp(C+, dν) then Tφ ∈ Sp.

Proof. Suppose p > 1 and Tφ ∈ Sp. Then∫
C+

〈Tpφbw, bw〉dν(w) =

∫
C+

〈|Tφ|pbw, bw〉dν(w) <∞.

Hence by (5.1),

∫
C+

〈Tφbw, bw〉pdν(w) <∞. That is, φ̃ ∈ Lp(C+, dν). Suppose

0 < p ≤ 1 and Tφ ∈ Sp. Then

∫
C+

〈Tpφbw, bw〉dν(w) =

∫
C+

〈|Tφ|pbw, bw〉dν(w) <

∞. Hence from (5.2), it follows that K(p)
∫
C+
〈Tφbw, bw〉pdν(w) < ∞. Since

K(p) ∈ (0, 1] for p ∈ [0, 1], hence φ̃ ∈ Lp(C+, dν).

Now assume φ̃ ∈ Lp(C+, dν). Then if 0 < p ≤ 1 then by (5.2), we have∫
C+

〈|Tφ|pbw, bw〉dν(w) <∞ and hence Tφ ∈ Sp. If 1 ≤ p <∞, then by (5.1)

and (5.2), if K(p) <∞ and φ̃ ∈ Lp(C+, dν) then

∫
C+

〈|Tφ|pbw, bw〉dν(w) <∞

and Tφ ∈ Sp.

6 Schatten class Toeplitz operator

In this section, we present conditions to describe Schatten class Toeplitz
operators on the Bergman space L2

a(C+) of the right half plane.
Let BT (D) = {f ∈ L1(D, dA) : ||f ||BT (D) = sup

a∈D
〈T|f |ka, ka〉 < ∞}. The

space L∞(D) is properly contained in BT (D) (see [13]) and if φ ∈ BT (D)
then Tφ is bounded on L2

a(D) and there is a constant C such that ||Tφ|| ≤
C||φ||BT (D).

Theorem 6.1. Suppose 1 ≤ p < ∞ and dν(w) = |B(w,w)|dµ(w). The
following hold:

(1) If Tφ ∈ Sp, then φ̃ ∈ Lp(C+, dν).

(2) If φ ∈ Lp(C+, dν), then φ̃ ∈ Lp(C+, dν) and Tφ ∈ Sp.

Proof. Suppose Tφ ∈ Sp and w = Ma. Then by Proposition 5.1, we have∫
C+

〈|Tφ|pbw, bw〉dν(w) <∞.
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That is, ∫
C+

〈
(
T∗φTφ

) p
2 bw, bw〉dν(w) <∞.

If 2 ≤ p <∞, then

∫
C+

〈
T∗φTφbw, bw

〉 p
2 dν(w) ≤

∫
C+

〈(
T∗φTφ

) p
2 bw, bw

〉
dν(w) <∞.

Now since ||bw||2 = 1, we obtain

1

π
|〈P+ ((φ ◦ ta)M ′) ,M ′〉| =

∣∣∣∣〈P+

(
(φ ◦ ta)

(
(−1)√
π
M ′
))

,

(
(−1)√
π
M ′
)〉∣∣∣∣

= |〈P+ ((φ ◦ ta)Vabw) , Vabw〉|

=

∣∣∣∣∣∣∣∣P+

(
(φ ◦ ta)

(
(−1)√
π
M ′
))∣∣∣∣∣∣∣∣

=
1√
π
||P+ ((φ ◦ ta)M ′)|| . (6.1)

But from Proposition 2.3, it follows that

1

π
|〈P+((φ ◦ ta)M ′),M ′〉| = 1

π
|〈Tφ◦taM ′,M ′〉|

=

∣∣∣∣〈Tφbw,(−1√
π

)
VaM

′
〉∣∣∣∣

= |〈Tφbw, bw〉| .

Hence

1

π
p
2

∫
C+

||P+ ((φ ◦ ta)M ′)||p dν(w) =

∫
C+

∣∣∣∣∣∣∣∣P+

(
(φ ◦ ta)

(
(−1)√
π
M ′
))∣∣∣∣∣∣∣∣p dν(w)

=

∫
C+

||P+ ((φ ◦ ta)Vabw)||p dν(w)

=

∫
C+

〈
T∗φTφbw, bw

〉 p
2 dν(w).
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Thus

1

πp

∫
C+

|φ̃(w)|pdν(w) =
1

πp

∫
C+

|〈Tφbw, bw〉|p dν(w)

=
1

πp

∫
C+

|〈P+ ((φ ◦ ta)M ′) ,M ′〉|p dν(w)

≤ 1

π
p
2

∫
C+

||P+ ((φ ◦ ta)M ′)||p dν(w)

=

∫
C+

〈
T∗φTφbw, bw

〉 p
2 dν(w) <∞.

That is,

∫
C+

|φ̃(w)|pdν(w) < ∞ and φ̃ ∈ Lp(C+, dν), where φ̃(w) =

T̃φ(w) = 〈Tφbw, bw〉. Suppose 1 ≤ p < 2. Then by Heinz inequality [10],
it follows from (6.1) that

∞ >

∫
C+

〈|Tφ|p bw, bw〉 dν(w)

≥
∫
C+

|〈Tφbw, bw〉|2〈
|T∗φ|2(1− p

2
)bw, bw

〉dν(w)

=

∫
C+

|φ̃(w)|2(
1√
π

∣∣∣∣P+

(
(φ ◦ ta)M ′

)∣∣∣∣)2−pdν(w)

=

∫
C+

|φ̃(w)|2
1

π
2−p
2

∣∣∣∣P+

(
(φ ◦ ta)M ′

)∣∣∣∣2−pdν(w)

=

∫
C+

|φ̃(w)|2
1

π
2−p
2

∣∣∣∣Tφ◦taM ′
∣∣∣∣2−pdν(w)

=

∫
C+

|φ̃(w)|2∣∣∣∣∣∣VaTφVa ( (−1)√
π
M ′
)∣∣∣∣∣∣2−pdν(w)

=

∫
C+

|φ̃(w)|2

||Tφbw||2−p
dν(w)

=

∫
C+

||Tφbw||p |φ̃(w)|2

||Tφbw||2
dν(w)
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≥
∫
C+

|φ̃(w)|2

||W−1TφWka||2

(
1√
π
||P+

(
(φ ◦ ta)M ′) ||)p dν(w)

≥
∫
C+

|φ̃(w)|2

||Tφ◦Mka||2

(
1

π

∣∣〈P+

(
(φ ◦ ta)M ′) ,M ′〉∣∣)p dν(w)

=

∫
C+

|φ̃(w)|2

||Tφ◦Mka||2

(
1

π
|〈P+ ((φ ◦ ta)M ′) ,M ′〉|

)p
dν(w)

≥
∫
C+

1

C2||φ ◦M ||2BT (D)

|φ̃(w)|2|φ̃(w)|pdν(w).

Since

〈|T∗φ|2−pbw, bw〉 = 〈|T∗φ|2·
(2−p)

2 bw, bw〉

≤ 〈|T∗φ|2bw, bw〉
2−p
2

= 〈TφT∗φbw, bw〉
2−p
2

= ||T∗φbw||2−p

=

∣∣∣∣∣∣∣∣VaTφVa((−1)√
π
M ′
)∣∣∣∣∣∣∣∣2−p

=
1

π
2−p
2

||Tφ◦taM
′||2−p

=
1

π
2−p
2

||P+((φ ◦ ta)M ′)||2−p

=

(
1√
π

∣∣∣∣P+

(
(φ ◦ ta)M ′)∣∣∣∣)2−p

.

Hence

∫
C+

|φ̃(w)|p+2dν(w) < ∞ and therefore

∫
C+

|φ̃(w)|pdν(w) < ∞. Thus

φ̃ ∈ Lp(C+, dν). Now suppose φ ∈ L1(C+, dν). Then the change of the order
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of integration

∫
C+

|φ̃(w)|dν(w) =

∫
C+

|φ̃(w)| |B(w,w)| dµ(w)

≤
∫
C+

(∫
C+

|φ(z)| |bw(z)|2dµ(z)

)
|B(w,w)| dµ(w)

=

∫
C+

|φ(z)|
∫
C+

|Bw(z)|2dµ(w) dµ(z)

=

∫
C+

|φ(z)|〈Bz, Bz〉 dµ(z)

=

∫
C+

|φ(z)|B(z, z) dµ(z),

is justified by the positivity of the integrand. Hence φ̃ ∈ L1(C+, dν). Simi-

larly, if φ ∈ L∞(C+) then φ̃ ∈ L∞(C+) as |φ̃(w)| = |〈φbw, bw〉| ≤ ||φbw||2||bw||2 ≤
||φ||∞||bw||22 = ||φ||∞. By Marcinkiewicz interpolation theorem [19], it follows

that if φ ∈ Lp(C+, dν) then φ̃ ∈ Lp(C+, dν) for 1 ≤ p ≤ ∞. Now suppose
φ ∈ Lp(C+, dν), 1 ≤ p ≤ ∞. We will prove Tφ ∈ Sp. The case p = +∞ is
trivial. By interpolation we need only to prove the result for p = 1. Suppose
φ ∈ L1(C+, dν). The vectors

εn(z) = (Wen)(z) =
(−1)√
π

(en ◦M)(z)M ′(z)

=
(−1)√
π
en(Mz)M ′(z)

=
(−1)√
π

√
n+ 1

(
1− z
1 + z

)n(
(−2)

(1 + z)2

)
=

2
√
n+ 1√
π

(
1− z
1 + z

)n
1

(1 + z)2
, n = 1, 2, 3, · · ·

forms an orthonormal basis for L2
a(C+).Now 〈Tφεn, εn〉 =

∫
C+

|εn(z)|2φ(z) dµ(z)

and
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∞∑
n=0

|〈Tφεn, εn〉| ≤
∫
C+

∞∑
n=0

|εn(z)|2|φ(z)| dµ(z)

=

∫
C+

1

π

(
∞∑
n=0

|en(Mz)|2|M ′(z)|2
)
|φ(z)| dµ(z)

=

∫
D
|B(w,w)| |K(a, a)|

|B(w,w)|
|(φ ◦M)(a)| dA(a)

=

∫
D
|(φ ◦M)(a)| |B(w,w)| π |M ′(a)|2 dA(a)

=

∫
D
|(φ ◦M)(a)| |B(Ma,Ma)| dµ(Ma)

=

∫
C+

|φ(w)| dν(w),

since

|K(a, a)|
|B(w,w)|

=
1

(1− |a|2)2

4π (1− |a|2)2

|1 + a|4

=
4π

|1 + a|4

= π

∣∣∣∣ (−2)

(1 + a)2

∣∣∣∣2 = π|M ′(a)|2.

Thus Tφ ∈ S1 and ||Tφ||S1 ≤
∫
C+

|φ(w)|dν(w).

Define (Bf)(z) =

∫
D
f(z1)|kz(z1)|2dA(z1), z ∈ D, f ∈ L2(D, dA).

Proposition 6.2. Suppose φ is a nonnegative function on C+, 1 ≤ p < ∞,
then the following are equivalent:

(1) Tφ is in Schatten class Sp;

(2) φ̃(z) is in Lp(C+, dν);
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Proof. Suppose 1 ≤ p < ∞ and Tφ ∈ Sp. Then T
p
φ ∈ S1. Since Tφ ≥

0, by Proposition 5.1, tr(Tpφ) =
∫
C+
〈Tpφbw, bw〉dν(w) < ∞. By Theorem

5.3,
∫
C+

[φ̃(w)]pdν(w) =
∫
C+

[〈Tφbw, bw〉]p dν(w) ≤
∫
C+
〈Tpφbw, bw〉dν(w) < ∞.

Hence φ̃ ∈ Lp(C+, dν). To prove the converse, suppose φ̃ ∈ Lp(C+, dν).

Then since φ̃(w) = 〈φbw, bw〉 = 〈Tφbw, bw〉 = 〈WTφ◦MW
−1Wka,Wka〉 =

〈Tφ◦Mka, ka〉 = B(φ ◦M)(a). Hence B(φ ◦M) ∈ Lp(D, dλ) where dλ(z) =
dA(z)

(1−|z|2)2
, z ∈ D. From [19], it follows that Tφ◦M ∈ (Sp,L(L2

a(D))). By Lemma

4.1, it follows that Tφ = WTφ◦MW
−1 ∈ (Sp,L(L2

a(C+))).

7 Bounded linear operators on L2
a(C+)

In this section, we find conditions on C ∈ L(L2
a(C+)) such that C ∈ Sp, the

Schatten p-class, 1 ≤ p < ∞ by comparing with positive Toeplitz operators
defined the Bergman space L2

a(C+) and applications of the result are also
obtained.

Theorem 7.1. Let φ ∈ Lp(C+, dν), ψ ∈ Lq(C+, dν), where 1 ≤ p, q < ∞.
Let C ∈ L(L2

a(C+)) be such that

|〈CBv, Bw〉|2 ≤ 〈T|φ|Bv, Bv〉〈T|ψ|Bw, Bw〉 (7.1)

for all v, w ∈ C+. Then C ∈ S2r and ||C||22r ≤ ||T|φ|||p ||T|ψ|||q where 1
p
+ 1
q

= 1
r
.

Proof. First we show that (7.1) implies

|〈Cf, g〉|2 ≤ 〈T|φ|f, f〉〈T|ψ|g, g〉

for all f, g ∈ L2
a(C+). Let f =

n∑
j=1

cjBvj where cj are constants, vj ∈ C+

for j = 1, 2, · · · , n and g =
m∑
i=1

diBwi where di are constants, wi ∈ C+ for
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i = 1, 2, · · · ,m. Then

|〈Cf, g〉| =

∣∣∣∣∣
〈
C

(
n∑
j=1

cjBvj

)
,
m∑
i=1

diBwi

〉∣∣∣∣∣
=

∣∣∣∣∣
m,n∑

i=1,j=1

cjdi
〈
CBvj , Bwi

〉∣∣∣∣∣
≤

m,n∑
i=1,j=1

|cj| |di| |〈CBvj , Bwi〉|

≤
m,n∑

i=1,j=1

|cj| |di|〈T|φ|Bvj , Bvj〉
1
2 〈T|ψ|Bwi , Bwi〉

1
2

=

〈
T|φ|

(
n∑
j=1

cjBvj

)
,

n∑
j=1

cjBvj

〉 1
2
〈
T|ψ|

(
m∑
i=1

diBwi

)
,
m∑
i=1

diBwi

〉 1
2

= 〈T|φ|f, f〉
1
2 〈T|ψ|g, g〉

1
2 .

From Lemma 4.2, it follows that the set of vectors
{∑

cjBwj , wj ∈ C+, j = 1, 2, · · · , n
}

is dense in L2
a(C+). Hence

|〈Cf, g〉|2 ≤ 〈T|φ|f, f〉〈T|ψ|g, g〉
for all f, g ∈ L2

a(C+). Since φ ∈ Lp(C+, dν), it follows from Theorem 6.1,

that T|φ| ∈ Sp and ||T|φ|||p =
(

traceTp|φ|

) 1
p
< ∞. Similarly ψ ∈ Lq(C+, dν),

implies that ||T|ψ|||q =
(

traceTq|ψ|

) 1
q
< ∞. Let {un}∞n=0 and {ξn}∞n=0 be two

orthonormal sequences in L2
a(C+). Then using Holder’s inequality, we obtain

that
∞∑
n=0

|〈Cun, ξn〉|2r ≤
∞∑
n=0

〈T|φ|un, un〉r〈T|ψ|ξn, ξn〉r

≤

(
∞∑
n=0

〈T|φ|un, un〉p
) r

p
(
∞∑
n=0

〈T|ψ|ξn, ξn〉q
) r

q

≤

(
∞∑
n=0

〈Tp|φ|un, un〉

) r
p
(
∞∑
n=0

〈Tq|ψ|ξn, ξn〉

) r
q

≤
(

traceTp|φ|

) r
p
(

traceTq|ψ|

) r
q

= ||T|φ|||rp ||T|ψ|||rq if
1

r
=

1

p
+

1

q
.
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Thus ||C||2r ≤ ||T|φ|||
1
2
p ||T|ψ|||

1
2
q .

Corollary 7.2. If φ, ψ ∈ Lp(C+, dν) and C ∈ L(L2
a(C+)) is such that

|〈CBv, Bw〉|2 ≤ 〈T|φ|Bv, Bv〉〈T|ψ|Bw, Bw〉

for all v, w ∈ C+ then ||C||2p ≤ ||T|φ|||p ||T|ψ|||p.

Proof. The proof follows from Theorem 7.1 if we assume p = q.

Corollary 7.3. If S and T are two positive operators in L(L2
a(C+)) and

S ∈ Sp, T ∈ Sq, 1 ≤ p, q <∞ and C ∈ L(L2
a(C+)) is such that

|〈CBv, Bw〉|2 ≤ 〈SBv, Bv〉〈TBw, Bw〉

for all v, w ∈ C+. Then ||C||22r ≤ ||S||p||T ||q if 1
p

+ 1
q

= 1
r
. If p = q, then

||C||2p ≤ ||S||p||T ||p.

Proof. Proceeding similarly as in Theorem 7.1 and Corollary 7.2 by replacing
T|φ| by S and T|ψ| by T , the corollary follows.

Corollary 7.4. If S, T ∈ L(L2
a(C+)), 0 ≤ S ∈ Sp, 1 ≤ p <∞ and |〈Cun, ξn〉|2 ≤

〈Sun, un〉〈Tξn, ξn〉, then ||C||22p ≤ ||S||p||T ||.

Proof. Let {un}∞n=0 and {ξn}∞n=0 be two orthonormal bases for L2
a(C+), then

|〈Cun, ξn〉|2 ≤ 〈Sun, un〉〈Tξn, ξn〉
≤ 〈Sun, un〉||T ||.

Then |〈Cun, ξn〉|2p ≤ ||T ||p〈Sun, un〉p. Hence

∞∑
n=0

|〈Cun, ξn〉|2p ≤ ||T ||p
∞∑
n=0

〈Sun, un〉p

and ||C||22p ≤ ||T || ||S||p.

By Theorem 6.1, if φ ∈ Lp(C+, dν) then Tφ ∈ Sp. Hence it follows from
[19], |Tφ| ∈ Sp. Thus if C, T ∈ L(L2

a(C+)) are such that |〈CBv, Bw〉|2 ≤
〈|Tφ|Bv, Bw〉〈TBv, Bw〉 for all v, w ∈ C+ then C ∈ S2p and ||C||22p ≤ ||T || || |Tφ| ||p.

Corollary 7.5. Let φ ∈ Lp(C+, dν), 1 < p <∞ and φ = φ+ where φ+(w) =
φ(w). Then there exists an operator S ∈ L(L2

a(C+)) such that T|φ|S = ST|φ|
and ||T|φ|S||p ≤ r(S)||T|φ|||p where r(S) is the spectral radius of S.
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Proof. Since φ ∈ Lp(C+, dν) and φ+ = φ, hence T|φ| and Sφ are self-adjoint
operators, T|φ| ∈ Sp and Sφ ∈ Sp. Let U be the group of unitary operators
on L2

a(C+). Let UA = {UAU∗ : U ∈ U}, the unitary orbit of an operator
A ∈ L(L2

a(C+)).
Define f : Sp −→ R as f(X) = ||T|φ|−X||p. Then f attains its minimum

at some S ∈ Sp on USφ = {USφU∗ : U ∈ U} and T|φ|S = ST|φ|. This follows
from [1]. The operator S is also self-adjoint. To prove the corollary we have
to show that for any two orthonormal sequences {un}∞n=0 and {ξn}∞n=0 in
L2
a(C+),

∞∑
n=0

|〈T|φ|Sun, ξn〉|p ≤ r(S)p||T|φ|||pp.

Since T|φ|S = ST|φ| and S = S∗, it follows from Reid’s inequality [12], that

|〈T|φ|Sun, ξn〉|2 = |〈T|φ|(Sun), ξn〉|2

≤ 〈T|φ|(Sun), Sun〉〈T|φ|ξn, ξn〉
= 〈S∗T|φ|Sun, un〉〈T|φ|ξn, ξn〉
= 〈T|φ|S2un, un〉〈T|φ|ξn, ξn〉. (7.2)

Now from (7.2), it follows that

|〈T|φ|Sun, ξn〉|2
m+1

=
(
|〈T|φ|Sun, ξn〉|2

m)2

=
((
|〈T|φ|Sun, ξn〉|2

)2m−1
)2

≤
((
〈T|φ|S2un, un〉〈T|φ|ξn, ξn〉

)2m−1
)2

=
((
|〈T|φ|S2un, un〉|

)2m−1
)2

〈T|φ|ξn, ξn〉2
m

=
((
|〈T|φ|S2un, un〉|2

)2m−2
)2

〈T|φ|ξn, ξn〉2
m

≤
((
|〈T|φ|S22un, un〉〈T|φ|un, un〉|

)2m−2
)2

〈T|φ|ξn, ξn〉2
m

=
(
|〈T|φ|S22un, un〉|2

m−2
)2

〈T|φ|un, un〉2
m−1〈T|φ|ξn, ξn〉2

m

=

((
|〈T|φ|S22un, un〉|2

)2m−3
)2

〈T|φ|un, un〉2
m−1〈T|φ|ξn, ξn〉2

m

≤
((
|〈T|φ|S23un, un〉〈T|φ|un, un〉|

)2m−3
)2

〈T|φ|un, un〉2
m−1〈T|φ|ξn, ξn〉2

m

=
(
|〈T|φ|S23un, un〉|2

m−3
)2

〈T|φ|un, un〉2
m−2〈T|φ|un, un〉2

m−1〈T|φ|ξn, ξn〉2
m
.

Repeating this process, we obtain
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〈T|φ|Sun, ξn〉|2
m+1 ≤

(
|〈T|φ|S2mun, un〉|

)2 〈T|φ|un, un〉2
m−(m−1)+···+2m−1〈T|φ|ξn, ξn〉2

m

=
(
|〈T|φ|S2mun, un〉|

)2 〈T|φ|un, un〉2
1+···+2m−1

〈T|φ|ξn, ξn〉2
m

=
(
|〈T|φ|S2mun, un〉|

)2 〈T|φ|un, un〉2(1+···+2m−2)〈T|φ|ξn, ξn〉2
m

=
(
|〈T|φ|S2mun, un〉|

)2 〈T|φ|un, un〉
2(2m−1−1)

2−1 〈T|φ|ξn, ξn〉2
m

=
(
|〈T|φ|S2mun, un〉|

)2 〈T|φ|un, un〉2(2m−1−1)〈T|φ|ξn, ξn〉2
m

≤ |〈T|φ|S2mun, S
2mun〉〈T|φ|un, un〉〈T|φ|un, un〉2

m−2〈T|φ|ξn, ξn〉2
m

= 〈S∗2
m

T|φ|S
2mun, un〉〈T|φ|un, un〉2

m−1〈T|φ|ξn, ξn〉2
m

= 〈T|φ|S2m+1

un, un〉〈T|φ|un, un〉2
m−1〈T|φ|ξn, ξn〉2

m

.

Thus

|〈T|φ|Sun, ξn〉|2
m ≤ ||T|φ||| ||S2m || ||un||2〈T|φ|un, un〉2

m−1−1〈T|φ|ξn, ξn〉2
m−1

and

|〈T|φ|Sun, ξn〉| ≤ ||T|φ|||
1

2m ||S2m||
1

2m ||un||
2

2m 〈T|φ|un, un〉
1
2
− 1

2m 〈T|φ|ξn, ξn〉
1
2 .

Letting m −→∞, we obtain

|〈T|φ|Sun, ξn〉|2 ≤ [r(S)]2〈T|φ|un, un〉〈T|φ|ξn, ξn〉.

Hence proceeding as in Theorem 7.1 and Corollary 7.2, we can show that
||T|φ|S||p ≤ r(S)||T|φ|||p.

8 Little Hankel operators

In this section, we show that the Schatten class properties of the little Hankel
operator ~f = JSf , f ∈ L2(C+, dµ) depends only on the anti-analytic part
of the symbol and establish that for 2 ≤ p < ∞, the little Hankel operator
Sφ ∈ Sp if and only if V1φ ∈ Lp(C+, dν) where dν(w) = |B(w,w)|dµ(w).

Let H∞(C+) be the space of bounded analytic functions on C+. It is not
difficult to verify that H∞(C+) = WH∞(D).

Proposition 8.1. If f ∈ L2(C+, dµ), then ~f = ~P+f
in the sense that

~fg = ~P+f
g for all g ∈ H∞(C+)( which is dense in L2

a(C+)) .
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Proof. Let h ∈ L2
a(C+) and g ∈ H∞(C+). Then

〈~fg, h〉 = 〈P+(fg), h〉
= 〈P+fg, h〉
= 〈P+fg, P+h〉
= 〈~P+f

g, h〉.

Hence ~fg = ~P+f
g for all g ∈ H∞(C+).

Thus from Proposition 8.1, it follows that for f ∈ L2(C+, dµ), Sf = SP+f
.

For f ∈ L2(C+, dµ), define (V1f)(w) = 3〈bw, ~fbw〉. It is not so difficult
to see that (i)V1P+ = V1(ii)P+V1 = P+ and (iii)V2

1 = V1. This can be
verified as follows. From Proposition 8.1, we obtain V1P+f = 3〈bw, ~P+f

bw〉 =

3〈bw, ~fbw〉 = V1f for f ∈ L2(C+, dµ). Now let f, g ∈ L2(C+, dµ) and g =

g1 + g2 where g1 ∈ L2
a(C+) and g2 ∈ (L2

a(C+))⊥. Then

〈P+V1f, g〉 = 〈V1f, P+g〉
= 〈V1f, g1〉

= π

∫
D
[V (f ◦M)](z)(g1 ◦M)(z)|M ′(z)|2 dA(z),

where (V h)(z) = 3(1 − |z|2)2

∫
D

h(u)

(1− zu)4
dA(u) for h ∈ L2(D, dA). Under

the complex integral pairing with respect to dA, we have V = P ∗2 where

P2h(z) = 3

∫
D

(1− |u|2)2

(1− zu)4
h(u)dA(u) is a projection from L1(D, dA) onto

L1
a(D). From Fubini’s theorem [15] and the fact that both P and P2 re-

produce analytic functions it follows that PV = P where P is the Bergman
projection from L2(D, dA) onto L2

a(D). Thus for f, g ∈ L2(C+, dµ),
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〈P+V1f, g〉 = π

∫
D
[V (f ◦M)](z)(g1 ◦M)(z) |M ′(z)|2 dA(z)

= π

∫
D
V [(f ◦M)M ′](z)(g1 ◦M)(z)M ′(z) dA(z)

=

∫
D
V [(−1)

√
π(f ◦M)M ′](z)(−1)

√
π(g1 ◦M)(z)M ′(z) dA(z)

=

∫
D
V (W−1f)(z)(W−1g1)(z) dA(z)

= 〈WPW−1f, g1〉

= 〈P+f, g1〉

Thus P+V1f = P+f for all f ∈ L2(C+, dµ) and therefore P+V1 = P+. Now
notice that

(V2
1f)(w) = V1(V1f)(w)

= 3〈bw, ~V1f
bw〉

= 3〈bw, ~P+V1f
bw〉

= 3〈bw, ~P+f
bw〉

= 3〈bw, ~fbw〉 = (V1f)(w)

for all w ∈ C+ and f ∈ L2(C+, dµ). Hence V2
1 = V1.

Let φ ∈ L∞(C+). The little Hankel operator Sφ defined on L2
a(C+) belong

to the class Sp, 2 ≤ p <∞.

Theorem 8.2. Suppose f ∈ L2(C+, dµ). Then ~f is bounded if and only
if (V1f)(w) is bounded in C+ and there is a constant C > 0 such that
C−1||V1f ||∞ ≤ ||~f || ≤ C||V1f ||∞.

Proof. Notice that bw ∈ L2(C+, dµ) and ||bw||2 = 1. Hence |(V1f)(w)| =
3|〈bw, ~fbw〉| ≤ 3||bw||2 ||~f || ||bw||2 = 3||bw||22 ||~f || = 3||~f ||. Further, ~f =
~P+f

= ~P+V1f
= ~V1f

. Thus V1f ∈ L∞(C+) implies that ~f is bounded with

||~f || ≤ ||V1f ||∞. The result follows since ~f = ~V1f
for all f ∈ L2(C+, dµ).
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Theorem 8.3. Suppose 2 ≤ p < ∞. Then Sφ ∈ Sp if and only if V1φ ∈
Lp(C+, dν), where dν(w) = |B(w,w)|dµ(w).

Proof. Suppose 2 ≤ p <∞ and Sφ ∈ Sp. Then∫
C+

|(V1φ)(w)|pdν(w) ≤ 3p
∫
C+

||Sφbw||pdν(w)

= 3p
∫
C+

〈Sφbw, Sφbw〉
p
2dν(w)

= 3p
∫
C+

〈S∗
φ
Sφbw, bw〉

p
2dν(w)

≤ 3p
∫
C+

〈(S∗
φ
Sφ)

p
2 bw, bw〉dν(w)

= 3p
∫
C+

〈|Sφ|pbw, bw〉dν(w) <∞.

Hence V1φ ∈ Lp(C+, dν). Conversely, suppose V1φ ∈ Lp(C+, dν). We shall
show that Sφ ∈ Sp. Since Sφ = SV1φ

, it suffices to show that Sφ is in Sp
whenever φ ∈ Lp(C+, dν). In the following we prove that if φ ∈ Lp(C+, dν)
then Sφ ∈ Sp, 1 ≤ p <∞. From Heinz inequality [10], it follows that

|〈Sφbw, bw1〉|2 ≤ 〈|Sφ|bw, bw〉〈|S∗φ|bw1 , bw1〉

= 〈(S∗
φ
Sφ)

1
2 bw, bw〉〈(SφS∗φ)

1
2 bw1 , bw1〉

≤ 〈(S∗
φ
Sφ)bw, bw〉

1
2 〈(SφS∗φ)bw1 , bw1〉

1
2

= ||Sφbw||2 ||Sφ+bw1||2

= ||P+J(φbw)||2 ||P+J(φ
+
bw1)||2

≤ ||φbw||2 ||φ
+
bw1||2

=

(∫
C+

|φ(u)|2|bw(u)|2dµ(u)

) 1
2
(∫

C+

|φ+
(v)|2|bw1(v)|2dµ(v)

) 1
2

≤ d〈T|φ|bw, bw〉〈T|φ+|bw1 , bw1〉

for some constant d > 0. Thus

|〈SφBw, Bw1〉|2 ≤ d〈T|φ|Bw, Bw〉〈T|φ+|Bw1 , Bw1〉.

Now φ ∈ Lp(C+, dν) implies |φ|, |φ+| ∈ Lp(C+, dν). Hence T|φ|,T|φ+| ∈ Sp.
Hence by Theorem 7.1, Sφ ∈ Sp.
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Remark 8.1. It follows from Theorem 8.2, that if f ∈ L2(C+, dµ) then
~f = ~P+f

= ~P+V1f
= ~V1f

. Thus ~f is bounded if and only if ~f = ~g
for some g ∈ L∞(C+). Suppose f ∈ L2(C+, dµ) and ~f is compact. Then

V1f(w) = 3〈bw, ~fbw〉 −→ 0 since bw −→ 0 weakly in in L2
a(C+) as |a| −→ 1−

where a = Mw. From Theorem 8.3, it follows that V1f ∈ Lp(C+, dν), if and
only if ~f is in Sp. Since ~f = ~V1f

, it follows that ~φ is in Sp, 2 ≤ p < ∞ if
and only if φ ∈ Lp(C+, dν). This can also be verified as follows: Notice that
for g ∈ L2

a(C+),

~φg(w) =

∫
C+

φ(z)g(z)Bw(z)dµ(z).

Hence

||~φ||2S2
≤
∫
C+

∫
C+

|φ(z)|2|Bw(z)|2dµ(w)dµ(z)

=

∫
C+

|φ(z)|2dν(z).

We have seen that ||~φ|| ≤ ||φ||∞. Thus interpolation gives ||~φ||Sp ≤ ||φ||Lp(C+,dν)

for 2 ≤ p < ∞. Thus if 2 ≤ p < ∞, then ~f ∈ Sp if and only if ~f = ~g for
some g ∈ Lp(C+, dν).
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