Analele Universității de Vest, Timișoara Seria Matematică – Informatică LV, 2, (2017), 65–84

Hyper Relative Order (p,q) of Entire Functions

Dibyendu Banerjee and Saikat Batabyal

Abstract. After the works of Lahiri and Banerjee [6] on the idea of relative order (p,q) of entire functions, we introduce in this paper hyper relative order (p,q) of entire functions where p,q are positive integers with p>q and prove sum theorem, product theorem and theorem on derivative.

AMS Subject Classification (2010). 30D20 Keywords. Entire functions, Hyper relative order (p,q), Property(A), Composition, Order (Lower order)

1 Introduction and Definitions

Let f and g be non-constant entire functions and $M_f(r) = max\{|f(z)| : |z| = r\}$, $M_g(r) = max\{|g(z)| : |z| = r\}$. Then $M_f(r)$ is strictly increasing and continuous function of r and its inverse $M_f^{-1} : (|f(0)|, \infty) \to (0, \infty)$ exists and $\lim_{R\to\infty} M_f^{-1}(R) = \infty$.

In 1988, Bernal [2] introduced the definition of relative order of f with respect to g as

$$\rho_g(f) = \inf\{\mu > 0 : M_f(r) < M_g(r^{\mu})$$

for all $r > r_0(\mu) > 0$.

When $g(z) = \exp(z)$, $\rho_g(f)$ coincides with the classical definition of order ([15],p-248).

Following Sato [14], we write $\log^{[0]} x = x$, $\exp^{[0]} x = x$ and for positive integer $m \ge 1$, $\log^{[m]} x = \log(\log^{[m-1]} x)$, $\exp^{[m]} x = \exp(\exp^{[m-1]} x)$.

If p, q are positive integers, $p \ge q$ then Juneja et.al., [7] defined (p, q)th order of f by

$$\rho^{(p,q)}(f) = \limsup_{r \to \infty} \frac{\log^{[p]} M_f(r)}{\log^{[q]} r}.$$

During the past decades, several authors (see for example [1], [7], [8], [9], [10], [11]) made close investigations on (p,q) order of entire functions. After this in 2005, Lahiri and Banerjee [6] introduced the concept of relative order (p,q) of entire functions as follows.

Definition 1.1. [6] Let p and q be positive integers with p > q. The relative order (p,q) of f with respect to g is defined by

$$\rho_g^{(p,q)}(f) = \inf\{\mu > 0 : M_f(r) < M_g(\exp^{[p-1]}(\mu \log^{[q]}r)) \text{ for all } r > r_0(\mu) > 0\}$$

$$= \limsup_{r \to \infty} \frac{\log^{[p-1]} M_g^{-1} M_f(r)}{\log^{[q]} r} = \limsup_{r \to \infty} \frac{\log^{[p-1]} M_g^{-1}(r)}{\log^{[q]} M_f^{-1}(r)}.$$

If
$$g(z) = \exp(z)$$
 then $\rho_g^{(p,q)}(f) = \rho^{(p,q)}(f)$.

In the present paper we introduce the concept of hyper relative (p,q) order as follows.

Definition 1.2. Let f and g be entire functions and p, q are positive integers with p > q. The hyper relative (p,q) order of f with respect to g is defined by

$$\rho_g^{-(p,q)}(f) = \inf\{\mu > 0 : M_f(r) < M_g(\exp^{[p]}(\mu \log^{[q]}r)) \text{ for all } r > r_0(\mu) > 0\}.$$

Clearly
$$\rho_g^{-(p,q)}(f) = \limsup_{r \to \infty} \frac{\log^{[p]} M_g^{-1} M_f(r)}{\log^{[q]} r}$$
.

When p = 2, q = 1 and $g(z) = \exp(z)$, then the definition coincides with the classical definition of hyper order of entire functions which have been investigated closely by several authors (see for example [4], [13] etc.).

The following definition of Bernal [2] will be needed.

Definition 1.3. [2] A non-constant entire function g is said to have the property (A) if for any $\sigma > 1$ and for all large r, $[M_g(r)]^2 \leq M_g(r^{\sigma})$ holds.

Examples of functions with or without the property (A) are avilable in [2]. Throughout the paper we shall assume f, g, h etc., are non-constant entire functions and $M_f(r), M_g(r), M_h(r)$ etc., denote respectively their maximum modulus on |z| = r.

2 Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [2] Let g be an entire function which satisfies the property (A), and let $\sigma > 1$. Then for any positive integer n and for all large r,

$$[M_g(r)]^n \le M_g(r^{\sigma})$$

holds.

Lemma 2.2. [2] Suppose f is an entire function, $\alpha > 1, 0 < \beta < \alpha, s > 1, 0 < \mu < \lambda$ and n is a positive integer. Then

- (a) $M_f(\alpha r) > \beta M_f(r)$.
- (b) There exists K = K(s, f) > 0 such that $[M_f(r)]^s \leq KM_f(r^s)$ for r > 0.
- $(c)\lim_{r\to\infty}\frac{M_f(r^s)}{M_f(r)}=\infty=\lim_{r\to\infty}\frac{M_f(r^\lambda)}{M_f(r^\mu)}.$
- (d) If f is transcendental, then

$$\lim_{r \to \infty} \frac{M_f(r^s)}{r^n M_f(r)} = \infty = \lim_{r \to \infty} \frac{M_f(r^\lambda)}{r^n M_f(r^\mu)}.$$

Lemma 2.3. ([12], p-21) Let f(z) be holomorphic in the circle |z| = 2eR(R > 0) with f(0) = 1 and η be an arbitrary positive number not exceeding $\frac{3e}{2}$. Then inside the circle |z| = R, but outside of a family of excluded circles the sum of whose radii is not greater than $4\eta R$, we have

$$\log |f(z)| > -T(\eta)logM_f(2eR)$$

for $T(\eta) = 2 + \log \frac{3e}{2\eta}$.

Lemma 2.4. [5] Every entire function g satisfying the property (A) is transcendental.

Lemma 2.5. [3] Let f(z) and g(z) be entire functions with g(0) = 0. Let α satisfy $0 < \alpha < 1$ and let $C(\alpha) = \frac{(1-\alpha)^2}{4\alpha}$. Then for r > 0

 $M_{f \circ g}(r) \ge M_f(C(\alpha)M_g(\alpha r)).$

Further if g(z) is any entire function, then with $\alpha = \frac{1}{2}$, for sufficiently large values of r

$$M_{f \circ q}(r) \ge M_f(\frac{1}{8}M_q(\frac{r}{2}) - |g(0)|).$$

Clearly

$$M_{f \circ g}(r) \ge M_f(\frac{1}{16}M_g(\frac{r}{2})). \tag{1}$$

On the other hand the opposite inequality

$$M_{f \circ q}(r) \le M_f(M_q(r)) \tag{2}$$

is an immediate consequence of the definition.

Lemma 2.6. If f is a polynomial of degree n and g is transcendental, then $\rho_g^{-(p,q)}(f) = 0$.

Proof. For all large r, $M_f(r) \leq Nr^n$ where N > 0 is a constant and $M_g(r) > Kr^m$ where K > 0 is a constant and M > 0 is arbitrary.

Then

$$M_g^{-1}M_f(r) < \left(\frac{Nr^n}{K}\right)^{\frac{1}{m}} = \lambda r^{\frac{n}{m}},$$

where $\lambda = \left(\frac{N}{K}\right)^{\frac{1}{m}}$.

Now

$$\rho_g^{(p,q)}(f) = \limsup_{r \to \infty} \frac{\log^{[p]} M_g^{-1} M_f(r)}{\log^{[q]} r}$$

$$\leq \limsup_{r \to \infty} \frac{\log^{[p]} \left(\lambda r^{\frac{n}{m}}\right)}{\log^{[q]} r} = 0.$$

3 Sum Theorem

Theorem 3.1. If f_1, f_2, g and h are entire functions with $0 < \lambda_h \le \rho_h < \infty$, then for p > 2

$$\rho_g^{-(p,q)}(f_1 \pm f_2) \le \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\},$$

the equality holding when $\rho_{g \circ h}^{(p,q)}(f_1) \neq \rho_{g \circ h}^{(p,q)}(f_2)$.

Proof. We consider the theorem for $f_1 + f_2$. Let $f = f_1 + f_2$ and suppose that

$$\rho_{g \circ h}^{(p,q)}(f_1) \le \rho_{g \circ h}^{(p,q)}(f_2).$$

Let $\varepsilon > 0$ be arbitrary. For all large r, we have

$$M_{f_{1}}(r) < M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_{1}) + \varepsilon) \log^{[q]} r \} \right]$$

$$\leq M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \varepsilon) \log^{[q]} r \} \right]$$
and $M_{f_{2}}(r) < M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \varepsilon) \log^{[q]} r \} \right].$
Now,
$$M_{f}(r) \leq M_{f_{1}}(r) + M_{f_{2}}(r)$$

$$< 2M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \varepsilon) \log^{[q]} r \} \right]$$

$$< M_{g \circ h} \left[3 \exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \varepsilon) \log^{[q]} r \} \right]$$

using Lemma 2.2(a) it follows by (2)

$$M_g \left[M_h \{ 3 \exp^{[p-1]} ((\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r) \} \right].$$

So,

$$M_g^{-1} M_f(r) < M_h \left[3 \exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \} \right]$$

i.e.

$$\log M_g^{-1} M_f(r) < \log M_h \left[3 \exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \right\} \right]$$

$$<\left[3\exp^{[p-1]}\left\{\left(\rho_{g\circ h}^{(p,q)}(f_2)+\varepsilon\right)\log^{[q]}r\right\}\right]^{(\rho_h+\varepsilon)}$$

i.e.

$$\log \log M_g^{-1} M_f(r) < (\rho_h + \varepsilon) \left[\log 3 + \exp^{[p-2]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \} \right]$$

i.e.

$$\log^{[p]} M_q^{-1} M_f(r) < (\rho_{aoh}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r + O(1)$$

i.e.

$$\rho_g^{-(p,q)}(f) \le (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon).$$

Since $\varepsilon > 0$ be arbitrary,

$$\rho_g^{-(p,q)}(f_1 + f_2) \le \rho_{g \circ h}^{(p,q)}(f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}. \tag{3}$$

Next let, $\rho_{g \circ h}^{(p,q)}(f_1) < \rho_{g \circ h}^{(p,q)}(f_2)$. Then for all large r

$$M_{f_1}(r) < M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_1) + \varepsilon) \log^{[q]} r \} \right]$$
 (4)

and there exists a sequence $\{r_n\}$, $r_n \to \infty$ such that

$$M_{f_2}(r_n) > M_{g \circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \right\} \right] \text{ for } n = 1, 2, 3, \dots$$
 (5)

From Lemma 2.2(c), we obtain

$$\lim_{r\to\infty}\frac{M_{g\circ h}\left[\exp^{[p-1]}\{(\rho_{g\circ h}^{(p,q)}(f_2)-\varepsilon)\log^{[q]}r\}\right]}{M_{g\circ h}\left[\exp^{[p-1]}\{(\rho_{g\circ h}^{(p,q)}(f_1)+\varepsilon)\log^{[q]}r\}\right]}=\infty.$$

Then for all large r.

$$M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon \right) \log^{[q]} r \right\} \right]$$

$$> 2M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f_1) + \varepsilon \right) \log^{[q]} r \right\} \right].$$

So,

$$M_{f_2}(r_n) > M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \} \right]$$

$$> 2 M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_1) + \varepsilon) \log^{[q]} r_n \} \right].$$

Now for a sequence of values of $\{r_n\}, r_n \to \infty$ we get by using (4)

$$M_{f_2}(r_n) > 2M_{f_1}(r_n)$$
 for $n = 1, 2, 3, \dots$

So,

$$M_f(r_n) \ge M_{f_2}(r_n) - M_{f_1}(r_n) > M_{f_2}(r_n) - \frac{1}{2}M_{f_2}(r_n) = \frac{1}{2}M_{f_2}(r_n)$$
$$> \frac{1}{2}M_{g\circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g\circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \right\} \right],$$

using (5)

$$> M_{g \circ h} \left[\frac{1}{3} \exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \} \right]$$

using Lemma 2.2(a)

$$\geq M_g \left[\frac{1}{16} M_h \left(\frac{\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \}}{6} \right) \right],$$

using (1)

i.e.,

$$M_g^{-1} M_f(r_n) > \frac{1}{16} M_h \left[\frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \}}{6} \right]$$

i.e.,

$$\log M_g^{-1} M_f(r_n) \ge \log M_h \left[\frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \}}{6} \right] + O(1)$$

$$> \left\lceil \frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \}}{6} \right\rceil^{(\lambda_h - \varepsilon)} + O(1)$$

i.e.

$$\log \log M_g^{-1} M_f(r_n) > (\lambda_h - \varepsilon) \left[\exp^{[p-2]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n \} \right] + O(1).$$

So,

$$\log^{[p]} M_q^{-1} M_f(r_n) > (\rho_{aoh}^{(p,q)}(f_2) - \varepsilon) \log^{[q]} r_n + O(1)$$

i.e.,

$$\rho_g^{-(p,q)}(f) \ge (\rho_{q \circ h}^{(p,q)}(f_2) - \varepsilon).$$

Since $\varepsilon > 0$ is arbitrary,

$$\bar{\rho}_g^{(p,q)}(f_1 + f_2) \ge \rho_{g \circ h}^{(p,q)}(f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}. \tag{6}$$

From (3) and (6) we have

$$\rho_g^{-(p,q)}(f_1 + f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}.$$

This proves the theorem.

4 Product Theorems

Theorem 4.1. Let P be a polynomial and f, g, h are entire functions with $0 < \lambda_h \le \rho_h < \infty$, where f is transcendental. Then for p > 2

$$\rho_g^{-(p,q)}(Pf) = \rho_{g \circ h}^{(p,q)}(f).$$

Proof. Let the degree of P(z) be m. Then there exists α , $0 < \alpha < 1$ and a positive integer n > m such that $2\alpha < |P(z)| < r^n$ holds on |z| = r, for all large r. Now by Lemma 2.2(a)

$$M_f\left(\frac{1}{\alpha}\alpha r\right) > \frac{1}{2\alpha}M_f\left(\alpha r\right)$$

i.e., $M_f(\alpha r) < 2\alpha M_f(r)$.

Let k(z) = P(z)f(z). Then for all large r and s > 1

 $M_f(\alpha r) < 2\alpha M_f(r) \le M_k(r) \le r^n M_f(r) < M_f(r^s)$, by Lemma 2.2(d).

Let $\varepsilon > 0$ be arbitrary. Now for all large r,

$$M_k\left(r\right) < M_f\left(r^s\right)$$

$$< M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f) + \varepsilon \right) \log^{[q]} r^s \right\} \right]$$

$$< M_g \left[M_h \{ \exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s \} \} \right]$$
 by (2) .

So,
$$M_g^{-1} M_k(r) < M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s \} \right]$$

i.e.,
$$\log M_g^{-1} M_k(r) < \log M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s \} \right]$$

$$< \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s \} \right]^{(\rho_h + \varepsilon)}$$

i.e., $\log \log M_g^{-1} M_k(r) < (\rho_h + \varepsilon) \exp^{[p-2]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s \}$

i.e.,
$$\log^{[p]} M_g^{-1} M_k(r) < (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} r^s + O(1)$$
.

So,
$$\rho_g^{-(p,q)}(k) \le (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon).$$

Since $\varepsilon > 0$ be arbitrary,

$$\rho_{a}^{-(p,q)}(k) \le \rho_{a\circ h}^{(p,q)}(f). \tag{7}$$

On the other hand for a sequence of values of $\{r_n\}, r_n \to \infty$

$$M_{k}(r_{n}) > M_{f}(\alpha r_{n}) > M_{g \circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(\alpha r_{n}) \right\} \right]$$
$$> M_{g} \left[\frac{1}{16} M_{h} \left\{ \frac{\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(\alpha r_{n}) \right\}}{2} \right] \text{ by (1)}.$$

So,
$$M_g^{-1}M_k(r_n) > \frac{1}{16}M_h\left[\frac{\exp^{[p-1]}\{(\rho_{g\circ h}^{(p,q)}(f)-\varepsilon)\log^{[q]}(\alpha r_n)\}}{2}\right]$$

i.e.

$$\log M_g^{-1} M_k(r_n) > \log M_h \left[\frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} (\alpha r_n) \}}{2} \right] + O(1)$$

$$> \left\lceil \frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(\alpha r_n) \}}{2} \right\rceil^{(\lambda_h - \varepsilon)} + O(1)$$

i.e, $\log \log M_g^{-1} M_k(r_n) > (\lambda_h - \varepsilon) \left[\exp^{[p-2]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(\alpha r_n) \right\} \right] + O(1)$

i.e,
$$\log^{[p]} M_g^{-1} M_k(r_n) > (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(\alpha r_n) + O(1)$$

i.e., $\rho_g^{-(p,q)}(k) \geq (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon)$.
Since $\varepsilon > 0$ is arbitrary,

$$\rho_{q}^{-(p,q)}(k) \ge \rho_{ach}^{(p,q)}(f). \tag{8}$$

From (7) and (8) we have

$$\bar{\rho}_g^{(p,q)}(k) = \rho_{g \circ h}^{(p,q)}(f)$$

i.e.,
$$\rho_g^{(p,q)}(Pf) = \rho_{g \circ h}^{(p,q)}(f)$$
.

Theorem 4.2. If n > 1 be a positive integer and f, g and h are entire functions with $0 < \lambda_h \le \rho_h < \infty$, then for p > 2

$$\rho_q^{(p,q)}(f^n) = \rho_{q \circ h}^{(p,q)}(f).$$

Proof. From Lemmas 2.2(a) and 2.2(b), we obtain

$$\left[M_f\left(r\right)\right]^n \le KM_f\left(r^n\right)$$

$$< M_f [(K+1)r^n] < M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} ((K+1)r^n) \} \right]$$

$$< M_g \left[M_h \{ \exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} ((K+1)r^n) \} \} \right], \text{ by}(2)$$

where K = K(n, f) > 0, n > 1, r > 1. So,

$$M_g^{-1} [M_f(r)]^n < M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} ((K+1)r^n) \} \right]$$

i.e.,

$$\log M_g^{-1} [M_f(r)]^n < \log M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} ((K+1)r^n) \} \right]$$

$$< \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} ((K+1)r^n) \right\} \right]^{(\rho_h + \varepsilon)}$$

i.e.,
$$\log \log M_g^{-1} [M_f(r)]^n < (\rho_h + \varepsilon) \left[\exp^{[p-2]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]}((K+1)r^n) \} \right]$$

i.e., $\log^{[p]} M_g^{-1} [M_f(r)]^n < (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]}((K+1)r^n) + O(1)$
i.e, $\limsup_{r \to \infty} \frac{\log^{[p]} M_g^{-1} [M_f(r)]^n}{\log^{[q]} r}$
 $\leq \limsup_{r \to \infty} \frac{(\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]}((K+1)r^n)}{\log^{[q]}((K+1)r^n)} \limsup_{r \to \infty} \frac{\log^{[q]}((K+1)r^n)}{\log^{[q]} r^n}$
So, $\rho_g^{-(p,q)}(f^n) \leq (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon)$.
Since $\varepsilon > 0$ be arbitrary

$$\leq \limsup_{r \to \infty} \frac{(\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]}((K+1)r^n)}{\log^{[q]}((K+1)r^n)} \limsup_{r \to \infty} \frac{\log^{[q]}((K+1)r^n)}{\log^{[q]}r^n}$$

So,
$$\rho_g^{(p,q)}(f^n) \leq (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon).$$

$$\rho_g^{-(p,q)}(f^n) \le \rho_{g \circ h}^{(p,q)}(f). \tag{9}$$

On the other hand for a sequence of values of $r = r_n$

$$\left[M_f\left(r_n\right)\right]^n > M_f\left(r_n\right)$$

$$> M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f) - \varepsilon \right) \log^{[q]}(r_n) \right\} \right]$$

$$> M_g \left[\frac{1}{16} M_h \left\{ \frac{\exp^{[p-1]} \left\{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) \right\}}{2} \right], \text{ by}(1) \right]$$
i.e.,
$$M_g^{-1} \left[M_f(r_n) \right]^n > \frac{1}{16} M_h \left[\frac{\exp^{[p-1]} \left\{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) \right\}}{2} \right]$$
i.e.,
$$\log M_g^{-1} \left[M_f(r_n) \right]^n > \log M_h \left[\frac{\exp^{[p-1]} \left\{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) \right\}}{2} \right] + O(1)$$

$$> \left[\frac{\exp^{[p-1]} \left\{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) \right\}}{2} \right]^{(\lambda_h - \varepsilon)} + O(1)$$
i.e.,
$$\log \log M_g^{-1} \left[M_f(r_n) \right]^n > (\lambda_h - \varepsilon) \left[\exp^{[p-2]} \left\{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) \right\} \right] + O(1)$$

i.e., $\log^{[p]} M_g^{-1} [M_f(r_n)]^n > (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]}(r_n) + O(1).$ So, $\rho_g^{-(p,q)}(f^n) \ge (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon).$ Since $\varepsilon > 0$ be arbitrary,

$$\rho_q^{-(p,q)}(f^n) \ge \rho_{q\circ h}^{(p,q)}(f). \tag{10}$$

From (9) and (10) we have,

$$\rho_g^{-(p,q)}(f^n) = \rho_{g \circ h}^{(p,q)}(f).$$

Theorem 4.3. If f_1, f_2, g and h are entire functions with $0 < \lambda_h \le \rho_h < \infty$, where g is transcendental and $g \circ h$ has the property (A) then for p > 2

$$(i) \rho_g^{-(p,q)}(f_1 f_2) \le \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}.$$

(ii) Equality holds if $\rho_{a\circ h}^{(p,q)}(f_1) \neq \rho_{a\circ h}^{(p,q)}(f_2)$.

Proof. By Lemma 2.4, $g \circ h$ is transcendental. We consider the following three cases.

Case(a). f_1 and f_2 both are polynomials. Then by Lemma 2.6

$$\rho_g^{-(p,q)}(f_1 f_2) \le \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}.$$

Case(b). f_1 is polynomial and f_2 is transcendental. Then by Theorem 4.1

$$\rho_g^{-(p,q)}(f_1 f_2) \le \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}$$

Case(c). f_1 and f_2 both are transcendental. Let $\rho_{g\circ h}^{(p,q)}(f_1) \leq \rho_{g\circ h}^{(p,q)}(f_2)$ and $k=f_1f_2$. Let $\varepsilon>0$ be arbitrary. For all large r, we have

$$M_{f_{1}}(r) < M_{g \circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_{1}) + \frac{\varepsilon}{2}) \log^{[q]} r \right\} \right]$$

$$\leq M_{g \circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \frac{\varepsilon}{2}) \log^{[q]} r \right\} \right]$$
and $M_{f_{2}}(r) < M_{g \circ h} \left[\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \frac{\varepsilon}{2}) \log^{[q]} r \right\} \right].$
Now,
$$\frac{\exp^{[p-2]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \varepsilon) \log^{[q]} r \right\}}{\exp^{[p-2]} \left\{ (\rho_{g \circ h}^{(p,q)}(f_{2}) + \frac{\varepsilon}{2}) \log^{[q]} r \right\}} \to \infty$$

as $r \to \infty$.

So for all large r, say $r \geq r_1 > r_0$ the above expression is greater than

$$\frac{\exp^{[p-2]}\{(\rho_{g\circ h}^{(p,q)}(f_2) + \varepsilon)\log^{[q]}r_0\}}{\exp^{[p-2]}\{(\rho_{g\circ h}^{(p,q)}(f_2) + \frac{\varepsilon}{2})\log^{[q]}r_0\}} = \sigma$$

(sav).

Then $\sigma > 1$. For all large r, we have,

$$M_{k}(r) \leq M_{f_{1}}(r)M_{f_{2}}(r) < \left(M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f_{2}) + \frac{\varepsilon}{2}\right) \log^{[q]} r \right\} \right] \right)^{2}$$

$$< \left(M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f_{2}) + \frac{\varepsilon}{2}\right) \log^{[q]} r \right\} \right]^{\sigma} \right)$$

since $g \circ h$ has the property (A) and $\sigma > 1$

$$< M_{g \circ h} \left[\exp^{[p-1]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon \right) \log^{[q]} r \right\} \right]$$

for $r > r_1 > r_0$

$$\leq M_g \left[M_h \{ \exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \} \} \right]$$
by (2).

So,

$$M_g^{-1} M_k(r) \le M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \} \right]$$

i.e.,

$$\log M_g^{-1} M_k(r) \le \log M_h \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r \} \right]$$

$$<\left[\exp^{[p-1]}\left\{\left(\rho_{g\circ h}^{(p,q)}(f_2)+\varepsilon\right)\log^{[q]}r\right\}\right]^{(\rho_h+\varepsilon)}$$

i.e.,

$$\log\log M_g^{-1}M_k(r) < (\rho_h + \varepsilon)\log\left[\exp^{[p-1]}\left\{\left(\rho_{g\circ h}^{(p,q)}(f_2) + \varepsilon\right)\log^{[q]}r\right\}\right]$$

i.e.,

$$\log^{[p]} M_g^{-1} M_k(r) < (\rho_{g \circ h}^{(p,q)}(f_2) + \varepsilon) \log^{[q]} r + O(1).$$

So,
$$\limsup_{r\to\infty} \frac{\log^{[p]} M_g^{-1} M_k(r)}{\log^{[q]} r} \le \rho_{g\circ h}^{(p,q)}(f_2) + \varepsilon.$$

Since $\varepsilon > 0$ be arbitrary,

$$\rho_g^{-(p,q)}(k) \le \rho_{g \circ h}^{(p,q)}(f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}. \tag{11}$$

(ii) Suppose $\rho_{g\circ h}^{(p,q)}(f_1) < \rho_{g\circ h}^{(p,q)}(f_2)$. Without loss of generality we may assume $f_1(0) = 1$.

We choose μ, λ so that $\rho_{g \circ h}^{(p,q)}(f_1) < \mu < \lambda < \rho_{g \circ h}^{(p,q)}(f_2)$. There exists a sequence $R_n \to \infty$ such that

$$M_{f_2}(R_n) > M_{g \circ h}[exp^{[p-1]}(\lambda log^{[q]}R_n)], \text{ for } n = 1, 2, 3 \dots$$

Also for all large r,

$$M_{f_1}(r) < M_{goh}[exp^{[p-1]}(\mu loq^{[q]}r)].$$

In Lemma 2.3, we take $f_1(z)$ for $f(z), \eta = \frac{1}{16}, R = 2R_n$ and obtain

$$log|f_1(z)| > -T(\eta)log M_{f_1}(2e.2R_n),$$

where

$$T(\eta) = 2 + \log(\frac{3e}{2 \cdot \frac{1}{16}}) = 2 + \log(24e).$$

So,

$$log|f_1(z)| > -(2 + log(24e))logM_{f_1}(4eR_n)$$

holds within and on $|z| = 2R_n$ but outside a family of excluded circles the sum of whose radii is not greater than $4.\frac{1}{16}.2R_n$ i.e., $\frac{R_n}{2}$.

sum of whose radii is not greater than
$$4.\frac{1}{16}.2R_n$$
 i.e., $\frac{R_n}{2}$.
If $r_n \in (R_n, 2R_n)$ then on $|z| = r_n$, $\log |f_1(z)| > -7\log M_{f_1}(4eR_n)$.

Now,

$$M_{f_2}(r_n) > M_{f_2}(R_n) > M_{g \circ h} \left[\exp^{[p-1]}(\lambda \log^{[q]} R_n) \right]$$

 $> M_{g \circ h} \left[\exp^{[p-1]}(\lambda \log^{[q]} \frac{r_n}{2}) \right].$

Let z_r be a point on $|z| = r_n$ such that $M_{f_2}(r_n) = |f_2(z_r)|$. Then

$$M_k(r_n) = max\{|k(z)| : |z| = r_n\}$$

$$= \max\{|f_1(z)||f_2(z)|: |z| = r_n\}$$

$$> [M_{f_1}(4eR_n)]^{-7} M_{g \circ h}[exp^{[p-1]}(\lambda log^{[q]}\frac{r_n}{2})]$$

$$> \left[M_{g \circ h} \{ exp^{[p-1]} (\mu log^{[q]} (4eR_n)) \} \right]^{-7} M_{g \circ h} [exp^{[p-1]} (\lambda log^{[q]} \frac{r_n}{2})]$$

$$\geq \left[M_{g \circ h} \{ exp^{[p-1]} (\mu log^{[q]} (4er_n)) \} \right]^{-7} M_{g \circ h} [exp^{[p-1]} (\lambda log^{[q]} \frac{r_n}{2})],$$

since $r_n > R_n$.

Now for all large n, we have $\frac{\log^{[q]} 4er_n}{\log^{[q]} \frac{r_n}{2}} < \frac{\lambda}{\gamma}$ where $\gamma \in (\mu, \lambda)$. So,

$$M_k(r_n) > \left[M_{g \circ h} \{ exp^{[p-1]}(\mu log^{[q]}(4er_n)) \} \right]^{-7} M_{g \circ h} [exp^{[p-1]}(\gamma log^{[q]}4er_n)]. \tag{12}$$

The expression

$$\frac{exp^{[p-2]}(\gamma log^{[q]}(4er_n))}{exp^{[p-2]}(\mu log^{[q]}(4er_n))}$$

tends to infinity as $n \to \infty$.

So for all large $n, r_n \ge r_1 > r_0$ we may write

$$\frac{exp^{[p-2]}(\gamma log^{[q]}(4er_n))}{exp^{[p-2]}(\mu log^{[q]}(4er_n))} > \frac{exp^{[p-2]}(\gamma log^{[q]}(4er_0))}{exp^{[p-2]}(\mu log^{[q]}(4er_0))} = \alpha$$

(say), then $\alpha > 1$.

From Lemma 2.1 and for all large r, we have

$$\left[M_{g \circ h} \{exp^{[p-1]}(\mu log^{[q]}(4er_n))\}^{\alpha}\right]$$

$$> \left[M_{g \circ h} \{ exp^{[p-1]} (\mu log^{[q]} (4er_n)) \} \right]^8.$$
 (13)

Also for the above value of α , one can easily verify that

$$\left[M_{g \circ h} \left\{ exp^{[p-1]} (\gamma log^{[q]} (4er_n)) \right\} \right]$$

$$> [M_{g \circ h} \{exp^{[p-1]}(\mu log^{[q]}(4er_n))\}^{\alpha}].$$
 (14)

Therefore for all large n, we have from (12), (13) and (14)

$$M_{k}(r_{n}) > M_{g \circ h} \left[exp^{[p-1]} (\mu log^{[q]} (4er_{n})) \right]$$

$$> M_{g \circ h} \left[exp^{[p-1]} (\mu log^{[q]} r_{n}) \right]$$

$$\geq M_{g} \left[\frac{1}{16} M_{h} \left\{ \frac{exp^{[p-1]} (\mu log^{[q]} r_{n})}{2} \right\} \right] \text{ by (1)}.$$

So,

$$M_g^{-1}M_k(r_n) > \frac{1}{16}M_h \left[\frac{exp^{[p-1]}(\mu log^{[q]}r_n)}{2} \right]$$

i.e.,

$$\log M_g^{-1} M_k(r_n) > \log M_h \left[\frac{exp^{[p-1]}(\mu log^{[q]}r_n)}{2} \right] + O(1)$$
$$> \left[\frac{exp^{[p-1]}(\mu log^{[q]}r_n)}{2} \right]^{(\lambda_h - \varepsilon)} + O(1)$$

i.e.,

$$\log \log M_g^{-1} M_k(r_n) > (\lambda_h - \varepsilon) \left[exp^{[p-2]} (\mu log^{[q]} r_n) \right] + O(1)$$

i.e., $\log^{[p]} M_g^{-1} M_k(r_n) > \mu \log^{[q]} r_n + O(1)$.

So,
$$\rho_g^{(p,q)}(f_1f_2) \ge \mu$$
.

Now since $\mu < \rho_{g \circ h}^{(p,q)}(f_2)$ is arbitrary, we have

$$\rho_g^{-(p,q)}(f_1 f_2) \ge \rho_{g \circ h}^{(p,q)}(f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}. \tag{15}$$

From (11) and (15), we have

$$\rho_g^{-(p,q)}(f_1 f_2) = \max\{\rho_{g \circ h}^{(p,q)}(f_1), \rho_{g \circ h}^{(p,q)}(f_2)\}.$$

This proves the theorem.

5 Hyper Relative order (p,q) of the derivative

Theorem 5.1. Let f, g and h be entire transcendental with $0 < \lambda_h \le \rho_h < \infty$. Then for p > 2

$$\bar{\rho}_{q}^{(p,q)}(f') = \rho_{q \circ h}^{(p,q)}(f).$$

Proof. We write $M_{f'}(r) = \max\{|f'(z)| : |z| = r\}, M_{g'}(r) = \max\{|g'(z)| : |z| = r\}$ and $M_{b'}(r) = \max\{|h'(z)| : |z| = r\}.$

Without loss of generality we may assume that f(0) = 0. Otherwise we set $f_1(z) = zf(z)$. Then $f_1(0) = 0$ and by Theorem 4.1

$$\rho_g^{(p,q)}(f_1) = \rho_{g \circ h}^{(p,q)}(f).$$

We may write $f(z) = \int_0^z f'(t)dt$, where the line of integration is the segment from z = 0 to $z = re^{i\theta_0}, r > 0$. Let $z_1 = re^{i\theta_1}$ be such that $|f(z_1)| = max\{|f(z)| : |z| = r\}$. Then

$$M_f(r) = |f(z_1)| = |\int_0^{z_1} f'(t)dt| \le r M_{f'}(r).$$
 (16)

Let C denote the circle $|t-z_0|=r$, where $z_0,|z_0|=r$ is defined so that

$$|f'(z_0)| = max\{|f'(z)| : |z| = r\}.$$

So,

$$M_{f'}(r) = \max\{|f'(z)|: |z| = r\} =$$

$$|f'(z_0)| = \left| \frac{1}{2\pi i} \oint_C \frac{f(t)}{(t - z_0)^2} dt \right| \le \frac{1}{2\pi} \frac{M_f(2r)}{r^2} 2\pi r = \frac{M_f(2r)}{r}.$$
 (17)

From (16) and (17) we obtain

$$\frac{M_f(r)}{r} \le M_{f'}(r) \le \frac{M_f(2r)}{r}, \text{ for } r > 0.$$
 (18)

Let $\sigma \in (0,1)$. From Lemma 2.2(d), $\lim_{r \to \infty} \frac{M_f(r^s)}{r^n M_f(r)} = \infty$, where s > 1 and n is a positive integer and so $M_f(r^s) > r^n M_f(r)$ for all large r. If we replace r by r^{σ} and $s = \frac{1}{\sigma}$ then from above $M_f(r^{s\sigma}) > r^{n\sigma} M_f(r^{\sigma}) \ge r M_f(r^{\sigma})$, where the positive integer n is such that $n\sigma \ge 1$.

So $M_f(r) > rM_f(r^{\sigma})$ for all large r.

From (18) and above, we have

$$\begin{split} M_f(r^{\sigma}) &< \frac{M_f(r)}{r} \leq M_{f'}(r) \leq \frac{M_f(2r)}{r} < M_f(2r) \text{ for all large } r > 1. \end{aligned} \tag{19} \\ &\text{So, } M_{f'}(r) < M_f(2r) \\ &< M_{g\circ h} \left[\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \} \right] \\ &\leq M_g \left[M_h \{ \exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \} \} \right], \text{ by (2)} \\ &\text{i.e.,} \\ &M_g^{-1} M_{f'}(r) < M_h \left[\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \} \right] \\ &\text{i.e.,} \\ &\log M_g^{-1} M_{f'}(r) < \log M_h \left[\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \} \right] \end{split}$$

i.e.,

$$\log\log M_g^{-1}M_{f'}(r) < (\rho_h + \varepsilon) \left[\exp^{[p-2]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \right\} \right]$$

 $< \left[\exp^{[p-1]} \{ (\rho_{q\circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r \} \right]^{(\rho_h + \varepsilon)}$

i.e.,

$$\log^{[p]} M_a^{-1} M_{f'}(r) < (\rho_{a\circ b}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r + O(1).$$

So,

$$\limsup_{r \to \infty} \frac{\log^{[p]} M_g^{-1} M_{f'}(r)}{\log^{[q]} r} \le \lim_{r \to \infty} \frac{(\rho_{g \circ h}^{(p,q)}(f) + \varepsilon) \log^{[q]} 2r}{\log^{[q]} 2r} \cdot \lim_{r \to \infty} \frac{\log^{[q]} 2r}{\log^{[q]} r}$$

i.e.,

$$\rho_q^{-(p,q)}(f') \le \rho_{q \circ h}^{(p,q)}(f) + \varepsilon.$$

Since $\varepsilon > 0$ be arbitrary,

$$\rho_g^{-(p,q)}(f') \le \rho_{g \circ h}^{(p,q)}(f). \tag{20}$$

Now for a sequence of values of $r = r_n$, we have from (19)

$$M_{f'}(r_n) > M_f(r_n^{\sigma}) > M_{g \circ h} \left[\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} \} \right]$$

$$> M_g \left[\frac{1}{16} M_h \left\{ \frac{\exp^{[p-1]} \left\{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} \right\}}{2} \right] \right], \text{ by (1)}$$

i.e.,

$$M_g^{-1} M_{f'}(r_n) > \frac{1}{16} M_h \left[\frac{\exp^{[p-1]} \{ (\rho_{g \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} \}}{2} \right]$$

i.e.,

$$\log M_g^{-1} M_{f'}(r_n) > \log M_h \left[\frac{\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} \}}{2} \right] + O(1) >$$

$$\left[\exp^{[p-1]} \{ (\rho_{g\circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} \} \right]^{(\lambda_h - \varepsilon)}$$

$$\left[\frac{\exp^{[p-1]}\{(\rho_{g\circ h}^{(p,q)}(f)-\varepsilon)\log^{[q]}r_n^{\sigma}\}}{2}\right]^{(\lambda_h-\varepsilon)}+O(1)$$

i.e.,

$$\log\log M_g^{-1}M_{f'}(r_n) > (\lambda_h - \varepsilon) \left[\exp^{[p-2]} \left\{ \left(\rho_{g \circ h}^{(p,q)}(f) - \varepsilon \right) \log^{[q]} r_n^{\sigma} \right\} \right] + O(1)$$

i.e.,

$$\log^{[p]} M_q^{-1} M_{f'}(r_n) > (\rho_{a \circ h}^{(p,q)}(f) - \varepsilon) \log^{[q]} r_n^{\sigma} + O(1).$$

So,
$$\rho_g^{-(p,q)}(f') \ge \rho_{g\circ h}^{(p,q)}(f) - \varepsilon$$
.
Since $\varepsilon > 0$ be arbitrary,

$$\rho_g^{-(p,q)}(f') \ge \rho_{q \circ h}^{(p,q)}(f). \tag{21}$$

From (20) and (21), we have

$$\rho_g^{(p,q)}(f') = \rho_{g \circ h}^{(p,q)}(f).$$

This proves the theorem.

6 Conclusion

Our main goal through this paper is to enquire the basic relation between hyper relative (p,q) orders of entire function with respect to a single entire function and also of composition of entire functions which have not studied previously. But still there remains some problems to be investigated for future researchers in this field.

Acknowledgement

The authors are thankful to referee for his/her valuable suggestions towards the improvement of the paper.

References

- [1] W. Bergweiler, G. Jank, and L. Volkmann, Wachstumsverhalten Zusammenge-setzter Funktionen, *Results in Mathematics*, 7, (1984), 35–53.
- [2] L. Bernal, Orden relative de crecimiento de funciones enteras, *Collect. Math.*, **39**, (1988), 209-229.
- [3] **J. Clunie**, The composition of entire and meromorphic functions, *Mathematical Esays dedicated to Macintyre*, (1970), 75–92.
- [4] S. K. Datta and R. Biswas, A special type of differential polynomial and its comparative growth properties, *International Journal of Modern Engineering Research*, **3(5)**, (2013), 2606-2614.
- [5] B. K. Lahiri and Dibyendu Banerjee, Generalized relative order of entire functions, Proc. Nat. Acad. Sci. India, 72(A) (IV), (2002), 351-371.
- [6] **B. K. Lahiri and Dibyendu Banerjee**, Entire functions of relative order (p,q), Soochow Journal of Mathematics, **31** (4), (2005), 497–513.
- [7] O. P. Juneja, G. P. Kapoor, and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math., 282, (1976), 53-67.
- [8] O. P. Juneja, G. P. Kapoor, and S. K. Bajpai, On the (p,q)-type and lower (p,q)-type of an entire function, J. Reine Angew. Math., 290, (1977), 180-190.
- [9] **H. S. Kasana**, Existence theorem for proximate type of entire functions with index pair (p,q), Bull. Aus. Math. Soc., **35**, (1987), 35-42.
- [10] H. S. Kasana, On the coefficients of entire functions with index pair (p,q), Bull. Math., 32(80) (3), (1988), 235-242.
- [11] **H. S. Kasana**, The generalized type of entire functions with index pair (p,q), Comment. Math., **2**, (1990), 215-222.
- [12] **B. J. Levin**, Distribution of zeros of entire functions, American Mathematical Society, publProvidence, 1980.
- [13] **F. Lu and J. Qi**, A note on the hyper order of entire functions, *Bull. Korean Math. Soc.*, **50** (4), (2013), 1209-1219.
- [14] **D. Sato**, On the rate of growth of entire functions of fast growth, *Bull. Amer. Math. Soc.*, **69**, (1963), 411-414.
- [15] **E. C. Titchmarsh**, The theory of functions, 2nd ed., University Press, Oxford, 1968.

Dibyendu Banerjee Department of Mathematics Visva-Bharati University

Santiniketan -731235

India

 $E\text{-}mail: \verb"dibyendu192@rediffmail.com""}$

Saikat Batabyal Annapurnapalli Kalikapur Bolpur -731204

India

E-mail: santubatabyal@gmail.com

Received: 18.01.2017 Accepted: 2.07.2017