Fixed Point Theorem for Cyclic (μ, ψ, φ)-Weakly Contractions via a New Function

Open access

Abstract

In this paper, we introduce a generalization of cyclic (μ, ψ, φ)-weakly contraction via a new function and derive the existence of fixed point for such mappings in the setup of complete metric spaces. Our results extend and improve some fixed point theorems in the literature.

[1] Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New results in Operator Theory, Advances Appl. (I. Gohberg and Yu. Lyubich, eds.), Birkhauser, Basel, 8, (1997), 7–22.

[2] D. W. Boyd and T. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20, (1969), 458–464.

[3] S. Chandok, Some common fixed point theorems for generalized nonlinear contractive mappings, Comput. Math. Appl., 62, (2011), 3692–3699.

[4] S. Chandok, Common fixed points, invariant approximation and generalized weak contractions, Internat. J. Math. Math. Sci., 2012, (2012), Article ID 102980.

[5] S. Chandok, Common fixed points for generalized nonlinear contractive mappings in metric spaces, Mat. Vesnik, 65, (2013), 29–34.

[6] S. Chandok, A fixed point result for weakly Kannan type cyclic contractions, Internat. J. Pure Appl. Math., 82, (2), (2013), 253–260.

[7] S. Chandok and V. Popa, Fixed point theorem for cyclic (μ, ψ, φ)-weakly contractions, “Vasile Alecsandri” University of Bacău, Scientific Studies and Research, Series Mathematics and Informatics, 23, (2), (2013), 69–76.

[8] S. Chandok, Some common fixed point results for generalized weak contractive mappings in partially ordered metric spaces, J. Nonlinear Anal. Optim., 4, (1), (2013), 45–52.

[9] S. Chandok, M. S. Khan, and K. P. R. Rao, Some coupled common fixed point theorems for a pair of mappings satisfying a contractive condition of rational type without monotonicity, Internat. J. Math. Anal., 7, (9), (2013), 433–440.

[10] S. Chandok and M. Postolache, Fixed point theorem for weakly Chatterjea type cyclic contractions, Fixed Point Theory Appl., 2013, (2013), 9 pages.

[11] Chi-Ming Chen, Fixed point theorems for ψ-contractive mappings in ordered metric spaces, J. Appl. Math., 2012, (2012), Article ID 756453, 10 pages.

[12] E. Karapinar and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions, Fixed Point Theory Appl., 2011: 69, (2011), doi.org/10.1186/1687-1812-2011-69.

[13] E. Karapinar and I. M. Erhan, Best proximity on different type contractions, Appl. Math. Information Sci., 5, (2011), 342–353.

[14] E. Karapinar and I. M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26, (2012), 777–782.

[15] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4, (1), (2003), 79–89.

[16] M. Pacurar and I. A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72, (2010), 2683–2693.

[17] S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei Ren. Cl. Sci. Fis. Mat. Natur., 57, (1975), 194–198.

[18] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47, (2001), 2683–2693.

Journal Information


Mathematical Citation Quotient (MCQ) 2016: 0.01

Target Group

researchers in all branches of mathematics and computer science

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 160 22
PDF Downloads 96 96 12