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1 Introduction

Many problems in computational sciences and engineering can be written as
nonlinear least squares

min
x∈Ri

1

2
F (x)TF (x), (1.1)

where F : Ω ⊆ Ri −→ Rj (j ≥ i), Ω is open convex and i, j are positive
integers. The solution of problem (1.1) is denoted by x∗. The solution x∗

is preferred in closed form but this is possible only in special cases. That
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explains why most solution methods are usually iterative. Let us consider
the iterative method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − [QT
nQn]−1QT

nF (xn), (1.2)

where Qn ∈ L(Ri,Rj) is the space of bounded linear operators from Ri into
Ri. Special choices of Qn are considered in this study:
Secant method [2,3,10]: Qn = [xn, xn−1; F ], where [·, ·; F ] : Ω2 → L(Ri,Rj)
is a divided difference of order one. The convergence order of the method is
1+
√
5

2
= 1.618 . . . .

Three-point method [10]: Qn = [xn, xn−1;F ]+[xn−2, xn; F ]−[xn−2, xn−1; F ].
The convergence order is 1.839 . . ..
Kurchatov-type method [2, 11]: Qn = [2xn − xn−1, xn−1; F ]. The conver-
gence order of the method is two.

These methods are derivative free and are useful alternatives to the Gauss-
Newton method obtained from (1.2), if we choose Qn = F ′(xn). The Gauss-
Newton method has convergence order two and has been studied in [2–13]
under various Lipschitz-type conditions. In the present paper, we study
the local convergence of these methods under more precise Lipschitz-type
conditions to obtain the following advantages (say A):

(a1) Larger radius of convergence leading to a wider choice of initial guesses.

(a2) Tighter error bounds on the distances ‖xn−x∗‖ leading to the compu-
tation of fewer iterates to obtain a desired error tolerance.

(a3) A more precise location of the solution x∗.

The advantages (A) are obtained under the same computational cost as in
earlier studies [2, 3, 10, 11], since the computation of the Lipschitz constants
in the old studies require the computation of the new Lipschitz constants as
special cases. Hence, the applicability of these four methods to solve (1.1) is
expanded.

The rest of paper is structured as follows: Sections 2-5 contain the local
convergence of Secant method, three-point method, Kurchatov-type method
and Gauss-Newton method, respectively.

2 Local convergence for the Secant method

The local convergence analysis in the case when Qn = [xn, xn−1 ;F ] is based
on the conditions (S):
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(s1) F : Ω ⊂ Ri → Rj is continuously differentiable.

(s2) There exist a solution x∗ of problem (1.1) and a > 0, b > 0, c ≥ 0 such
that

‖F (x∗)‖ ≤ c, ‖F ′(x∗)‖ ≤ a,

(QT
∗Q∗)

−1 = [F ′(x∗)TF ′(x∗)]−1 exists and ‖(QT
∗Q∗)

−1‖ ≤ b.

(s3) There exist K1 ≥ 0, K2 ≥ 0 such that for x, y ∈ Ω divided difference
of order one [·, ·; F ] exists and

‖[x, y; F ]− F ′(x∗)‖ ≤ K1‖x− x∗‖+K2‖y − x∗‖.

Define scalar polynomial h by

h(t) = b(K1 +K2)t
2 + 2ab(K1 +K2)t− 1.

Denote by r0, the only positive root of polynomial h is given by

r0 =
1

(ab+
√
a2b2 + b)(K1 +K2)

, for K1 +K2 6= 0.

Set: Ω0 = Ω ∩ U(x∗, r0).

(s4) There exist K0 ≥ 0, K ≥ 0 such that for each x, y ∈ Ω0

‖[x, y; F ]− [x, x∗; F ]‖ ≤ K‖y − x∗‖

and
‖[x, x∗; F ]− F ′(x∗)‖ ≤ K0‖x− x∗‖.

Then, we can show the following local convergence result for the Secant
method under the (S) conditions and the preceding notation.

Theorem 2.1. Suppose that the conditions (S) hold. Then, sequence {xn}
generated for x−1, x0 ∈ U(x∗, r0)− {x∗} by the secant method satisfies

‖xn+1−x∗‖ ≤ C1
n ‖xn−1−x∗‖+C2

n ‖xn−x∗‖+C3
n ‖xn−1−x∗‖‖xn−x∗‖, (2.1)

where

C1
n =

bcK

1− pn
, C2

n =
bcK0

1− pn
,

C3
n =

b(a+K0‖xn − x∗‖+K‖xn−1 − x∗‖)K
1− pn
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and

pn = b[2a(K1‖xn−x∗‖+K2‖xn−1−x∗‖)+(K1‖xn−x∗‖+K2‖xn−1−x∗‖)2] < 1.

Moreover, in case of zero residual (i.e. c = 0), if abK < 1 and we choose
x−1, x0 ∈ U(x∗, r) − {x∗}, then sequence {xn} remains in U(x∗, r) for each

n = −1, 0, 1, 2, . . . and converges to x∗ with speed 1+
√
5

2
so that

‖xn+1 − x∗‖ ≤ C‖xn−1 − x∗‖ ‖xn − x∗‖, (2.2)

for some C ≥ 0, where r is the only root in (0, r0) of polynomial

g(t) = b(K1 +K2)
2t2 + b[2a(K1 +K2) +K(K0 +K)]t+ abK − 1.

Proof. We shall first show estimate (2.1). By hypothesis linear operator
Qn ∈ Rj×i has a full column range and we can write

‖[I − (I − (F ′T∗ F
′
∗)
−1QT

nQn)]−1‖ = ‖(QT
nQn)−1F ′T∗ F

′
∗‖, (2.3)

where Qn = [xn, xn−1;F ], Q∗ = F ′(x∗) = F ′∗. We need the estimates

‖F ′∗ −Qn‖ = ‖F ′T∗ −QT
n‖ (for the Euclidean norm [9]), (2.4)

and by (s2), (s3), (2.3), we get in turn that

‖I − (F ′T∗ F
′
∗)
−1QT

nQn‖ = ‖(F ′T∗ F ′∗)−1(F ′T∗ F ′∗ −QT
nQn)‖

= ‖(F ′T∗ F ′∗)−1(F ′T∗ (F ′∗ −Qn)

+ (F ′T∗ −QT
n )(Qn − F ′∗) + (F ′T∗ −QT

n )F ′∗)‖
≤‖(F ′T∗ F ′∗)−1‖

(
‖F ′T∗ ‖‖F ′∗ −Qn‖

+ ‖F ′T∗ −QT
n‖‖Qn − F ′∗‖+ ‖F ′T∗ −QT

n‖‖F ′∗‖
)

≤ b
(
a‖F ′(x∗)−Qn‖+ ‖F ′T (x∗)−QT

n‖‖Qn − F ′(x∗)‖
+ a‖F ′T (x∗)−QT

n‖
)

≤ b
(
a(K1‖xn − x∗‖+K2‖xn−1 − x∗‖)

+
(
K1‖xn − x∗‖+K2‖xn−1 − x∗‖

)2
+ a(K1‖xn − x∗‖+K2‖xn−1 − x∗‖)

)
= pn

< b
(
2a(K1 +K2)r0 + (K1 +K2)

2r20
)

<g(r0) + 1 = 0 + 1 = 1, (2.5)

by the definition of function g and the choice of r0.



Vol. LV (2017) Expanding the Applicability of Iterative Methods 37

It follows from (2.5) and the Banach lemma on invertible operators [9]
that

‖(QT
nQn)−1F ′T∗ F

′
∗‖ ≤

1

1− pn
. (2.6)

We also obtain by using (s2) and (s4) the estimates

‖Qn −Q∗‖ = ‖[xn, xn−1; F ]− F ′(x∗)‖
= ‖
(
[xn, xn−1; F ]− [xn, x

∗; F ]
)

+ [xn, x
∗; F ]− F ′(x∗)‖

≤‖[xn, xn−1; F ]− [xn, x
∗; F ]‖+ ‖[xn, x∗; F ]− F ′(x∗)‖

≤K‖xn−1 − x∗‖+K0‖xn − x∗‖, (2.7)

‖Qn‖ = ‖Q∗ + (Qn −Q∗)‖
≤‖Q∗‖+ ‖(Qn −Q∗)‖
≤ a+K‖xn−1 − x∗‖+K0‖xn − x∗‖ (2.8)

and

‖Qn − [xn, x
∗; F ]‖ = ‖[xn, xn−1; F ]− [xn, x

∗; F ]‖
≤K‖xn−1 − x∗‖. (2.9)

Using the Secant method and estimates (2.4), (2.6)-(2.9), we obtain in turn
that

‖xn+1 − x∗‖ =‖xn − x∗ − (QT
nQn)−1(QT

nF (xn)−QT
∗ F (x∗))‖

≤‖ − (QT
nQn)−1F ′(x∗)TF ′(x∗)‖‖(F ′(x∗)TF ′(x∗))−1

× [−QT
n (Qn − [xn, x

∗; F ])(xn − x∗) + (QT
n −QT

∗ )F (x∗)]‖
≤b
(
(a+K0‖xn − x∗‖+K‖xn−1 − x∗‖)K‖xn−1 − x∗‖‖xn − x∗‖

+ c(K0‖xn − x∗‖+K‖xn−1 − x∗‖)
)/

(1− pn), (2.10)

which shows (2.1) by the definition of C1
n, C2

n and C3
n. Moreover, if c = 0,

then C1
n = C2

n = 0 and by the choice of r, we obtain (2.2) and

‖xn+1 − x∗‖ < ‖xn − x∗‖ < r, (2.11)

so limn→∞ xn = x∗ and xn+1 ∈ U(x∗, r).

Remark 2.1. Estimate (2.1) does not necessarily imply the convergence of
sequence {xn} to x∗ unless if c is sufficiently small, when we only obtain
linear convergence. However, if c = 0 we showed such a convergence.
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3 Local convergence for the three-point method

We consider the case Qn = [xn, xn−1; F ] + [xn−2, xn; F ] − [xn−2, xn−1; F ]
under the conditions (T ):

(t1) = (s1).

(t2) = (s2).

(t3) There exist K0 ≥ 0, K ≥ 0, M ≥ 0 and divided differences of order
one [·, · ;F ] on Ω2 and order two [·, ·, ·; F ] on Ω3 such that for each x,
y, u1, u2, u3, u4 ∈ Ω

‖[x, x∗; F ]− F ′(x∗)‖ ≤ K0‖x− x∗‖,
‖[x, y;F ]− [x, x∗; F ]‖ ≤ K‖y − x∗‖,
‖[u1, u3, u4;F ]− [u2, u3, u4;F ]‖ ≤M‖u1 − u2‖.

Define scalar polynomial h by

h(t) = b[2a+ (K0 +K)t+ 2Mt2][K0 +K + 2Mt]t− 1.

Denote by r0 the only positive root of polynomial h.
Then, we can show the following local convergence result for the three point
method under the conditions (T ).

Theorem 3.1. Suppose that the conditions (T ) hold. Then, sequence {xn}
generated for x−2, x−1, x0 ∈ U(x∗, r0) − {x∗} by the three point method
satisfies

‖xn+1 − x∗‖ ≤
qn

1− pn
, (3.1)

where

pn = b[2a+ (K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖)‖xn−1 − x∗‖]
× [(K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖)‖xn−1 − x∗‖]

and

qn = b
(
[a+ (K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖)‖xn−1 − x∗‖]

× [M(‖xn − x∗‖+ ‖xn−1 − x∗‖)(‖xn − x∗‖+ ‖xn−2 − x∗‖) +K‖xn − x∗‖]‖xn − x∗‖
+ c((K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖))‖xn−1 − x∗‖

)
.

Moreover, if x−2, x−1, x0 ∈ U(x∗, r)− {x∗}, then sequence {xn} remains in
U(x∗, r) for each n = −2,−1, 0, 1, 2, . . . and converges to x∗ such that

‖xn+1 − x∗‖ ≤ c1‖xn − x∗‖+ c2‖xn − x∗‖‖xn−1 − x∗‖‖xn−2 − x∗‖
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for some c1 ≥ 0, c2 ≥ 0, where r is the smallest zero in (0, r0) of function h
defined by

h(t) = q(t) + p(t)− 1,

where

q(t) = b
(
[a+ (K0 +K)t+ 2Mt2][4Mt+K]t+ c((K0 +K) + 2Mt)

)
.

Proof. The proof follows the corresponding one in Theorem 2.1, using esti-
mates (2.3), (2.5), (2.10) adjusted using the (t3) conditions:

‖Qn − F ′(x∗)‖ = ‖[xn, xn−1; F ] + [xn−2, xn; F ]− [xn−2, xn−1; F ]− F ′(x∗)‖
≤ (K0 +K)‖xn − x∗‖+M‖xn−2 − xn‖‖xn−1 − x∗‖
≤ (K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖)‖xn−1 − x∗‖

‖Qn − [xn, x
∗; F ]‖ ≤ M(‖xn − xn−1‖‖xn − xn−2‖+K‖xn − x∗‖

≤ M(‖xn − x∗‖+ ‖xn−1 − x∗‖)(‖xn − x∗‖+ ‖xn−2 − x∗‖)
+K‖xn − x∗‖,

‖Qn‖ ≤ ‖Qn − F ′(x∗) + F ′(x∗)‖ ≤ ‖F ′(x∗)‖+ ‖Qn − F ′(x∗)‖
≤ a+ (K0 +K)‖xn − x∗‖+M(‖xn−2 − x∗‖+ ‖xn − x∗‖)‖xn−1 − x∗‖,

so by (2.3)

‖I − (F ′T∗ F
′
∗)
−1QT

nQn‖ ≤ b[2a+ ‖Qn − F ′(x∗)‖] ‖Qn − F ′(x∗)‖
≤ pn < p(r0) = 1, (3.2)

so

‖(QT
nQn)−1F ′T∗ F

′
∗‖ ≤

1

1− pn
(3.3)

and by (2.10)

‖xn+1 − x∗‖ ≤
(
‖(F ′(x∗)TF ′(x∗))−1[−QT

n (Qn − [xn, x
∗;F ])(xn − x∗)

+ (QT
n −QT

∗ )F (x∗)]‖
)/

(1− pn)

≤ qn
1− pn

,

which shows (3.1). Then, we have by the choice of r and (3.1) that xn ∈
U(x∗, r) and ‖xn+1 − x∗‖ < ‖xn − x∗‖ < r, so limn→∞ xn = x∗ and xn+1 ∈
U(x∗, r).
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Remark 3.1. It follows from (3.1) that for c = 0, there exist N and C =
C(N) such that for each n ≥ N ,

‖xn+1 − x∗‖ ≤ C‖xn−2 − x∗‖‖xn−1 − x∗‖ ‖xn − x∗‖,

so the order of convergence is the positive root of the equation t3−t2−t−1 =
0, which is 1.839 . . .. Clearly, if c 6= 0 the order of convergence is only linear.

4 Local convergence for the Kurchatov method

The local convergence analysis in the case when Qn = [2xn− xn−1, xn−1; F ]
is based on the conditions (V ):

(v1) = (s1).

(v2) = (s2).

(v3) There exist K0 ≥ 0, K ≥ 0, M ≥ 0 such that for x, y ∈ Ω, divided
difference of order one [·, · ;F ] exists and

‖[x, x∗; F ]− F ′(x∗)‖ ≤ K0‖x− x∗‖,
‖[x, x∗; F ]− F ′(x)‖ ≤ K‖x− x∗‖,
‖[2y − x, x; F ]− F ′(y)‖ ≤M‖y − x‖2.

Define scalar polynomials p and h by

p(t) = b[2a+ 4Mt2 + (K0 +K)t][4Mt2 + (K0 +K)t]

and

h(t) = p(t)− 1. (4.1)

Denote by r0 the smallest positive root of polynomial h.
Then, we can show the following local convergence result for the Kurchatov
method under the (V ) conditions.

Theorem 4.1. Suppose that the conditions (V ) hold and U(x∗, 3r0) ⊆ Ω.
Then, sequence {xn} generated for x−1, x0 ∈ U(x∗, r0) − {x∗} by the Kur-
chatov method satisfies

‖xn+1 − x∗‖ ≤
qn

1− pn
, (4.2)
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where

pn = b
[
(2a+ (K0 +K)‖xn − x∗‖+M‖xn − xn−1‖2)
× ((K0 +K)‖xn − x∗‖+M‖xn − xn−1‖2)

]
≤ p(r0)

and

qn = b
(
(a+ (K0 +K)‖xn − x∗‖+M‖xn − xn−1‖2)‖xn − x∗‖

× [(K0 +K)‖xn − x∗‖+M‖xn − xn−1‖2]
+ c((K0 +K)‖xn − x∗‖+M‖xn−1 − x∗‖2)

)
. (4.3)

Moreover, if U(x∗, 3r) ⊆ Ω, b(K0 + K)(a + c) < 1 and we choose x−1,
x0 ∈ U(x∗, r0) − {x∗}, then sequence {xn} remains in U(x∗, r0) for each
n = −1, 0, 1, 2, . . . so that (4.2) is satisfied, where r is the only positive root
in (0, r0) of polynomial.

g(t) =b
(
[a+ (K0 +K)t+ 4Mt2][K0 +K + 4Mt]t+ c(K0 +K + 4Mt)

)
+ p(t)− 1. (4.4)

As the convergence does not exceed the quadratic one there exists C∗ > 0
such that

‖xn − xn−1‖2 ≤ C∗‖xn − x∗‖. (4.5)

Then, (4.2) can be written as

‖xn+1 − x∗‖ ≤ C1‖xn − x∗‖+ C2‖xn − x∗‖2, (4.6)

for some C1 ≥ 0, C2 ≥ 0. In the case of zero residual (c = 0) the convergence
order is quadratic.

Proof. We have h(0) = −1 < 0 and h(t) > 0 for sufficiently large t > 0.
It then follows from the intermediate value theorem that function h has
zeros in (0,+∞). Denote by r0 the smallest such zero. Similarly, g(0) =
b(K0 + K)(a + c) − 1 < 0 and g(r0) > 0. Denote by r the smallest zero of
function g on (0, r0). Let x, y ∈ U(x∗, ρ) for some ρ > 0. Then ‖2y−x−x∗‖ ≤
2‖y − x∗‖ + ‖x − x∗‖ ≤ 3ρ, so 2y − x ∈ U(x∗, ρ). Then ρ = r0 or ρ = r in
what follows. The proof uses (2.3), (2.5) and (2.10) with adjusted estimates
and (v3).
We have the estimates

‖Qn − F ′(xn)‖ ≤M‖xn − xn−1‖2, (4.7)
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‖Qn − [xn, x
∗;F ]‖ = ‖([2xn − xn−1, xn−1;F ]− F ′(xn))

+ (F ′(xn)− [xn, x
∗;F ])‖

≤‖[2xn − xn−1, xn−1;F ]− F ′(xn)‖
+ ‖F ′(xn)− [xn, x

∗;F ]‖
≤M‖xn − xn−1‖2 +K‖xn − x∗‖, (4.8)

‖Qn − F ′(x∗)‖ = ‖[2xn − xn−1, xn−1;F ]− F ′(x∗)‖
≤‖[2xn − xn−1, xn−1;F ]− [xn, x

∗;F ]‖
+ ‖[xn, x∗;F ]− F ′(x∗)‖
≤M‖xn − xn−1‖2 + (K0 +K)‖xn − x∗‖, (4.9)

‖Qn‖ ≤ a+ (K0 +K)‖xn − x∗‖+M‖xn − xn−1‖2, (4.10)

leading by (2.5) to

‖I − (F ′T∗ F
′
∗)
−1QT

nQn‖ ≤b[(2a+M‖xn − xn−1‖2 + (K0 +K)‖xn − x∗‖)
× (M‖xn − xn−1‖2 + (K0 +K)‖xn − x∗‖)]

= pn < p(r0) = 1, (4.11)

so

‖(QT
nQn)−1F ′T∗ F

′
∗‖ ≤

1

1− pn
. (4.12)

Moreover, by (2.10), (4.7)-(4.10) and (4.12), we obtain in turn that

‖xn+1 − x∗‖ ≤
(
b
(
[a+ (K0 +K)‖xn − x∗‖+M‖xn − x∗‖2]

× [M‖xn − xn−1‖2 + (K0 +K)‖xn − x∗‖]
+ c[(K0 +K)‖xn − x∗‖+M‖xn − x∗‖2]

))/
(1− pn)

≤ qn
1− pn

, (4.13)

which shows (4.2). Furthermore, in view of (4.5), we obtain (4.6).

Remark 4.1. The third estimate in (v3) can be obtained if we suppose that
a divided difference of order two [·, ·, ·; F ] exists on Ω0 such that

‖[u1, u2, u3; F ]− [u4, u2, u3; F ]‖ ≤M‖u1 − u4‖ (4.14)
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for each u1, u2, u3, u4 ∈ Ω0. Then, using (4.14), we can have in turn that

‖Qn − F ′(xn)‖ ≤ ‖[2xn − xn−1, xn−1; F ]− F ′(xn)‖
= ‖[2xn − xn−1, xn−1; F ]− [xn, xn−1; F ] + [xn, xn−1; F ]− F ′(xn)‖
= ‖([2xn − xn−1, xn−1, xn; F ]− [xn, xn−1, xn; F ])(xn − x∗)‖
≤ M‖xn − xn−1‖2, (4.15)

which is the third condition in (v3) (or (4.7)). However, estimate (4.15) is
weaker than (4.14) used in the literature [10,11,13].

5 Local convergence for the Gauss-Newton method

Let Ri×j stand for the set of i× j matrix E, E+ stand for the Moore-Penrose
inverse of matrix E and if E has full rank (i.e., if rank (E)= min (i, j) = j),
then E+ = (ETE)−1ET . We shall use the standard auxiliary results [6, 9]:

Lemma 5.1. Assume that E1, E ∈ Ri×j, E2 = E1 + E, ‖E+
1 ‖‖E‖ < 1,

rank(E1)= rank(E2), then

‖E+
2 ‖ ≤

‖E+
1 ‖

1− ‖E+
1 ‖‖E‖

.

Moreover, if rank (E1)= rank (E2) = min (i, j), then

‖E+
2 − E+

1 ‖ ≤
√

2‖E+
1 ‖2‖E‖

1− ‖E+
1 ‖‖E‖

.

Lemma 5.2. Assume that E1, E ∈ Ri×j (i ≥ j), E2 = E1 +E, ‖EE+
1 ‖ < 1,

rank (E1) = j, then rank (E2) = j.

Next, we present the local convergence analysis of the Gauss-Newton method
in a slightly different way than in the previous sections, so we can compare
the new analysis to the works of earlier studies using similar information
[5, 6].

Definition 5.1. We say that F ′ satisfies the center Lipschitz condition on Ω
if there exists L0 ≥ 0 such that for each x ∈ Ω, ‖F ′(x)−F ′(x0)‖ ≤ L0‖x−x0‖.
Let β > 0. Define parameter ρ0 by

ρ0 =
1

βL0

. (5.1)

Set: U0 = U(x∗, ρ0) ∩ Ω. Notice that U0 ⊆ Ω.
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Definition 5.2. We say that F ′ satisfies the restricted-Lipschitz condition
on U0 if there exists L ≥ 0 such that for each x ∈ U0

‖F ′(x)− F (xθ)‖ ≤ (1− θ)L‖x− x∗‖

for each θ ∈ [0, 1] and xθ = x∗ + θ(x− x∗). Notice : L = L(L0). That is the
construction of L depends on L0 and U0.

In earlier studies [5, 6, 11, 13], the following definition is used.

Definition 5.3. We say that F ′ satisfies the Lipschitz condition on Ω if there
exists L1 ≥ 0 such that for each x ∈ Ω

‖F ′(x)− F ′(xθ)‖ ≤ (1− θ)L1‖x− x∗‖ for each θ ∈ [0, 1].

Clearly, we have that
L0 ≤ L1, (5.2)

L ≤ L1, (5.3)

hold, since U0 ⊆ Ω and L1

L0
can be arbitrarily large [2–4].

In earlier studies only L1 is used in the local convergence analysis of
the Gauss-Newton method. However, in view of (5.2) and (5.3), the earlier
results can be improved, if the more precise constants L0 and L are used
instead of L1 (or L1 and L0). If one used with the old approach the Banach
lemma on invertible operators and L1, then the estimate

‖(F ′(x)TF ′(x))−1F ′(x)T‖ ≤ β

1− βL1‖x− x∗‖
(5.4)

is obtained (for β to be precised later) instead of the more precise estimate
really needed in the proof using L0:

‖(F ′(x)TF ′(x))−1F ′(x)T‖ ≤ β

1− βL0‖x− x∗‖
. (5.5)

Similarly, at the numerator of the estimates involved L, L0 can be used
instead of the less precise L1, L2, respectively leading to the advantages (A).

Next, we can show the main local convergence result for the Gauss-
Newton method.

Theorem 5.3. Assume: vector x∗ satisfies problem (1.1); F has a contin-
uous derivative in Ω; F ′(x∗) has full rank; F ′ satisfies the center-Lipschitz
condition on Ω with constant L0; F

′ satisfies the restricted-Lipschitz condi-
tion on U0 with constant L. Then, for x0 ∈ U(x∗, ρ) − {x∗} sequence {xn}
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generated by the Gauss-Newton method is well defined, remains in U(x∗, ρ)
and converges to x∗, provided that

√
2L0cβ

2 < 1, (5.6)

where

ρ =
2(1−

√
2L0cβ

2)

(2L0 + L)β
< ρ0, (5.7)

c = ‖F (x∗)‖, β = ‖[F ′(x∗)TF ′(x∗)]−1F ′(x∗)T‖ and

λ(L0, L, ρ) = λ(ρ) =
βLρ

2(1− βL0ρ)
+

√
2cβ2L0

1− βL0ρ
≤ 1. (5.8)

Moreover, the following estimates hold

‖xn+1−x∗‖ ≤
βL

2(1− βL0‖x0 − x∗‖)
‖xn−x∗‖2 +

√
2cβ2L0

1− βL0‖x0 − x∗‖
‖x0−x∗‖

(5.9)
and

q0(L0, L, ‖x0 − x∗‖) =q0

=
βL‖x0 − x∗‖

2(1− βL0‖x0 − x∗‖)
+

√
2cβ2L0

1− βL0‖x0 − x∗‖
∈ (0, 1).

(5.10)

Furthermore, if c = 0, then

‖xn − x∗‖ ≤ q2
n−1

0 ‖x0 − x∗‖ for each n = 1, 2, . . . . (5.11)

Proof. We first show that q0 ∈ (0, 1). We have by (5.7) and (5.10) in turn
that

q0 =
βL

2(1− βL0‖x0 − x∗‖)
‖x0 − x∗‖+

√
2cβ2L0

1− βL0‖x0 − x∗‖

<
βLρ

2(1− βL0ρ)
+

√
2cβ2L0

1− βL0ρ
= 1 (5.12)

and

‖[F ′(x∗)TF ′(x∗)]−1F ′(x∗)T‖‖F ′(x)− F ′(x∗)‖ ≤ βL0‖x− x∗‖
≤ βL0ρ0 < 1, for each x ∈ U(x∗, ρ0).
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By Lemma (2.1) and (2.2), we know ∀ x ∈ U(x∗, ρ), F ′(x) has full rank and

‖[F ′(x)TF ′(x)]−1F ′(x)T‖ ≤ β

1− βL0‖x− x∗‖
for each x ∈ U(x∗, ρ0)

and

‖[F ′(x)TF ′(x)]−1F ′(x)T − [F ′(x∗)F ′(x∗)]−1F ′(x∗)T‖ ≤
√

2β2L0‖x− x∗‖
1− βL0‖x− x∗‖

for each x ∈ U(x∗, ρ0). Then, if xk ∈ U(x∗, ρ), we have by (1.2)

xk+1 − x∗ =xk − x∗ − [F ′(xk)
TF ′(xk)]

−1F ′(xk)
TF (xk).

= [F ′(xk)
TF ′(xk)]

−1F ′(xk)
T [F ′(xk)(xk − x∗)− F (xk) + F (x∗)]

+ [F ′(x∗)TF ′(x∗)]−1F (x∗)TF ′(x∗)− [F ′(xk)
TF ′(xk)]

−1F ′(xk)
TF (x∗).

It follows that

‖xk+1 − x∗‖ = ‖[F ′(xk)TF ′(xk)]−1F ′(xk)T‖‖
∫ 1

0

[F ′(xk)− F ′(x∗ + θ(xk − x∗))]

× (x∗ − xk)dθ‖+ ‖[F ′(x∗)TF ′(x∗)]−1F ′(x∗)T

− [F ′(xk)
TF ′(xk)]

−1F ′(xk)
T‖‖F ′(x∗)‖

≤ βL‖xk − x∗‖2

2(1− βL0‖xk − x∗‖)
+

√
2cβ2L0‖xk − x∗‖

1− βL0‖xk − x∗‖
.

Taking k = 0 above, we obtain ‖x1 − x∗‖ ≤ q0‖x0 − x∗‖ < ‖x0 − x∗‖, so
x1 ∈ U(x∗, ρ). Using mathematical induction, each xk belongs to U(x∗, ρ)
and ‖xk − x∗‖ decreases monotonically. Hence, for each k = 0, 1, . . ., we get

‖xk+1 − x∗‖ ≤
βL‖xk − x∗‖3

2(1− βL0‖xk − x∗‖)
+

√
2cβ2L0‖xk − x∗‖

1− βL0‖xk − x∗‖

≤ βL‖x0 − x∗‖‖xk − x∗‖2

‖x0 − x∗‖2(1− βL0‖x0 − x∗‖)
+

√
2cβ2L0‖xk − x∗‖

‖x0 − x∗‖(1− βL0‖x0 − x∗‖)
.

(5.13)

In particular, if c = 0, we have

‖xk+1 − x∗‖ ≤
βL‖x0 − x∗‖

‖x0 − x∗‖2(1− βL0‖x0 − x∗‖)
‖xk − x∗‖2

=
q0

‖x0 − x∗‖
‖xk − x∗‖2. (5.14)
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Concerning the uniqueness of the solution.

Proposition 5.4. Suppose x∗ satisfies (1.1), F has a continuous derivative
in U(x∗, ρ), F ′(x∗) has full rank and F ′ satisfies the center Lipschitz condition
on Ω with constant L0. Let ρ > 0 satisfy

ρ = µ(L0) =
2(1− cβ0L0)

β0L0

, (5.15)

where c is given in Theorem 5.6 and

β0 =
∥∥[F ′(x∗)TF ′(x∗)]−1

∥∥. (5.16)

Then (1.1) has a unique solution x∗ in U(x∗, ρ).

Simply use L0 instead of L1 in the proof of Theorem 4.1 in [5].

Remark 5.1. (a) The results in sections 2-4 improve the ones in [11], since
K0, K, max{K1, K2} are smaller than K∗ used there.

(b) If L0 = L = L1, we obtain the results in [5] which in turn generalized
earlier results in [1, 9, 11, 12, 14]. Moreover, if L = L1, then the results
reduce to the ones obtained by us in [2]-[4]. Otherwise, i.e. if

L0 < L < L1 (orL < L0 < L1)

(see [2–4] for example), then we obtain a larger radius of convergence,
tighter error bounds on the distances ‖xn − x∗‖ and at least as precise
information on the location of the solution x∗, since

λ(L0, L) < λ(L0, L1) < λ(L1, L1),

q0(L0, L) < q0(L0, L1) < q0(L1, L1)

and

µ(L0) < µ(L) < µ(L1).

These advantages are obtained under the same computational cost,
since in practice the computation of the parameter L1 requires the
computation of parameters L0 and L as special cases.
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[8] Á.A. Magreñán, A new tool to study real dynamics:, Appl. Math. Comput., 248,
(2014), 29–38.

[9] J.M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations
in several variables, Academic Press, New York, 1970.

[10] J.F. Potra, On an iterative algorithm of order 1.839 . . . for solving nonlinear operator
equations, Numer. Func. Anal. Opt., 7(1), (1985), 75–106.

[11] S.M. Shankhno and O.P. Gnatyshyn, On an iterative algorithm of order 1.839 . . .
for solving the nonlinear least squares problems, Appl. Math. Comput., 161, (2005),
253–264.

[12] R. Ewing, K. Gross, and C. Martin, Newton’s method estimates from data at
one point, in:The merging of disciplines: New directions in Pure Applied and Com-
putational Mathematics, Springer, New York, 1986.

[13] G. W. Stewart, On the continuity of the generalized inverse, SIAM J. Math., 17,
(1960), 33–45.

[14] J.F. Traub and H. Wozniakowski, Convergence and complexity of Newton iter-
ation, J. Assoc. Comput. Math., 29, (1979), 250–258.

Ioannis K. Argyros

Department of Mathematics Sciences
Cameron University
Lawton
OK 73505
USA



Vol. LV (2017) Expanding the Applicability of Iterative Methods 49

E-mail: iargyros@cameron.edu

Janak Raj Sharma

Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal
Punjab 148106
India

E-mail: jrshira@yahoo.co.in

Deepak Kumar

Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal
Punjab 148106
India

E-mail: deepak.babbi@gamil.com

Received: 14.08.2017

Accepted: 25.10.2017


