On Almost Generalized Weakly Symmetric LP-Sasakian Manifolds

Kanak Kanti Baishya and Partha Roy Chowdhury

Abstract

The purpose of this paper is to introduce the notions of an almost generalized weakly symmetric LP-Sasakian manifolds and an almost generalized weakly Ricci-symmetric LP-Sasakian manifolds. The existence of an almost generalized weakly symmetric LP-Sasakian manifold is ensured by a non-trivial example.

AMS Subject Classification (2010). 53C15; 53C25.
Keywords. almost generalized weakly symmetric manifolds, LPSasakian manifold.

1 Introduction

The notion of a weakly symmetric Riemannian manifold was initiated by Tamássy and Binh [16]. In analogy to [12], a weakly symmetric Riemannian manifold $\left(M^{n}, g\right)(n>2)$, is said to be an almost weakly pseudo symmetric manifold, if its curvature tensor \bar{R} of type (0,4) is not identically zero and satisfies the identity

$$
\begin{align*}
\left(\nabla_{X} \bar{R}\right)(Y, U, V, W)= & {\left[A_{1}(X)+B_{1}(X)\right] \bar{R}(Y, U, V, W) } \tag{1.1}\\
& +C_{1}(Y) \bar{R}(X, U, V, W)+C_{1}(U) \bar{R}(Y, X, V, W) \\
& +D_{1}(V) \bar{R}(Y, U, X, W)+D_{1}(W) \bar{R}(Y, U, V, X)
\end{align*}
$$

where $A_{1}, B_{1}, C_{1} \& D_{1}$ are non-zero 1-forms defined by $A_{1}(X)=$ $g\left(X, \sigma_{1}\right), B_{1}(X)=g\left(X, \varrho_{1}\right), C_{1}(X)=g\left(X, \pi_{1}\right)$ and $D_{1}(X)=g\left(X, \partial_{1}\right)$, for all X and $\bar{R}(Y, U, V, W)=g(R(Y, U) V, W), \nabla$ being the operator of the covariant differentiation with respect to the metric tensor g. An n-dimensional Riemannian manifold of this kind is denoted by $A(W P S)_{n}$-manifold.

Keeping the tune of Dubey [14], we shall call a Riemannian manifold of dimension n, an almost generalized weakly symmetric (which is abbreviated hereafter as $A(G W S)_{n^{-}}$manifold) if it admits the equation

$$
\begin{align*}
& \left(\nabla_{X} \bar{R}\right)(Y, U, V, W) \\
= & {\left[A_{1}(X)+B_{1}(X)\right] \bar{R}(Y, U, V, W)+C_{1}(Y) \bar{R}(X, U, V, W) } \\
& +C_{1}(U) \bar{R}(Y, X, V, W)+D_{1}(V) \bar{R}(Y, U, X, W) \\
& +D_{1}(W) \bar{R}(Y, U, V, X)+\left[A_{2}(X)+B_{2}(X)\right] \bar{G}(Y, U, V, W) \\
& +C_{2}(Y) \bar{G}(X, U, V, W)+C_{2}(U) \bar{G}(Y, X, V, W) \\
& +D_{2}(V) \bar{G}(Y, U, X, W)+D_{2}(W) \bar{G}(Y, U, V, X) \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{G}(Y, U, V, W)=[g(U, V) g(Y, W)-g(Y, V) g(U, W)] \tag{1.3}
\end{equation*}
$$

and $A_{i}, B_{i}, C_{i} \& D_{i}$ are non-zero 1-forms defined by $A_{i}(X)=g\left(X, \sigma_{i}\right)$, $B_{i}(X)=g\left(X, \varrho_{i}\right), C_{i}(X)=g\left(X, \pi_{i}\right)$ and $D_{i}(X)=g\left(X, \partial_{i}\right)$, for $i=1,2$. The beauty of such $A(G W S)_{n}$-manifold is that it has the flavour of
(i) locally symmetric space in the sense of Cartan (for $A_{i}=B_{i}=C_{i}=$ $D_{i}=0$),
(ii) recurrent space by Walker [13](for $A_{1} \neq 0, A_{2}=B_{i}=C_{i}=D_{i}=0$),
(iii) generalized recurrent space by Dubey [14] $\left(A_{i} \neq 0\right.$ and $B_{i}=C_{i}=$ $D_{i}=0$),
(iv) pseudo symmetric space by Chaki [11] (for $A_{1}=B_{1}=C_{1}=D_{1} \neq 0$ and $A_{2}=B_{2}=C_{2}=D_{2}=0$),
(v) semi-pseudo symmetric space in the sense of Tarafder et al. [10] (for $A_{1}=-B_{1}, C_{1}=D_{1}$ and $A_{2}=B_{2}=C_{2}=D_{2}=0$,
(vi) generalized semi-pseudo symmetric space in the sense of Baishya [6] (for $A_{1}=-B_{1}, C_{1}=D_{1}$ and $A_{2}=-B_{2}, C_{2}=D_{2}$),
(vii) generalized pseudo symmetric space, by Baishya [5] (for $A_{i}=B_{i}=$ $C_{i}=D_{i} \neq 0$),
(viii) almost pseudo symmetric space in the sprite of Chaki et al. [12] (for $B_{1} \neq 0, A_{1}=C_{1}=D_{1} \neq 0$ and $A_{2}=B_{2}=C_{2}=D_{2}=0$),
(ix) almost generalized pseudo symmetric space in the sense of Baishya (for $B_{i} \neq 0, A_{i}=C_{i}=D_{i} \neq 0$) and
(x) weakly symmetric space by Tamássy and Binh [16] (for $A_{1}=A_{2}=$ $B_{2}=C_{2}=D_{2}=0$).

In this connection we would like to mention our work in [7], [8] and [9].
Our work is structured as follows. Section 2 is concerned with LPSasakian manifolds and some known results. In section 3, we have investigated an almost generalized weakly symmetric LP-Sasakian manifold and obtained some interesting results. Section 4 , is concerned with an almost generalized weakly Ricci-symmetric LP-Sasakian manifold. Finally, we have constructed an example of an almost generalized weakly symmetric LP-Sasakian manifold.

2 LP-Sasakian manifolds and some known results

In 1989 K. Matsumoto ([1]) introduced the notion of Lorentzian para-Sasakian (LP-Sasakian for short) manifold. In 1992, Mihai and Rosca([15]) defined the same notion independently. This type of manifold is also discussed in ([2], [3])

An n-dimensional differentiable manifold M is said to be an LP-Sasakian manifold [1] if it admits a $(1,1)$ tensor field ϕ, a unit timelike contravarit vector field ξ, a 1 -form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1, \quad g(X, \xi)=\eta(X), \quad \phi^{2} X=X+\eta(X) \xi \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \quad \nabla_{X} \xi=\phi X \tag{2.2}\\
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.3}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the following relations hold :

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \operatorname{Rank} \phi=n-1 . \tag{2.4}
\end{equation*}
$$

Again, if we put

$$
\Omega(X, Y)=g(X, \phi Y)
$$

for any vector fields X, Y then the tensor field $\Omega(X, Y)$ is a symmetric $(0,2)$ tensor field ([15]). Also, since the vector field η is closed in an LP-Sasakian manifold, we have ([1], [15])

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Omega(X, Y), \quad \Omega(X, \xi)=0 \tag{2.5}
\end{equation*}
$$

for any vector fields X and Y.
Let M be an n-dimensional LP-Sasakian manifold with structure (ϕ, ξ, η, g). Then the following relations hold ([1], [15]) :

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.6}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{2.7}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.8}\\
S(X, \xi)=(n-2) \eta(X) \tag{2.9}\\
S(\phi X, \phi Y)=S(X, Y)+(n-2) \eta(X) \eta(Y) \tag{2.10}
\end{gather*}
$$

for any vector fields X, Y, Z where R is the Riemannian curvature tensor of the manifold.

3 Almost generalized weakly symmetric LP - Sasakian manifold

An LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$, is said to be an almost generalized weakly symmetric if it admits the relation (1.2).

Now, contracting Y over W in both sides of (1.2), we get

$$
\begin{align*}
& \left(\nabla_{X} S\right)(U, V) \\
= & {\left[A_{1}(X)+B_{1}(X)\right] S(U, V)+C_{1}(U) S(X, V) } \\
& +C_{1}(R(X, U) V)+D_{1}(R(X, V) U)+D_{1}(V) S(U, X) \\
& +(n-1)\left[\left\{A_{2}(X)+B_{2}(X)\right\} g(U, V)+C_{2}(U) g(X, V)\right] \\
& +D_{2}(V)(n-1) g(U, X)+C_{2}(G(X, U) V)+D_{2}(G(X, V) U) \tag{3.1}
\end{align*}
$$

which yields

$$
\begin{align*}
& \left(\nabla_{X} S\right)(U, \xi) \\
= & {\left[A_{1}(X)+B_{1}(X)\right](n-2) \eta(U)+C_{1}(U)(n-2) \eta(X) } \\
& +D_{1}(\xi) S(U, X)+\eta(U) C_{1}(X)-\eta(X) C_{1}(U)+\eta(U) D_{1}(X) \\
& -g(X, U) D_{1}(\xi)+(n-1)\left[\left\{A_{2}(X)+B_{2}(X)\right\} \eta(U)\right. \\
& \left.+C_{2}(U) \eta(X)+D_{2}(\xi) g(U, X)\right]+\eta(U) C_{2}(X) \\
& -\eta(X) C_{2}(U)+\eta(U) D_{2}(X)-g(U, X) D_{2}(\xi) \tag{3.2}
\end{align*}
$$

for $V=\xi$. Again, replacing V by ξ, in the following identity

$$
\begin{equation*}
\left(\nabla_{X} S\right)(U, V)=\nabla_{X} S(U, V)-S\left(\nabla_{X} U, V\right)-S\left(U, \nabla_{X} V\right) \tag{3.3}
\end{equation*}
$$

and then making use of (2.2), (2.5), (2.9), we find

$$
\begin{equation*}
\left(\nabla_{X} S\right)(U, \xi)=(n-2) g(X, \phi U)-S(U, \phi X) . \tag{3.4}
\end{equation*}
$$

Next, in consequence of (3.2) and (3.4), we have

$$
\begin{align*}
& (n-2) g(X, \phi U)-S(U, \phi X) \\
= & (n-2)\left[\left\{A_{1}(X)+B_{1}(X)\right\} \eta(U)+C_{1}(U) \eta(X)\right]+D_{1}(\xi) S(U, X) \\
& +\eta(U) C_{1}(X)-\eta(X) C_{1}(U)+\eta(U) D_{1}(X)-g(X, U) D_{1}(\xi) \\
& +(n-1)\left[\left\{A_{2}(X)+B_{2}(X)\right\} \eta(U)+C_{2}(U) \eta(X)+D_{2}(\xi) g(U, X)\right] \\
& +\eta(U) C_{2}(X)-\eta(X) C_{2}(U)+\eta(U) D_{2}(X)-g(U, X) D_{2}(\xi) . \tag{3.5}
\end{align*}
$$

Next, putting $X=U=\xi$ in (3.5) and using (2.1), (2.2) and (2.9), we get

$$
\begin{align*}
& (n-2)\left[A_{1}(\xi)+B_{1}(\xi)+C_{1}(\xi)+D_{1}(\xi)\right] \\
+\quad & (n-1)\left[A_{2}(\xi)+B_{2}(\xi)+C_{2}(\xi)+D_{2}(\xi)\right]=0 . \tag{3.6}
\end{align*}
$$

In particular, if $A_{2}(\xi)=B_{2}(\xi)=C_{2}(\xi)=D_{2}(\xi)=0$, (3.6) becomes

$$
\begin{equation*}
A_{1}(\xi)+B_{1}(\xi)+C_{1}(\xi)+D_{1}(\xi)=0 \tag{3.7}
\end{equation*}
$$

This leads to the followings
Theorem 3.1. In an almost generalized weakly symmetric LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$, the relation (3.6) hold good.

Corollary 3.2. In an almost weakly symmetric LP-Sasakian manifold $\left(M^{n}, g\right)(n>$ 2), the relation (3.7) hold good.

By virtue of (2.1), (2.2) and (2.9), the equation (3.1) turns into

$$
\begin{align*}
& \left(\nabla_{X} S\right)(\xi, V) \\
= & (n-2)\left[\left\{A_{1}(X)+B_{1}(X)\right\} \eta(V)+D_{1}(V) \eta(X)\right]+C_{1}(\xi) S(X, V) \\
& +\eta(V) C_{1}(X)-g(X, V) C_{1}(\xi)+\eta(V) D_{1}(X)-\eta(X) D_{1}(V) \\
& +(n-1)\left[\left\{A_{2}(X)+B_{2}(X)\right\} \eta(V)+D_{2}(V) \eta(X)\right] \\
& +C_{2}(\xi)(n-1) g(X, V)+\eta(V) C_{2}(X)-g(X, V) C_{2}(\xi) \\
& +\eta(V) D_{2}(X)-\eta(X) D_{2}(V) \tag{3.8}
\end{align*}
$$

for $U=\xi$. Again, putting $U=\xi$ in (3.3) and using (2.2), (2.5), (2.9), we obtain

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\xi, V)=(n-2) g(X, \phi V)-S(V, \phi X) \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), we get

$$
\begin{align*}
& (n-2) g(X, \phi V)-S(V, \phi X) \\
= & (n-2)\left[\left\{A_{1}(X)+B_{1}(X)\right\} \eta(V)+D_{1}(V) \eta(X)\right]+C_{1}(\xi) S(X, V) \\
& +\eta(V) C_{1}(X)-g(X, V) C_{1}(\xi)+\eta(V) D_{1}(X)-\eta(X) D_{1}(V) \\
& +(n-1)\left[\left\{A_{2}(X)+B_{2}(X)\right\} \eta(V)+D_{2}(V) \eta(X)\right] \\
& +C_{2}(\xi)(n-1) g(X, V)+\eta(V) C_{2}(X)-g(X, V) C_{2}(\xi) \\
& +\eta(V) D_{2}(X)-\eta(X) D_{2}(V) . \tag{3.10}
\end{align*}
$$

Putting $V=\xi$ in (3.10) and using (2.1), (2.2), (2.9), we obtain

$$
\begin{align*}
0= & -(n-2)\left\{A_{1}(X)+B_{1}(X)\right\}-C_{1}(X)-D_{1}(X) \\
& +(n-3) D_{1}(\xi) \eta(X)+(n-3) C_{1}(\xi) \eta(X) \\
& -(n-1)\left\{A_{2}(X)+B_{2}(X)\right\}-C_{2}(X)-D_{2}(X) \\
& +(n-2) D_{2}(\xi) \eta(X)+(n-2) C_{2}(\xi) \eta(X) . \tag{3.11}
\end{align*}
$$

Putting $X=\xi$ in (3.10) and using (2.1), (2.2), (2.9), we obtain

$$
\begin{align*}
0= & (n-2)\left\{A_{1}(\xi)+B_{1}(\xi)\right\} \eta(V)+(n-2) C_{1}(\xi) \eta(V) \\
& +\eta(V) D_{1}(\xi)-(n-3) D_{1}(V)+ \\
& (n-1)\left\{A_{2}(\xi)+B_{2}(\xi)\right\} \eta(V)+(n-1) C_{2}(\xi) \eta(V) \\
& +\eta(V) D_{2}(\xi)-(n-2) D_{2}(V) . \tag{3.12}
\end{align*}
$$

Replacing V by X in the above equation

$$
\begin{align*}
0= & (n-2)\left\{A_{1}(\xi)+B_{1}(\xi)\right\} \eta(X)-(n-3) D_{1}(X) \\
& +C_{1}(\xi)(n-2) \eta(X)+\eta(X) D_{1}(\xi) \\
& +(n-1)\left\{A_{2}(\xi)+B_{2}(\xi)\right\} \eta(X)-(n-2) D_{2}(X) \\
& +(n-1) C_{2}(\xi) \eta(X)+\eta(X) D_{2}(\xi) . \tag{3.13}
\end{align*}
$$

Adding (3.11) and (3.13), we get

$$
\begin{align*}
0= & -(n-2)\left\{A_{1}(X)+B_{1}(X)+D_{1}(X)\right\}-C_{1}(X) \\
& -(n-1)\left\{A_{2}(X)+B_{2}(X)+D_{2}(X)\right\}-C_{2}(X) \\
& +(n-2) C_{2}(\xi) \eta(X)+(n-3) C_{1}(\xi) \eta(X) \tag{3.14}
\end{align*}
$$

Putting $X=\xi$ in (3.5)

$$
\begin{align*}
0= & {\left[A_{1}(\xi)+B_{1}(\xi)\right](n-2) \eta(U)-C_{1}(U)(n-2)+D_{1}(\xi)(n-2) \eta(U) } \\
& +\eta(U) C_{1}(\xi)+C_{1}(U)+\eta(U) D_{1}(\xi)-\eta(U) D_{1}(\xi) \\
& +(n-1)\left[\left\{A_{2}(\xi)+B_{2}(\xi)\right\} \eta(U)-C_{2}(U)+D_{2}(\xi) \eta(U)\right] \\
& +\eta(U) C_{2}(\xi)+C_{2}(U)+\eta(U) D_{2}(\xi)-\eta(U) D_{2}(\xi) . \tag{3.15}
\end{align*}
$$

Replacing U by X in (3.15), we get

$$
\begin{align*}
& {\left[(n-2)\left\{A_{1}(\xi)+B_{1}(\xi)+D_{1}(\xi)\right\}+C_{1}(\xi)\right] \eta(X)-(n-3) C_{1}(X) } \\
= & (n-2) C_{2}(X)-\left[(n-1)\left\{A_{2}(\xi)+B_{2}(\xi)+D_{2}(\xi)\right\}+C_{2}(\xi)\right] \eta(X(X)
\end{align*}
$$

In view of (3.6), above equation becomes

$$
\begin{align*}
& (n-3) C_{1}(X)+(n-2) C_{2}(X) \\
= & -(n-3) C_{1}(\xi) \eta(X)-(n-2) C_{2}(\xi) \eta(X) . \tag{3.17}
\end{align*}
$$

Subtracting (3.17) from (3.14), we have,

$$
\begin{align*}
0= & -(n-2)\left\{A_{1}(X)+B_{1}(X)+C_{1}(X)+D_{1}(X)\right\} \\
& -(n-1)\left\{A_{2}(X)+B_{2}(X)+C_{2}(X)+D_{2}(X)\right\} . \tag{3.18}
\end{align*}
$$

Theorem 3.3. In an almost generalized weakly symmetric LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$, the sum of the associated 1-forms is given by (3.18).

Next, in view of $A_{2}=B_{2}=C_{2}=D_{2}=0$, the relation (3.18) yields

$$
\begin{equation*}
A_{1}(X)+B_{1}(X)+C_{1}(X)+D_{1}(X)=0 . \tag{3.19}
\end{equation*}
$$

This motivates us to state
Theorem 3.4. In a weakly symmetric LP-Sasakian manifold $\left(M^{n}, g\right)(n>$ 2), the sum of the associated 1 -forms is given by (3.19).
Theorem 3.5. There does not exist an LP-Sasakian manifold which is
(i) recurrent,
(ii) generalized recurrent provided the vector fields associated to the 1 forms are colinear,
(iii) pseudo symmetric,
(iv) generalized semi-pseudo symmetric provided the vector fields associated to the 1-forms are colinear,
(v) generalized almost pseudo symmetric provided the the vector fields associated to the 1-forms are colinear.

4 Almost generalized weakly Ricci-symmetric LP-Sasakian manifold

An LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$, is said to be almost generalized weakly Ricci-symmetric if there exist 1 -forms $\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}$ and \bar{D}_{i} which satisfy
the condition

$$
\begin{align*}
& \left(\nabla_{X} S\right)(U, V) \\
= & {\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)\right] S(U, V)+\bar{C}_{1}(U) S(X, V)+\bar{D}_{1}(V) S(U, X) } \\
& +\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)\right] g(U, V)+\bar{C}_{2}(U) g(X, V)+\bar{D}_{2}(V) g(U, X) . \tag{4.1}
\end{align*}
$$

Putting $V=\xi$ in (4.1), we obtain

$$
\begin{align*}
& \left(\nabla_{X} S\right)(U, \xi) \\
= & {\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)\right](n-2) \eta(U)+\bar{C}_{1}(U)(n-2) \eta(X)+\bar{D}_{1}(\xi) S(U, X) } \\
& +\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)\right] \eta(U)+\bar{C}_{2}(U) \eta(X)+\bar{D}_{2}(\xi) g(U, X) . \tag{4.2}
\end{align*}
$$

In view of (3.4), the relation (4.2) becomes

$$
\begin{align*}
& (n-2) g(X, \phi U)-S(U, \phi X) \\
= & {\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)\right](n-2) \eta(U)+\bar{C}_{1}(U)(n-2) \eta(X)+\bar{D}_{1}(\xi) S(U, X) } \\
& +\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)\right] \eta(U)+\bar{C}_{2}(U) \eta(X)+\bar{D}_{2}(\xi) g(U, X) . \tag{4.3}
\end{align*}
$$

Setting $X=U=\xi$ in (4.3) and using (2.1), (2.2) and (2.9), we get

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(\xi)+\bar{B}_{1}(\xi)+\bar{C}_{1}(\xi)+\bar{D}_{1}(\xi)\right] \\
+\quad & {\left[\bar{A}_{2}(\xi)+\bar{B}_{2}(\xi)+\bar{C}_{2}(\xi)+\bar{D}_{2}(\xi)\right]=0 . } \tag{4.4}
\end{align*}
$$

Again, putting $X=\xi$ in (4.3), we get

$$
\begin{aligned}
& (n-2) \bar{C}_{1}(U)+\bar{C}_{2}(U) \\
= & {\left[\bar{A}_{1}(\xi)+\bar{B}_{1}(\xi)+\bar{D}_{1}(\xi)\right](n-2) \eta(U)+\left[\bar{A}_{2}(\xi)+\bar{B}_{2}(\xi)+\bar{D}_{2}(\xi)\right] \eta((4) 5) }
\end{aligned}
$$

Setting $U=\xi$ in (4.3) and then using (2.1), (2.2) and (2.9), we obtain from (4.3) that

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)\right]+\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)\right] \\
= & \bar{C}_{1}(\xi)(n-2) \eta(X)+\bar{D}_{1}(\xi)(n-2) \eta(X)+\bar{C}_{2}(\xi) \eta(X)+\bar{D}_{2}(\xi) \eta(X
\end{align*}
$$

Replacing U by X in (4.5) and adding with (4.6), we have

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)+\bar{C}_{1}(X)\right]+\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)+\bar{C}_{2}(X)\right] \\
= & {\left[\bar{A}_{1}(\xi)+\bar{B}_{1}(\xi)+\bar{D}_{1}(\xi)+\bar{C}_{1}(\xi)\right](n-2) \eta(X)+\left[\bar{A}_{2}(\xi)+\bar{B}_{2}(\xi)+\bar{D}_{2}(\xi)\right.} \\
& \left.+\bar{C}_{2}(\xi)\right] \eta(X)+\bar{D}_{1}(\xi)(n-2) \eta(X)+\bar{D}_{2}(\xi) \eta(X) . \tag{4.7}
\end{align*}
$$

In consequence of (4.4), the above equation becomes

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)+\bar{C}_{1}(X)\right]+\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)+\bar{C}_{2}(X)\right] \\
= & \bar{D}_{1}(\xi)(n-2) \eta(X)+\bar{D}_{2}(\xi) \eta(X) . \tag{4.8}
\end{align*}
$$

Putting $X=U=\xi$ in (4.1), we get

$$
\begin{aligned}
& \bar{D}_{1}(V)(n-2)+\bar{D}_{2}(V) \\
= & {\left.\left[\bar{A}_{1}(\xi)+\bar{B}_{1}(\xi)+\bar{C}_{1}(\xi)\right](n-2) \eta(V)+\left[\bar{A}_{2}(\xi)+\bar{B}_{2}(\xi)+\bar{C}_{2}(\xi)\right] \eta((V) 4) 9\right) }
\end{aligned}
$$

Replacing V by X in (4.9) and adding with (4.8), we obtain

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)+\bar{C}_{1}(X)+\bar{D}_{1}(X)\right] \\
& +\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)+\bar{C}_{2}(X)+\bar{D}_{1}(X)\right] \\
= & (n-2)\left[\bar{A}_{1}(\xi)+\bar{B}_{1}(\xi)+\bar{C}_{1}(\xi)+\bar{D}_{1}(\xi)\right] \eta(V) \\
& +\left[\bar{A}_{2}(\xi)+\bar{B}_{2}(\xi)+\bar{C}_{2}(\xi)+\bar{D}_{2}(\xi)\right] \eta(V) . \tag{4.10}
\end{align*}
$$

By virtue of (4.4), the above equation becomes

$$
\begin{align*}
& (n-2)\left[\bar{A}_{1}(X)+\bar{B}_{1}(X)+\bar{C}_{1}(X)+\bar{D}_{1}(X)\right] \\
= & -\left[\bar{A}_{2}(X)+\bar{B}_{2}(X)+\bar{C}_{2}(X)+\bar{D}_{1}(X)\right] . \tag{4.11}
\end{align*}
$$

This leads to the followings
Theorem 4.1. In an almost generalized weakly Ricci symmetric LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$, the sum of the associated 1 -forms are related by (4.11).

Theorem 4.2. There does not exist an LP-Sasakian manifold which is
(i) Ricci recurrent,
(ii) generalized Ricci recurrent provided the the vector fields associated to the 1-forms are colinear,
(iii) pseudo Ricci-symmetric,
(iv) generalized semi Ricci-pseudo symmetric provided the the vector fields associated to the 1-forms are colinear,
(v) generalized almost Ricci-pseudo symmetric provided the the vector fields associated to the 1-forms are colinear.

5 Example of an A(GWS) ${ }_{3}$ LP-Sasakian manifold

(see [4], p-286-287) Let $M^{3}(\phi, \xi, \eta, g)$ be an LP-Sasakian manifold $\left(M^{3}, g\right)$ with a ϕ-basis

$$
e_{1}=e^{z} \frac{\partial}{\partial x}, e_{2}=\phi e_{1}=e^{z-\alpha x} \frac{\partial}{\partial y}, e_{3}=\xi=\frac{\partial}{\partial z},
$$

where α is non-zero constant. Then from Koszul's formula for Lorentzian metric g, we can obtain the Levi-Civita connection as follows

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{3}=e_{2}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=-e_{3}, \\
\nabla_{e_{2}} e_{3}=e_{1}, & \nabla_{e_{2}} e_{2}=\alpha e^{z} e_{3}, & \nabla_{e_{2}} e_{1}=\alpha e^{z} e_{2}, \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0 .
\end{array}
$$

Using the above relations, one can easily calculate the non-vanishing components of the curvature tensor \bar{R} (up to symmetry and skew-symmetry)

$$
\begin{aligned}
& \bar{R}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)=-\left(1-\alpha^{2} e^{2 z}\right) \\
& \bar{R}\left(e_{1}, e_{3}, e_{1}, e_{3}\right)=1=\bar{R}\left(e_{2}, e_{3}, e_{2}, e_{3}\right) .
\end{aligned}
$$

Since $\left\{e_{1}, e_{2}, e_{3}\right\}$ forms a basis, any vector field $X, Y, U, V \in \chi(M)$ can be written as

$$
\begin{gathered}
X=\sum_{1}^{3} a_{i} e_{i}, Y=\sum_{1}^{3} b_{i} e_{i}, U=\sum_{1}^{3} c_{i} e_{i}, V=\sum_{1}^{3} d_{i} e_{i}, \\
\bar{R}(X, Y, U, V)=-\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(c_{1} d_{2}-c_{2} d_{1}\right)\left(1-\alpha^{2} e^{2 z}\right) \\
+\left(a_{2} b_{3}-a_{3} b_{2}\right)\left(c_{2} d_{3}-c_{3} d_{2}\right)=T_{1} \text { (say) } \\
\bar{R}\left(e_{1}, Y, U, V\right)=b_{3}\left(c_{1} d_{3}-c_{3} d_{1}\right)-b_{2}\left(c_{1} d_{2}-c_{2} d_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{1} \text { (say) } \\
\bar{R}\left(e_{2}, Y, U, V\right)=b_{3}\left(c_{2} d_{3}-c_{3} d_{2}\right)+b_{1}\left(c_{1} d_{2}-c_{2} d_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{2} \text { (say) } \\
\bar{R}\left(e_{3}, Y, U, V\right)=b_{1}\left(c_{3} d_{1-} c_{1} d_{3}\right)+b_{2}\left(c_{3} d_{2}-c_{2} d_{3}\right)=\lambda_{3} \text { (say) } \\
\bar{R}\left(X, e_{1}, U, V\right)=a_{3}\left(c_{1} d_{3}-c_{3} d_{1}\right)-a_{2}\left(c_{1} d_{2}-c_{2} d_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{4} \text { (say) } \\
\bar{R}\left(X, e_{2}, U, V\right)=a_{3}\left(c_{2} d_{3}-c_{3} d_{2}\right)+a_{1}\left(c_{1} d_{2}-c_{2} d_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{5} \text { (say) } \\
\bar{R}\left(X, e_{3}, U, V\right)=a_{1}\left(c_{3} d_{1-} c_{1} d_{3}\right)+a_{2}\left(c_{3} d_{2}-c_{2} d_{3}\right)=\lambda_{6} \text { (say) } \\
\bar{R}\left(X, Y, e_{1}, V\right)=d_{3}\left(a_{1} b_{3}-a_{3} b_{1}\right)-d_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{7} \text { (say) } \\
\bar{R}\left(X, Y, e_{2}, V\right)=d_{3}\left(a_{2} b_{3}-a_{3} b_{2}\right)+d_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{8} \text { (say) } \\
\bar{R}\left(X, Y, e_{3}, V\right)=d_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right)+d_{2}\left(a_{3} b_{2}-a_{2} b_{3}\right)=\lambda_{9} \text { (say) } \\
\bar{R}\left(X, Y, U, e_{1}\right)=c_{3}\left(a_{3} b_{1}-a_{1} b_{3}\right)+c_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{10} \text { (say) } \\
\bar{R}\left(X, Y, U, e_{2}\right)=c_{3}\left(a_{3} b_{2}-a_{2} b_{3}\right)-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-\alpha^{2} e^{2 z}\right)=\lambda_{11} \text { (say) } \\
\bar{R}\left(X, Y, U, e_{3}\right)=c_{1}\left(a_{1} b_{3}-a_{3} b_{1}\right)+c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)=\lambda_{12} \text { (say) }
\end{gathered}
$$

$$
\begin{aligned}
& \bar{G}(X, Y, U, V)=\left(b_{1} c_{1}+b_{2} c_{2}-b_{3} c_{3}\right)\left(a_{1} d_{1}+a_{2} d_{2}-a_{3} d_{3}\right) \\
&-\left(a_{1} c_{1}+a_{2} c_{2}-a_{3} c_{3}\right)\left(b_{1} d_{1}+b_{2} d_{2}-b_{3} d_{3}\right) \\
&= T_{2} \text { (say) } \\
& \bar{G}\left(e_{1}, Y, U, V\right)=\left(b_{2} c_{2}-b_{3} c_{3}\right) d_{1}-\left(b_{2} d_{2}-b_{3} d_{3}\right) c_{1}=\omega_{1} \text { (say) } \\
& \bar{G}\left(e_{2}, Y, U, V\right)=\left(b_{1} c_{1}-b_{3} c_{3}\right) d_{2}-\left(b_{1} d_{1}-b_{3} d_{3}\right) c_{2}=\omega_{2} \text { (say) } \\
& \bar{G}\left(e_{3}, Y, U, V\right)=-\left(b_{1} c_{1}+b_{2} c_{2}\right) d_{3}+\left(b_{1} d_{1}+b_{2} d_{2}\right) c_{3}=\omega_{3} \text { (say) } \\
& \bar{G}\left(X, e_{1}, U, V\right)=\left(a_{2} d_{2}-a_{3} d_{3}\right) c_{1}-\left(a_{2} c_{2}-a_{3} c_{3}\right) d_{1}=\omega_{4} \text { (say) } \\
& \bar{G}\left(X, e_{2}, U, V\right)=\left(a_{1} d_{1}-a_{3} d_{3}\right) c_{2}-\left(a_{1} c_{1}-a_{3} c_{3}\right) d_{2}=\omega_{5} \text { (say) } \\
& \bar{G}\left(X, e_{3}, U, V\right)=-\left(a_{1} d_{1}+a_{2} d_{2}\right) c_{3}+\left(a_{1} c_{1}+a_{2} c_{2}\right) d_{3}=\omega_{6} \text { (say) } \\
& \bar{G}\left(X, Y, e_{1}, V\right)=\left(a_{2} d_{2}-a_{3} d_{3}\right) b_{1}-\left(b_{2} d_{2}-b_{3} d_{3}\right) a_{1}=\omega_{7} \text { (say) } \\
& \bar{G}\left(X, Y, e_{2}, V\right)=\left(a_{1} d_{1}-a_{3} d_{3}\right) b_{2}-\left(b_{1} d_{1}-b_{3} d_{3}\right) a_{2}=\omega_{8} \text { (say) } \\
& \bar{G}\left(X, Y, e_{3}, V\right)=\left(b_{1} d_{1}+b_{2} d_{2}\right) a_{3}-\left(a_{1} d_{1}+a_{2} d_{2}\right) b_{3}=\omega_{9} \text { (say) } \\
& \bar{G}\left(X, Y, U, e_{1}\right)=\left(b_{2} c_{2}-b_{3} c_{3}\right) a_{1}-\left(a_{2} c_{2}-a_{3} c_{3}\right) b_{1}=\omega_{10} \text { (say) } \\
& \bar{G}\left(X, Y, U, e_{2}\right)=\left(b_{1} c_{1}-b_{3} c_{3}\right) a_{2}-\left(a_{1} c_{1}-a_{3} c_{3}\right) b_{2}=\omega_{11} \text { (say) } \\
& \bar{G}\left(X, Y, U, e_{3}\right)=-\left(b_{1} c_{1}+b_{2} c_{2}\right) a_{3}+\left(a_{1} c_{1}+a_{2} c_{2}\right) b_{3}=\omega_{12} \text { (say) }
\end{aligned}
$$

and the components which can be obtained from these by the symmetry properties. Now, we calculate the covariant derivatives of the non-vanishing components of the curvature tensor as follows

$$
\begin{aligned}
&\left(\nabla_{e_{1}} \bar{R}\right)(X, Y, U, V) \\
&= a_{1} \lambda_{3}-a_{3} \lambda_{2}+b_{1} \lambda_{6}-b_{3} \lambda_{5}+c_{1} \lambda_{9}-c_{3} \lambda_{8}+d_{1} \lambda_{12}-d_{3} \lambda_{11}, \\
&\left(\nabla_{e_{2}} \bar{R}\right)(X, Y, U, V) \\
&=-\alpha e^{z} a_{1} \lambda_{2}-\alpha e^{z} a_{2} \lambda_{3}-a_{3} \lambda_{1}-\alpha e^{z} b_{1} \lambda_{5}-\alpha e^{z} b_{2} \lambda_{6}-b_{3} \lambda_{4}-\alpha e^{z} c_{1} \lambda_{8} \\
&-\alpha e^{z} c_{2} \lambda_{9}-c_{3} \lambda_{7}-\alpha e^{z} d_{1} \lambda_{11}-\alpha e^{z} d_{2} \lambda_{12}-d_{3} \lambda_{10}, \\
&\left(\nabla_{e_{3}} \bar{R}\right)(X, Y, U, V)=2 \alpha^{2} e^{2 z}\left(b_{2}-a_{2} b_{1}\right)\left(c_{1} d_{2}-c_{2} d_{1}\right) .
\end{aligned}
$$

For the following choice of the the one forms

$$
\begin{aligned}
& A_{1}\left(e_{1}\right)=\frac{a_{1} \lambda_{3}-a_{3} \lambda_{2}}{T_{1}}, B_{1}\left(e_{1}\right)=\frac{b_{1} \lambda_{6}-b_{3} \lambda_{5}}{T_{1}}, \\
& A_{2}\left(e_{1}\right)=\frac{c_{1} \lambda_{9}-c_{3} \lambda_{8}}{T_{2}}, B_{2}\left(e_{1}\right)=\frac{d_{1} \lambda_{12}-d_{3} \lambda_{11}}{T_{2}}, \\
& A_{1}\left(e_{2}\right)=-\frac{\alpha e^{z} a_{1} \lambda_{2}+\alpha e^{z} a_{2} \lambda_{3}+a_{3} \lambda_{1}}{T_{1}}, \\
& B_{1}\left(e_{2}\right)=-\frac{\alpha e^{z} b_{1} \lambda_{5}+\alpha e^{z} b_{2} \lambda_{6}+b_{3} \lambda_{4}}{T_{1}}, \\
& A_{2}\left(e_{2}\right)=-\frac{\alpha e^{z} c_{1} \lambda_{8}+\alpha e^{z} c_{2} \lambda_{9}+c_{3} \lambda_{7}}{T_{2}}, \\
& B_{2}\left(e_{2}\right)=-\frac{\alpha e^{z} d_{1} \lambda_{11}+\alpha e^{z} d_{2} \lambda_{12}+d_{3} \lambda_{10}}{T_{2}}, \\
& A_{1}\left(e_{3}\right)=\frac{\alpha^{2} e^{2 z}\left(a_{1} b_{2}-a_{2} b_{1}\right) c_{1} d_{2}}{T_{1}}, \\
& B_{1}\left(e_{3}\right)=\frac{-\alpha^{2} e^{2 z}\left(a_{1} b_{2}-a_{2} b_{1}\right) c_{2} d_{1}}{T_{1}}, \\
& C_{1}\left(e_{3}\right)=\frac{1}{a_{3} \lambda_{3}+b_{3} \lambda_{6}}, \\
& C_{2}\left(e_{3}\right)=\frac{1}{a_{3} \theta_{3}+b_{3} \theta_{6}}, \\
& D_{1}\left(e_{3}\right)=-\frac{1}{c_{3} \lambda_{9}+d_{3} \lambda_{12}}, \\
& D_{2}\left(e_{3}\right)=-\frac{1}{c_{3} \theta_{9}+d_{3} \theta_{12}}, \\
& A_{2}\left(e_{3}\right)=\frac{\alpha^{2} e^{z z}\left(a_{1} b_{2}-a_{2} b_{1}\right) c_{1} d_{2}}{T_{2}}, \\
& B_{2}\left(e_{3}\right)=-\frac{\alpha^{2} e^{2 z}\left(a_{1} b_{2}-a_{2} b_{1}\right) c_{2} d_{1}}{T_{2}},
\end{aligned}
$$

one can easily verify the relations

$$
\begin{aligned}
\left(\nabla_{e_{i}} \bar{R}\right)(X, Y, U, V)= & {\left[A_{1}\left(e_{i}\right)+B_{1}\left(e_{i}\right)\right] \bar{R}(X, Y, U, V) } \\
& +C_{1}(X) \bar{R}\left(e_{i}, Y, U, V\right)+C_{1}(Y) \bar{R}\left(X, e_{i}, U, V\right) \\
& +D_{1}(U) \bar{R}\left(X, Y, e_{i}, V\right)+D_{1}(V) \bar{R}\left(X, Y, U, e_{i}\right) \\
& +\left[A_{2}\left(e_{i}\right)+B_{2}\left(e_{i}\right)\right] \bar{G}(X, Y, U, V) \\
& +C_{2}(X) \bar{G}\left(e_{i}, Y, U, V\right)+C_{2}(Y) \bar{G}\left(X, e_{i}, U, V\right) \\
& +D_{2}(U) \bar{G}\left(X, Y, e_{i}, V\right)+D_{2}(V) \bar{G}\left(X, Y, U, e_{i}\right)
\end{aligned}
$$

for $1,2,3$. From the above, we can state that

Theorem 5.1. There exist an LP-Sasakian manifold $\left(M^{3}, g\right)$ which is an almost generalized weakly symmetry LP-Sasakian manifold.

Acknowledgements. Author are grateful to the referees for his/her valuable suggestions and remarks to improve the paper. The first named author would also like to thank UGC, ERO Kolkata, for their financial support, File no. PSW-194/15-16.

References

[1] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12, (1989), 151-156.
[2] A. A. Shaikh and K. K. Baishya, On ϕ-symmetric LP-Sasakianmanifolds, Yokohama Math. J., 52, (2005), 97-112.
[3] A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakianmanifolds, Bull. Math. Soc. Sc. Math. Rommanic Tome, 49(97), (2006), 197-208.
[4] A. A. Shaikh, T. Basu, and K. K. Baishya, On the exixtence of locally ϕ recurrent LP-Sasakian manifolds, Bull. Allahabad Math. Soc., 24(2), (2009), 281-295.
[5] K. K. Baishya, On generalized pseudo symmetric manifold, submitted
[6] K. K. Baishya, On generalized semi-pseudo symmetric manifold, submitted
[7] K. K. Baishya, Note on almost generalized pseudo Ricci symmetric manifolds, Kyungpook Mathematical Journal, 57, (2017), 517-523.
[8] K. K. Baishya, On an almost generalized pseudo-Ricci Symmetric Spacetime, to appear in Italian Journal of Pure and Applied Mathematics
[9] K. K. Baishya, P. R. Chowdhury, M. Josef, and P. Peska, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 55(2), (2016), 5-15.
[10] M. Tarafdar and A. A. Musa Jawarneh, Semi-Pseudo Ricci Symmetric manifold, J. Indian. Inst. of Science, 73, (1993), 591-596.
[11] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Physics, 15, (1988), 526-531.
[12] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor, 58(1), (2007), 10-14.
[13] A. G. Walker, On Ruse's space of recurrent curvature, Proc. of London Math. Soc., 52, (1950), 36-54.
[14] R. S. D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10, (1979), 1508-1513.
[15] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, (1992), 155-169.
[16] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56, (1989), 663-670.

Kanak Kanti Baishya

Department Of Mathematics, Kurseong College, Dowhill Road, Kurseong, Darjeeling-734203, West Bengal, India
E-mail: kanakkanti.kc@gmail.com
Partha Roy Chowdhury
Department Of Mathematics, Shaktigarh Bidyapith(H.S), Siliguri, Darjeeling-734005, West Bengal, India
E-mail: partha.raychowdhury81@gmail.com

Received: 14.08.2017
Accepted: 25.10.2017

