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Schatten Class Operators in £(L%(C,))

Namita Das and Jitendra Kumar Behera

Abstract. In this paper, we consider Toeplitz operators de-
fined on the Bergman space L2(C,) of the right half plane and
obtain Schatten class characterization of these operators. We
have shown that if the Toeplitz operators T4 on L2(C.) belongs
to the Schatten class Sp,1 < p < oo, then (E € LP(Cy,dv),

where ¢(w) = ($bu,b),w € Ci and by(s) = J-ihe 2oy,

Here dv(w) = |B(w,w)|du(w), where du(w) is the area measure
on C; and B(w,w) = (by(w))?. Furthermore, we show that if
¢ € LP(Cy,dv), then ¢ € LP(C,dv) and T4 € S,. We also use
these results to obtain Schatten class characterizations of little
Hankel operators and bounded operators defined on the Bergman

space L2(C,).

AMS Subject Classification (2010). 47B10; 47B35; 30H20
Keywords. Right half plane; Bergman space; Schatten class;
Toeplitz operators; little Hankel operators

1 Introduction

Let H be a separable Hilbert space. Let L(H) be the set of all bounded
linear operators from the Hilbert space H into itself and LC(H) be the set
of all compact operators in £(H). For any nonnegative integer n, the nth
singular value of T'€ LC(H) is given by

sp(T) =inf{||T — K|| : K € £L(H), rank K < n}.
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Here ||.|| is the operator norm. Clearly, so(7") = ||T|| and
so(T) > s1(T) > s9(T) > -+ > 0. (1.1)

For 0 < p < oo, the Schatten p-class ([16], [14]) of H, denoted by S,(H)
or simply S,, is defined as the space of all compact operators 7" on H with
its singular value sequence {s,}°°, belonging to [?(the p-summable sequence
space). If 1 < p < oo, the vector space S, is a Banach space when equipped

with the norm )
Tll, = <Z|8n|p> :

n=1
The space Sy is called the trace class and S5 is the Hilbert-Schmidt class.
For basic properties of Schatten class operators one can refer ([9], [17], [18],
[4]) . The linear functional trace is defined on S; by

o0

tr(T) =Y (Téw.&), T €S,

n=1

where {£,}°°, is an orthonormal basis for H. Let C, = {s = x + iy € C:
x > 0} be the right half plane. Let du(s) = dxdy denote the two dimensional
area measure on C,. Let L*(C,,du) be the space of complex-valued, abso-
lutely square-integrable, measurable functions on C, with respect to the area
measure. The Bergman space of the right half plane denoted as L?(C,) is
the closed subspace of L?(C,,du) consisting of those functions in L?(C, du)
that are analytic. The functions H(s,w) = m, s € C.,w € C, are the
reproducing kernels [3] for L2(C,). Let L>(C,) be the space of complex-
valued, essentially bounded, Lebesgue measurable functions on C,. Define

for f € L>(C4),||f|loc = ess sup |f(s)] < co. The space L>(C,) is a Banach
seCt

space with respect to the essential supremum norm. For ¢ € L>®(C,), we
define the multiplication operator M, from L*(C.,du) into L*(Cy,du) by
(Myf)(s) = ¢(s) f(s); the Toeplitz operator Ty from L2(C, ) into L2(C,) by
Tsf= P.(¢f), where P, denote the orthogonal projection from L?(C,,dpu)
onto L2(C,). The Toeplitz operator T, is bounded and ||T4|| < ||¢||. For
more details see [8] and [11]. The big Hankel operator H, from LZ(C. ) into
(L2(C.))* is defined by Hyl= (I — P,)(9f), f € L2(C.). For ¢ € L*(C.),
the little Hankel operator hy is a mapping from L2(C.) into L2(C,) defined
by hgf = P.(¢f), where P, is the projection operator from L*(C.,du)
onto L2(Cy) = {f : f € L%(C,)}. There are also many equivalent ways
for defining little Hankel operators on L2(C,). Let 8, be the mapping from
L3(C,) into L3(C,) defined by 8yf= P, (J(¢f)) where J is the mapping from
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L*(Cy,du) into L*(C,,du) such that Jf(s) = f(3). Notice that J is unitary
and JSyf= J(Py(J(6f))) = TP, J(6f) = Py (6f) = hof for all f € L2(C,).
Let T';, be the mapping from L2(C, ) into L2 ((C+) defined by I'yf= Py M, Jf.
Thus Tyf = P MyJt= P (¢(s)f(5)) = Pr(J(4(5)f(s))) = Suf for all
f € L2(C,). Hence T'yf= 84f. Thus we obtain hy = J8s and Ty = 8§ ,.
Since J is unitary, the three operators hy, 84 and I'y are referred to as little
Hankel operators on L?(C, ) and a given result on little Hankel operators can
be stated using the operators hg4, 84 and I',. The operator A, is unbounded
in general. However, hy is bounded if ¢ € L*°(C,) and we clearly have
1Rl < [16]|oo-

Let D = {z € C: |z| < 1} be the open unit disk in the complex plane C.
Let L*(D,dA) be the space of complex valued, square-integrable, measurable
functions on D with respect to the normalized area measure dA(z) = %d:cdy.
Let L2(ID) be the space consisting of those functions of L?(ID,dA) that are
analytic. The space L?(D) is a closed subspace of L?(ID,dA) and is called the
Bergman space of the open unit disk . Let L>°(D) be the space of complex-
valued, essentially bounded, Lebesgue measurable functions on D with the
essential supremum norm. For ¢ € L*(D), the multiplication operator M,
from L?(D, dA) into L*(D, dA) is defined by M, f = ¢, the Toeplitz operator
T, from LZ(D) into itself is defined by Ty(f) = P(¢f) for f € LZ(D), where
P is the orthogonal projection from L?(D,dA) onto L?(D). The sequence
of functions {e,(2)}52, = {V/n+ 12"}22, form an orthonormal basis for
L%(D). Since the point evaluation at z € D, is a bounded functional, there
is a function K, in L?(D) such that f(z) = (f, K.) for all f in L?(D). Let
K(z,w) be the function on D x D defined by K(z,w) = K,(w). The function
K(z,w) = m, z,w € D and is called the Bergman reproducing kernel

[19]. For a € D, let ky(z) = \;(I(:(ﬂ)) = éjiazl;. The function k,,a € D is

called the normalized reproducing kernel for L?(D).

It is not easy to verify that a linear operator is bounded, and it is even
more difficult to determine its norm. No conditions on the matrix entries a;;
of an operator A have been found which are necessary and sufficient for A
to be bounded, nor has ||A|| been determined in the general case. For the
more general problem we also need analogues of the notion of operator norm.
For more details see ([19], [2]). The family of norms that has received much
attention during the last decade is the Schatten norm. It is well known that
[19] there are no compact Toeplitz operators on the Hardy space other than
the zero operator. In the Bergman space setting, however, there are lots of
nontrivial compact Toeplitz operators belonging to different Schatten classes.
In view of this it is of interest to know the Schatten class characterizations
of Toeplitz and Hankel operators defined on L?(C,). Such results play an
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important role in approximation theory [5]. Most of the results obtained so
far on the Schatten class characterizations of Toeplitz and Hankel operators
on the Bergman space of the disk (also on the Bergman space of the unit ball,
weighted Bergman spaces of the disk and on bounded symmetric domains)
are through the Berezin symbols of the corresponding operators. On the
Bergman space of the disk [19], the Schatten class characterizations of big
Hankel operators are given with the help of mean oscillation functions [19]. In
the literature, the Schatten class characterizations of little Hankel operators
are obtained in terms of a function

(Vf)(Z) = 3<12Z7 hfk2>7

where hy is the little Hankel operators on the respective Bergman space and
k. is the corresponding normalized reproducing kernel.

In this paper, we have shown that the functions bz(s), B(s,w) and Bg(s)
as defined in §2 will play vital role in obtaining the Schatten class character-
izations for Toeplitz, big Hankel and little Hankel operators on LZ(C,).

The layout of this paper is as follows. In §2, we introduce a class of unitary
operators defined on L?(C,) induced by the automorphisms ¢,(s) of C,.
These class of unitary operators play a major role in obtaining the Schatten
class characterization of Toeplitz operators defined on LZ(C,). In §3, we
introduce the functions B(s,w), Bg(s) and bg(s),s,w € C; and establish
relations between them. These functions will play a crucial role in obtaining
the Schatten class characterizations of Toeplitz operators. In §4, we relate
Toeplitz operators defined on L2(ID) and L?(C. ). The symbol correspondence
is also given. We show that span {by : w € C,} is dense in L?(C,) and
prove that [¢*(w) — [p(w)[* < [|Hs|| + [|HG]], where ¢(w) = (dbg, b), w €
C,. In 85, we prove that if A; is an operator in the trace class of LZ(C,)
then tr(A4;) = fC+ Ay (w)dv(w) where Ay(w) = (Aybg, by). We also obtain
the Schatten class characterization of positive Toeplitz operators. In §6,
we present conditions to describe Schatten class Toeplitz operators on the
Bergman space L2(C.) of the right half plane. In §7, we find conditions
on C' € L(L3(C,)) such that C' € S,, the Schatten p-class, 1 < p < oo
by comparing with positive Toeplitz operators defined the Bergman space
L%(C,) and applications of the result are also obtained. In §8, we show that
the Schatten class properties of the little Hankel operator iy = JS7, f €
L?(C,,du) depends only on the anti-analytic part of the symbol and establish
that for 2 < p < oo, the little Hankel operator 83 €5, if and only if V¢ €
LP(C,,dv) where dv(w) = |B(w, w)|du(w).
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2 A class of unitary operators on L2(C,)

In this section, we introduce a class of unitary operators defined on L2(C,).
These class of unitary operators play a major role in obtaining the Schatten
class characterization of Toeplitz operators defined on L?(C,).

Lemma 2.1. Ifa €D and a = c+1d, c¢,d € R, then the following hold:

(i) ta(s) = ﬁ%ﬁ:? is an automorphism from C, onto C,.

(ii) (tyota)(s) = s.
(1i1) t/(s) = —la(s), where l,(s) = m.
Proof. This can be verified by direct calculations. ]

For a € D, define V, : L2(C,) — L2(C,) by (Vog)(s) = (g o ta)(s)la(s).
In Proposition 2.2, we show that V, is a self-adjoint, unitary operator which
is also an involution.

Proposition 2.2. For a € D,
(i) Vol, = 1.
(i) V' =V, and V, is an involution, i.e. V2 = Ip2(c,y), where Igz(c,)
is an identity operator from L*(C,) into L2(C,).
(11i) V, is self-adjoint.
(v) V,, is unitary, ||V,]| = 1.
(v) VoPy = Py V,.
Proof. The proposition follows from the definition of V. ]

Proposition 2.3. Let a € D and ¢ € L>(C,). Then VTV = Tyor, -
Proof. Notice that since (I, o t,)(s)l.(s) = s, we have for f € L?(C,),
VaToVaf = VaTy(f o ta)l]

= Vo PL[o(f o ta)la]

= P Vo[o(f o ta)la]

= P [(¢ota)f(laota)ld]
= P:[(¢ota)f]

= Tpoto -
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3 The function B(s,w)

In this section, we introduce the functions B(s,w), Bg(s) and bg(s),s,w €
C, and establish relations between them. These functions will play a crucial
role in obtaining the Schatten class characterizations of Toeplitz operators.

Let W 1 L3(D) — Li(C.) be defined by Wy(s) = Z=g(Ms) g2 1+s —L— where

Ms = 1 —.- The map W is one-one and onto. Hence W ex1sts and W1

L2((C+) — L*(D) is given by W 'G(2) = 2ymG(M2) 15 )2, where Mz =

- M < .. Do ) = g 132 25

1+Z Suppose a € D and w = 1+,

Let B(S7 ’LU) - BE(S) = 7lr(1(—1;]?/[)s)2 (1—:5)2 ’

Lemma 3.1. Let s,w € C,. The following hold:
(i) (bz(w))* = B(w, w).
(ii) |bw(s)| || Bwl| = [Bw(s)|.

Proof. Let w € C; and w = Ma = {=2. Notice that
1 14w 2Rew
bu(s) = —=——
VT 1+ [s + w]?
21— |af? 1

T Vrl—a(Ms)2 (1 + )2

and hence . L (1t a?
") = SR (T TPy
Thus . . )
b)) = (1(_;;}8)2M' — B(s,w).

Thus by (s) = IF(S(’“’)) and (bg(w))? = B(w,w). This proves (i). To prove (ii),
notice that

B2 = / |Ba(s)Pdu(s)
- / B (s w)du(s)
— () .

since ||bg||2 = 1. Thus ||Bg|| = |bw(w)| and hence |bz(s)| || Bw|| = |Bw(s)]-
L]
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4 Toeplitz and Hankel operators in L2(C,)

In this section, we relate Toeplitz operators defined on L?(D) and L2(C.).
The symbol correspondence is also given. We show that span {bz : w € C,}
is dense in L7(C ) and prove that |¢|?(w) — [¢(w)[* < [|H4|] + [|F5]], where

Lemma 4.1. Let G(s) € L*(C,). Then the Toeplitz operator T defined
on L2(Cy) with symbol G is unitarily equivalent to the Toeplitz operator T,

defined on L?(D) with symbol ¢(z) = G (ﬁ‘z) , where Mz = {72

Proof. The operator W maps v/n + 12" to the function \/%T\/n +1 (}ﬁ)n (HlS)Q

which belongs to L2(C,). The Toeplitz operator T maps this vector to
P, (G(s)\/%?\/n +1 G—;Z’)n ﬁ) which is equal to

o 2 (152 ) - e () )

NZ3 1+s 1+s)? 142

= WTy(z"vVn+1),

where ¢(z) = G G;z) . Therefore T is unitarily equivalent to 7. O

Lemma 4.2. The space span {by : w € C, } is dense in L2(C,).

Proof. Suppose g € L2(D) and g is orthogonal to K,,a € D. Then g(a) =
(9,K,) =0 for all a € D, i.e. ¢ = 0. Hence span {k, : a € D} is dense in
L3(D).

Let w € C, and w = Ma,a € D. Since by = Wk, and W is an one-
one, onto map from L2(D) onto L2(C, ), hence {by : w € C,} span L2(C,).
This can be verified as follows. Let f € L?(C,). Then f = Wy, for some g €
L?(D). Now since g = nh_)r{.lo Jn, where the functions g, are linear combinations
of certain normalized Bergman kernels k,,a € D, hence f = Wg = 71113010 Wy,

where Wy, is a linear combination of certain bz, w € C,. Thus the set
span{by : w € C, } is dense in L?(C,). O

For ¢ € L>(C..), we define ¢(w) = (¢bg, bg), w € C,.

Theorem 4.3. Forw € C,,¢ € L>*(C,), the following inequality hold:

[62(w) — |(w)[> < |F]| + ||F65]].
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Proof. Notice that

[o2(w) = (Tigj2b, b
S )2 [ba(2) Pdu(2)

= [ 160t ltbw ot (P la(2)Pdn(2)

Mo (CaI
= [[wow (GR)
Now
[G(w)[* = (T b, bi)
=1/, ¢(2)bw(2)du(2)
= | [ 0ot @b o) (Pl ()
::;%|«¢ot0AT,AWH2
Further,

|FHl| = 1] (1 = X¢bd|F
— | ( Val(¢ 0 ta) (b 0 ta)la] ||

- <%) | (6o ta) M — Py (g0 t)0] |
= [l (ot M ~ Py (6ot |

An. U.V.T.

(4.1)

(4.2)
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Thus from (4.1) and (4.2), it follows that |?¢;|/2(w) — |¢(w)|? equals

1 )2 1 oA\ |2

%H(gbota)MH —pK(gZﬁOtQ)M,MH

Py [(6 0 t)M'] — (60 1) M, MM

:%[H(Gﬁota)M'—P+[(¢Ota)M/m2+’ ]

2

1 1
= ||j‘f¢b@||2 + ; ’ P—‘r [(¢ © ta)M,} - ;<(¢ © ta)le M,>M/

= [1Fbwll® + [|PW (6 0 M 0 6a) = (W(po M o by), WLHWLJ
1 — —
= [Fbal P+~ [[W (G0 ta) M) = PW (B0 ta) M)

= 13t + — [V (@0 ta)M") = WP (Go ta) M)

1. — _
= 13aball* + — [[(G o ta) M’ — Py (o ta) )]

= |19sbal * + [13Gball*,

since W—1P, = PW~1, O

5 Trace class operators

In this section, we prove that if A; is an operator in the trace class of L2(C,)
then tr(A;) = fc+ Aj(w)dv(w) where Aj(w) = (Ajbg, by). We also obtain
the Schatten class characterization of positive Toeplitz operators.

Proposition 5.1. Suppose A, € L(L2(C,)) is a positive operator on L2(C,)
or Ay is an operator in the trace class of L?(C,). Then

tr(Al):[C Ay (w)dv(w)

where Ay (w) = (A1bg, bg) and dv(w) = |B(w, w)|dp(w).
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Proof. Since A; € L(L?(C,)), hence A; = WAW ™! for some positive oper-
ator A € L(L2(D)). Further A is in trace class in £(L?(D)) if and only if A,
is in trace class in £(L?(C,)). Notice that

[ (it balavtw) = [ (it b B, ) dit)
Ct+ Ct

1 3 11+ w* 4 y
- 7_‘_/(C+<A1bw7bﬁ>(2(w+w))2|1+w|4d:u( )

dA(a) _
= A ————— (wh =M D
/D< ka,ka>(1 — MR (where w a,a €D)

= A<Akaa ka>K(a7 a)dA<a)
— /D <A (Z eAa)T(a)) ,Ka> dA(a)
-y /D (Aen, Ko)en(a)dA(a)

= Z(Aen, en) = tr(A) =tr(A).

Proposition 5.2. If ¢ is a nonnegative function on C,, then
tr(Ty) = o(w)dv(w).
C+
Proof. By Proposition 5.1 and Fubini’s theorem [15], we have
() = [ (Tobi b B ) )
+
— [ 1B@.wldutw) [ 6oz Pdu(2)
(o (o
— [ dutw) [ 6Bl w) P2
Cy Cy

- [ eln) / 1Bz, w) Pdu(w)
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_ / o) / |Bx(w) Pdu(w)

Cy

- / 6(2)|| Bl Pdu(2)

C+

- / () B, 2)|du(2).
Cy

The result follows. O

For h > 1, the generalized Kantorovich constant K (h,p) is defined by

W—h  (p—1h"—1\"
K<h’p):<p—1><h—1>( ) hp—h) ’

for any real number p and when there is no confusion, we write K (h,p) =
K(p).

Theorem 5.3. Let A be a strictly positive operator satisfying MI > A >
ml > 0, where M >m > 0. Put h = % > 1. Then the following inequalities
hold for every unit vector x and are equivalent:

K(p)(Az,x)? > (APz,z) > (Ax,x)?, (5.1)
foranyp>1 oranyp <0 and

(Az, x)? > (APx, ) > K(p)(Az, x)?, (5.2)
for any p € (0,1].
Proof. For proof see [7]. O

The Kantorivch constant K(p) € (0,1] for p € [0,1], K(p) is symmetric
with respect to p = % and K (p) is an increasing function of p for p > £ and
K (p) is a decreasing function of p for p < 3, and K(0) = K(1) = 1. Further

1
K(p)>1lforp>lorp<0and1>K(p)> hihzl for p € [0,1].
2+

Proposition 5.4. Let ¢ € L>®(C,). Suppose Ty € L(L2(C,)) is strictly
positive satisfying M1 > Ty > ml > 0, where M > m > 0. The following
hold:

1. If 0 <p < oo and Ty € S, then 56 LP(Cy, dv).
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2. If0<p<1,¢eLP(Cy,dv) then Ty € S,

3. Letp € [1,00) be such that K(p) < occ. [fq?e LP(C,,dv) then T, € S,.
Proof. Suppose p > 1 and Ty € S,,. Then

Cy

[ (e i) = [ (7,0, beda) < o

Hence by (5.1), / (Tpbw, byy)Pdv(w) < oo. That is, 5 € L*(C,,dv). Suppose
Ct

0<p<land T, €S, Then/ (Tobw, ) dv(w) = / (|T4Pbws, big)dv(w) <
(o Ct
co. Hence from (5.2), it follows that K (p) [, (Tpbw, bw)Pdv(w) < oo. Since
K(p) € (0,1] for p € [0,1], hence ¢ € LP(C,dv).
Now assume ¢ € LP(C,,dv). Then if 0 < p <1 then by (5.2), we have

/ (|T4|Pbw, bg)dv(w) < oo and hence T, € S,. If 1 < p < oo, then by (5.1)
Cy
and (5.2), if K (p) < o0 and § € L?(C., dv) then / (1T P, b () < 00

Cy
and (.T(z, € Sp. ]

6 Schatten class Toeplitz operator

In this section, we present conditions to describe Schatten class Toeplitz
operators on the Bergman space L2(C, ) of the right half plane.
Let BT(D) = {f € L'(D,dA) : ||fllsrm) = sug(ﬂﬂka,ka) < oo}. The
ac

space L*>°(D) is properly contained in BT'(D) (see [13]) and if ¢ € BT(D)
then T is bounded on LZ(D) and there is a constant C' such that ||Ty|| <
Cll9llsrw)-

Theorem 6.1. Suppose 1 < p < oo and dv(w) = |B(w,w)|du(w). The
following hold:

(1) If Ty € S,, then ¢ € LP(C,., dv).
(2) If ¢ € LP(C,dv), then ¢ € LP(Cy,dv) and T4 € S,.
Proof. Suppose T, € S, and w = Ma. Then by Proposition 5.1, we have

[ 15 baddv(a) < o
C+
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That is,

[SIS]

b, b)) dv(w) < oc0.

[ i)

If 2 <p < oo, then

[SIiS]
[NJ4S)

/ (3T sbes, b buy, bg> dv(w) < oo.
Cy

dv(w )S/C+<(7$§7¢)

Now since ||bg||]2 = 1, we obtain

%|<P+(<¢ota>M’>7M'>|:< (W (

= [(P; (¢ o ta) Vabs) %/Z» ( )>‘
(e ()

= ﬁ |14 (¢ 0 ta) M| (6.1)

But from Proposition 2.3, it follows that

1 1
= (P ((gpota) M), M')| = = [(Tgot, M, M)

= (e (7))

(T b, b
Hence
ﬂi’; P (@0 M) dv(w) = <¢°t ((Tjr )) )

/ 1Py (6 0 to)Vabo)| [P du(w)

:/ <‘J’;‘J’¢bmb@> dv(w)
Cy
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Thus

L @mwwwwvﬁéu%%&mwwm

™ Je, P
= [ P (@ o) AP dvw)
<2 [ 1P (b0t M) duw)

T2 JCy

= || (75T b
C+

P
2

dv(w) < oo.

That is, / |¢(w)[Pdv(w) < oo and ¢ € LP(C,,dv), where ¢(w) =
Cy

f;(w) = (Tybw, by). Suppose 1 < p < 2. Then by Heinz inequality [10],
it follows from (6.1) that

50> [ {170l b b dv(w)
Cy

(T sbw, b |”
2 e, (720t 5y )
-/ 5w) e
C

(F NP (@otarn)]])

:/ 9w dv(w)
e s ||P (@ota)br)|[7

1
2—p
T 2
[$(w)[?
= —dv(w)
/Q 21%’7 H‘I%otaM/W ’

:/ [¢(w)[? —dv(w)
[z ()]

)P
‘A+mwM%ﬂ”m

1T5bull? 1)
_ d
A+ T )
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0 R A TR U
SF (L 1m i ) dot
> [ it (5107 @oran) a0)) st

-/ H}j(% (% (P (60 1)), M’>r)pdu<w>

1 2| Pdu(w
>/C+ s PGP )

Since

(T3 Pbr, b) =

2—p

[[Ter, M1

T 2-p p
7T

2-p ||P+(<¢ © ta)M/)”Q_p

TmT 2

- (P @ormn)ll)

105

Hence / |d(w)|P2dv(w) < oo and therefore / |6 (w)|Pdv(w) < co. Thus
Cyt Ct

5 € LP(Cy,dv). Now suppose ¢ € L'(C,,dv). Then the change of the order
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of integration

/C+ [p(w)]dv(w) =/ lo(w)| |B(w, w)| du(w)

Cy

< / + ( / 190 (o) du(Z)) B, w)| dyu(w)
- / 6] [ 1Balz)Pdu(w) du(z)
Cy (o
- / 16(2)] (B, B2) du(2)
- / 6()| B, 2) du(2),
Cy

is justified by the positivity of the integrand. Hence 5 € LYC,,dv). Simi-
larly, if ¢ € L*(C,) then ¢ € L>(Cy) as [¢(w)| = [(dba, ba)| < [|9bw]|2]|bw]|2
||| 00] [0w] |3 = ||@||oo- By Marcinkiewicz interpolation theorem [19], it follows
that if ¢ € LP(C,,dv) then (E € LP(Cy,dv) for 1 < p < co. Now suppose
¢ € LP(Ci,dv),1 < p < oco. We will prove Ty € S,. The case p = 400 is
trivial. By interpolation we need only to prove the result for p = 1. Suppose
¢ € LY(C,,dv). The vectors

IN

en(2) = (W) (2) = 2 (e, 0 2)(2)0(2)

forms an orthonormal basis for L2(C,). Now (T €, €,) = / len(2)]?0(2) du(2)
Cy
and
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S (T gm0 s/ >~ lea(2)PI0(:) da)
(Den (MM (2) ) 16(2)] dpu(2)

[ ipi oy K (@0) )
‘/D'B( )| (e (60 M)(@)] dA(a)

/ (¢ 0 M)(a)]| |B@,w)| = [M'(a)]? dA(a)

\
>1|~

= [ lt@o W)@ |B(Ma, M) di(1a)

= [ lo(w)| dv(w),
Ct

since

[K(a,@)] 1 4w (1—af’)

[B@,w)|  (1—la)?  [1+al
A
[ ta

—9) |?
=7 ‘ (1<+ (1))2 = 7| M'(a)|>.
Thus T, € 51 and ||Ty||s, < / |p(w)|dv(w). O
Cy
Define (Bf)(z /f 21)|k.(21)PdA(21), 2 €D, f € L*(D, dA).

Proposition 6.2. Suppose ¢ is a nonnegative function on C.,1 < p < o0,
then the following are equivalent:

(1) T4 is in Schatten class Sp;

(2) 6(2) is in LP(Cyy, dv);
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Proof. Suppose 1 < p < o0 and Ty, € Sp. Then ‘J’p € S;. Since T, >
0, by Proposmon 5.1, tr(T3) = [o (Tobw, bg)dv(w) < oo. By Theorem
5.3, [, [B(w)Pdv(w) = [ | qub@,b@ P dv(w) < [y (Tob, be)dv(w) < oo,
Hence gb € LP(C+,dV). To prove the converse, suppose gb € LP(Cy,dv).
Then since ¢p(w) = (Pba,by) = (Toba, bw) = (WThort W Wk, Wk,) =
(Tporika, ko) = B(¢ o M)(a). Hence B(¢p o M) € LP(D,d)\) where d\(z) =
d4¢) 2 € D. From [19], it follows that Tjops € (S, £(L2(D))). By Lemma
(

(1=[z[*)2"
4.1, it follows that T, = Wy W™t € (S,, L(LE(C,))). O

7 Bounded linear operators on L%(C,)

In this section, we find conditions on C' € L(L%(C,)) such that C € S,, the
Schatten p-class, 1 < p < oo by comparing with positive Toeplitz operators
defined the Bergman space L?(C,) and applications of the result are also
obtained.

Theorem 7.1. Let ¢ € LP(C,,dv),v € LU(Cy,dv), where 1 < p,q < 0.
Let C € L(L%(C,)) be such that

(C By, Bo)|* < (T4 By, B) (T4 Bw, Bw) (7.1)

forallv,w € Cy. Then C € Sy and ||C|[3, < [|Tiglllp 1| Tjwillq where %—i—% = %

Proof. First we show that (7.1) implies

(CF P < (Tiolfs Y (T w19, 9)

for all f,g € L?(C,). Let f = chB@j where ¢; are constants, 7; € C,

j=1

for j =1,2,--- ;nand g = ZdlB@ where d; are constants, w; € C, for
i=1
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1=1,2,--- ,m. Then

(CF.g) = <o (Z ch,,j> ,ZdZBwi>‘

=1
= Z Cjaz <CB§j,B@i>

i=1,j=1
< Z |Cj| |El| |<CB577Bﬁz>|

i=1,j=1

i - 1 1

< > el 1dil{Tie1 By, Br;)? (T Basi» Ba,) 2

i=1,j=1

1
2

1
<‘T|¢| (Z Cijj> ,chij> <7¢ (Z diBwi) azdiBwi>
j=1 j=1 i=1 i=1

= (T f2 /)2 (T w19, 9%

From Lemma 4.2, it follows that the set of vectors {Z ¢jBg,,w; € Cy,j=1,2,---

is dense in L2(C, ). Hence
(CE 9)I” < (T f, F){Tiwig: 9)
for all f,g € L?(C,). Since ¢ € L?(C,,dv), it follows from Theorem 6.1,
1

that Ty € S, and ||Tjy|l, = (trace‘J'lp(M)p < o0o. Similarly ¢ € LY(C,,dv),
1

implies that ||Tjy||; = (traceﬂ'ﬁbog < 00. Let {u,}22, and {&,}22, be two

orthonormal sequences in L?(C, ). Then using Holder’s inequality, we obtain
that

Z |<Cun’ §n>|2r < Z(Tldﬂum un>r<7|w|§m §n>r

< <Z<7¢Umun>p> p (Z(‘Iw@,mq) q

n=0 n=0

(¢

< (traceff@l) <trace‘3'|qw|>

r

<m,un>) (Zmﬁnm)

n—=

[
Qs ©

1 1 1
— | Tlls 1T lln if = = =+ =
Tially 15l i€ =+ =

b
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1 1

Thus [|Cl2r < |[Tjel15 [ Tjwslld - O

Corollary 7.2. If ¢, € LP(C,,dv) and C € L(L%(C,)) is such that
{(CBy, By)|* < (T4 By, By)(Ty Buw, Buw)

for allw,w € Cy then ||C]I7 < [ Tjglllp [|Tjullp-

Proof. The proof follows from Theorem 7.1 if we assume p = q. O

Corollary 7.3. If S and T are two positive operators in L(L2(C,)) and
S €S, TeS,1<pqg<ooandC e L(L2(C,)) is such that

(CBy, Bu)|* < (S By, By)(T By, Bx)

for all v,w € C.. Then ||C|13. < |IS|LlITIl, z'f%—l—% =1 Ifp=gq, then
115 < NIS[LHT -

Proof. Proceeding similarly as in Theorem 7.1 and Corollary 7.2 by replacing
Ti¢| by S and T}y by T', the corollary follows. m

Corollary 7.4. IfS,T € L(L3(C,)),0 < S € S),1 < p < 00 and [{Cuy, &) <
(Stn, un)(T&n, &n), then ||C[3, < [[S],l|T]]-

Proof. Let {u,}5%, and {&,}5°, be two orthonormal bases for L2(C, ), then

< (St un)|[T]]-

Then [{(Cuy, £)%P < ||T)[P(Sup, u,)P. Hence

S K Cu, &7 < TIPS (St )
n=0 n=0
and ||CI[3, < [IT1] 1IS]] 0

By Theorem 6.1, if ¢ € LP(C,,dv) then T, € S,. Hence it follows from
[19], |T| € S,. Thus if C,T € L(L2(C,)) are such that |(C' By, By)|* <
(|T4| By, Bw) (T By, By) for allv,w € C, then C' € Sy, and HC’ng <NTI T -

Corollary 7.5. Let ¢ € LP(C,,dv),1 < p < 0o and ¢ = ¢ where ¢ (w) =
¢(w). Then there exists an operator S € L(LZ(CL)) such that TjyS = ST}y
and || TS|, < r(S)||T\g/l|p where r(S) is the spectral radius of S.
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Proof. Since ¢ € LP(C,,dv) and ¢* = ¢, hence Ty and 8, are self-adjoint
operators, Ty € S, and 84 € S,. Let U be the group of unitary operators
on L2(C,). Let Uy = {UAU* : U € U}, the unitary orbit of an operator
A€ £(IA(C,)).

Define f: S, — R as f(X) = ||74) — X||p. Then f attains its minimum
at some S € S, on Us, = {USgU* : U € U} and TjyS = ST}y. This follows
from [1]. The operator S is also self-adjoint. To prove the corollary we have
to show that for any two orthonormal sequences {u,}°, and {&,}>2, in

Lz(c-i-)?

o0

ZI TiglStn; En) [P < 7 (S)PI[ T [5-

=0
Since T|gS = ST}y and S = S*, it follows from Reid’s inequality [12], that

|<T|¢|Sun7€n>|2 = ‘<TI¢\<Sun)a§n>|2
< (Tl (St ), Sun) (T1616ns En)
= (5" Tig) Stn, Un) (T|(€n, &n)
= <‘J'|¢‘5’2un, un) (wam fn> (7.2)
Now from (7.2), it follows that

m+1

(T g1 Sthn, &)

(1T g1 Sttm, E)*")°
m—1\ 2
(T Sum, &)™)

(
(
((Tjg St wn) <‘T|¢|€n»fn>)2m_l>2
(
(I¢

IN

gm—1 m
[Tt 0 |) ) o

om—2 2 gm

IA

(
(
(
-
(

am—2\ 2 .
(l Tis S Umun><7|¢|umun>|> ) (Ti616ns &n)

-2 2 m—1 m
(‘ 7|¢\S unvun ‘ ) <7\¢>\unaun>2 <T|¢\§n7€n>2

2m73 2 _— -
~ (151057 m ) ) s T o

3 2m_3 2 m—1 m
s((|<7|¢52 s ) (Tt ) ) )<<T|¢|umun>2 (Tiotn: £0)’

3 m—3 2 m—2 m—1 m
= <|<r‘T\¢|S2 unaun>|2 ) <(‘T|¢|unaun>2 <r‘]'|¢|unaun>2 <T\¢|€n7§n>2
Repeating this process, we obtain
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m

m—(m—1)_ ... m—1
Tig|tn, Un)” T Tig1ns )

)

) {  (Tiofn )"
)2<7 (i, 1) 2N T8 60
)

)™

21+ 2™
‘T #|Un, Un

~  ~— ~—  ~

Un)

Un) ™

)T (T, )Y
Tig|Un, U n>2 (T gi6n )

Up)

)2

T Uns Un

<T\¢|S un,S ") (T Uy U, <‘T|¢|Un,un> 2 2<T|¢|€n,£n>

{I|¢‘S m+1un7 un><7|¢|un,un> <T|¢|£n7£n>

o~ o~ —

Thus

m m m—1__ m—1
[{Thot Stim, &I < Tl 1S 1] el *(Tisptan, wa)*™ = Tig16ns 60

and

1

(T1o1Stns &) | < N Tjall 127 1152712 || |77 (Tigjtin, un) 2~ 7 (Tjpi6ns €n) 2

Letting m — oo, we obtain

[(Tis1Stin, Ea)* < [ ()12 (Tigytins tn) (T (g1 Ens En)-

Hence proceeding as in Theorem 7.1 and Corollary 7.2, we can show that
[1T1615p < ()| Tjlllp- 0

8 Little Hankel operators

In this section, we show that the Schatten class properties of the little Hankel
operator hy = J8%, f € L*(C,,du) depends only on the anti-analytic part
of the symbol and establish that for 2 < p < oo, the little Hankel operator
83 € Sp if and only if V1¢ € LP(C,,dv) where dv(w) = |B(w, w)|du(w).

Let H*(C,) be the space of bounded analytic functions on C. It is not
difficult to verify that H>(C,) = WH>(D).

Proposition 8.1. If f € L*(Cy,dpu), then hy = hp5 in the sense that
hsg = hp 59 for all g € H*(C,)( which is dense in L;(Cy)) .
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Proof. Let h € L?*(C,) and g € H*(C,). Then

(hzg,h) = (P(fg), h)
< +fgv h>
= (Pyfg,P+h)
= <hp+f9: h)
Hence hyg = hpg for all g € H>(C,). ]

Thus from Proposition 8.1, it follows that for f € L*(Cy,du), 85 = S5

For f € L*(C,,dp), define (V1 f)(w) = 3(bg, hsbg). It is not so difficult
to see that (1)V1P, = Vi(ii)P,V, = P, and (i74)V? = V. This can be
verified as follows. From Proposition 8.1, we obtain V, P, f = 3(bg, he 7bw) =
3(bw, hibg) = Vi f for f € L*(Cy,dp). Now let f,g € L*(Cy,dp) and g =
g1 + g2 where g; € L2(Cy) and g, € (L3(C,))*. Then

<P+V1f7 g> - <V1f, P+g>
= (Vif, q1)

= / V(£ o M))(2){g1 0 M)(@)| M ()2 dA(2),

where (VA)(2) = 3(1 — |2[2)? /D %d%l(u) for h € L2(D, dA). Under

the complex integral pairing with respect to dA, we have V' = P where

1— 2\2

Pyh(z) = 3/ %h(u)cﬁl(u) is a projection from L'(D,dA) onto
p (1 —zu

L!(D). From Fubini’s theorem [15] and the fact that both P and P, re-

produce analytic functions it follows that PV = P where P is the Bergman

projection from L?(D, dA) onto LZ(D). Thus for f,g € L*(Cy,du),
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(P.V.f.g) = / V(f o M))(2){g1 0 M)(z) [M(2)[? dA(2)

D

- 7r/m‘/[(f o M)M'|(z)(g1 0 M)(2)M'(2) dA(z)

- / VI(—1)Va(f o M)M)(2)(—1)v/a (g 0 M)(2)M'(2) dA(:)

_ / VW) (2)(WTgh)(2) dA(2)
= (WPW™'f, g1)

= <P+fagl>

Thus PV, f = P, f for all f € L*(Cy,du) and therefore P,V; = P,. Now
notice that

for all w € C; and f € L*(C,,du). Hence V? = V.
Let ¢ € L*(C,). The little Hankel operator 85 defined on L2(C ) belong
to the class 5,,2 < p < oc.

Theorem 8.2. Suppose f € L*(Cy,du). Then hy is bounded if and only
if (Vif)(w) is bounded in C. and there is a constant C > 0 such that
CHViflloo < MIR7ll < ClIVL ]

Proof. Notice that by € L*(Cy,dpu) and |[|bg|l, = 1. Hence |(Vyf)(w)| =
31 (b Agba)| < 31l | gl [[blle = 31[esl3 Vigl] = 3] Further, by =
hm = hm = hm Thus Vlf S LOO((C+) implies that h? is bounded with
||77]] < [[V1flloo- The result follows since hiy = fiy7 for all f € L*(Cy,dp).

[l
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Theorem 8.3. Suppose 2 < p < oco. Then Sz € S, if and only if V1¢ €
LP(C,,dv), where dv(w) = |B(w,w)|du(w).

Proof. Suppose 2 < p < oo and 85 € 5. Then

/ (V1) (w) () < 3 / 18bil Pl (u0)
Cq

C+

=3 / (S3bw, S5ba) 2 dv(w)
Ct

:3?/ (828 b, b))
Cy

< [ ((8585) bu. bu)dv(w)
Cy

= 3p/ (|85]"bw, by)dv (w) < 0.
Cy

Hence Vi¢ € LP(C,,dv). Conversely, suppose Vi¢ € LP(C,,dv). We shall
show that 85 € S). Since 85 = Sy 5, it suffices to show that Sz is in 5,
whenever ¢ € LP(C,,dv). In the following we prove that if ¢ € LP(C,, dv)
then 85 € 5,1 < p < co. From Heinz inequality [10], it follows that

’<S¢bﬁv w1>’2 <|S$|bm, b@)(‘sﬁbmv bUT>

(8585)2 b, bis) ((858%) 2 bar, by
< ((8585) b, bis) 2 (8585 by buy) #

= ||s¢bw||2 185+ a2

= 1P (@bl || Py T (B by |2

< [[@bsll2 6" bl

-(/ + |Zb<u>|2|bw<u>|%m<u>)é (f + " (0Plbus(0) o))

< d(T4)bw; bw) (T by, bar)
for some constant d > 0. Thus
(858w, Bun)|* < d(Ti¢| Bw, Bw){T o+ Bug, Bur)-

Now ¢ € LP(Cy,dv) implies |¢|, |¢p*| € LP(C,,dv). Hence Ty, Tjp+| € Sp.
Hence by Theorem 7.1, 85 € S,. O
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Remark 8.1. It follows from Theorem 8.2, that if f € L*(C,,du) then
hy = hp 5 = hpyy = hyp. Thus hy is bounded if and only if hy = By
for some g € L>(Cy). Suppose f € L*(C,du) and hy is compact. Then
Vif(w) = 3{by, hbg) — 0 since by — 0 weakly in in L2(Cy) as |a| — 17
where a = Mw. From Theorem 8.3, it follows that V;f € LP(C,,dv), if and
only if iy is in S),. Since hy = hy 7, it follows that hg is in 5,2 < p < oo if
and only if ¢ € LP(C,,dv). This can also be verified as follows: Notice that
for g € L2(C,.),

hog(w) = [ &(2)9(2) Bu(2)dp(z).

Cy

Hence

a2, < / / )P Ba(=)Pdja(aw)dya(2)

- / 16(2)|2dv(2).
Ct

We have seen that ||7is|| < [|¢||o. Thus interpolation gives ||fig||s, < ||9||rr(c )
for 2 < p < oo. Thus if 2 < p < oo, then Ay € S, if and only if hy = h, for
some g € LP(C,, dv).
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