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1 Introduction

Let B1, B2 stand for Banach space and let Ω stand for an open subset of
B1. Let also U (z, ρ) := {u ∈ B1 : ‖u− z‖ < ρ} and let U (z, ρ) stand for the
closure of U (z, ρ).

Many problems in Computational Sciences, Engineering, Mathematical
Chemistry, Mathematical Physics, Mathematical Economics and other disci-
plines can be brought in a form like

F (x) = 0 (1.1)
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using Mathematical Modeling [1]-[16], where F : Ω → B2 is a continuous
operator. The solution x∗ of equation (1.1) is sought in closed form. However,
this is attainable only in special cases, which explains why most solution
methods for such equations are usually iterative. There is a plethora of
iterative methods for solving equation (1.1). We can divide these methods
in two categories.

Explicit Methods [6, 7, 11, 15,16]: Newton’s method

xn+1 = xn − F ′ (xn)−1 F (xn) . (1.2)

Secant method:

xn+1 = xn − [xn−1, xn;F ]−1 F (xn) , (1.3)

where [·, ·;F ] denotes a divided difference of order one on Ω× Ω [7,15,16].
Newton-like method:

xn+1 = xn − E−1
n F (xn) , (1.4)

where En = E (F ) (xn) and E : Ω→ L (B1, B2) the space of bounded linear
operators from B1 into B2. Other explicit methods can be found in [7], [11],
[15], [16] and the references there in.

Implicit Methods [6, 9, 11, 16]:

F (xn) + An (xn+1 − xn) = 0 (1.5)

xn+1 = xn − A−1
n F (xn) , (1.6)

where An = A (xn+1, xn) = A (F ) (xn+1, xn) and A : Ω × Ω → L (B1, B2) .
We denote A (F ) (x, x) = A (x, x) = A (x) for each x ∈ Ω.

There is a plethora on local as well as semi-local convergence results for
explicit methods [1]-[8], [10]-[16]. However, the research on the convergence
of implicit methods has received little attention. Authors, usually consider
the fixed point problem

Pz (x) = x, (1.7)

where

Pz (x) = x+ F (z) + A (x, z) (x− z) (1.8)

or

Pz (x) = z − A (x, z)−1 F (z) (1.9)

for methods (1.5) and (1.6), respectivelly, where z ∈ Ω is given. If P is a
contraction operator mapping a closed set into itself, then according to the
contraction mapping principle [11], [12], [15], [16], Pz has a fixed point x∗z
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which can be found using the method of succesive substitutions or Picard’s
method [16] defined for each fixed n by

yk+1,n = Pxn (yk,n) , y0,n = xn, xn+1 = lim
k→+∞

yk,n. (1.10)

Let us also consider the analogous explicit methods

F (xn) + A (xn, xn) (xn+1 − xn) = 0 (1.11)

xn+1 = xn − A (xn, xn)−1 F (xn) (1.12)

F (xn) + A (xn, xn−1) (xn+1 − xn) = 0 (1.13)

and

xn+1 = xn − A (xn, xn−1)−1 F (xn) . (1.14)

In the present paper in Section 2, we present the semi-local convergence of
method (1.5) and method (1.6). Section 3 contains the semi-local convergence
of method (1.11), method (1.12), method (1.13) and method (1.14). Some
applications to Abstract Fractional Calculus are suggested in Section 4 on a
certain Banach space valued functions, where all the integrals are of Bochner-
type [7], [13].

2 Semi-local Convergence for Implicit methods

We present the semi-local convergence analysis of method (1.6) using condi-
tions (S):

(s1) F : Ω ⊂ B1 → B2 is continuous and A (x, y) ∈ L (B1, B2) for each
(x, y) ∈ Ω× Ω.

(s2) There exist β > 0 and Ω0 ⊂ B1 such that A (x, y)−1 ∈ L (B2, B1) for
each (x, y) ∈ Ω0 × Ω0 and ∥∥A (x, y)−1

∥∥ ≤ β−1.

Set Ω1 = Ω ∩ Ω0.
(s3) There exists a continuous and nondecreasing function ψ : [0,+∞)3 →

[0,+∞) such that for each x, y ∈ Ω1

‖F (x)− F (y)− A (x, y) (x− y)‖ ≤

βψ (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖) ‖x− y‖ .
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(s4) For each x ∈ Ω0 there exists y ∈ Ω0 such that

y = x− A (y, x)−1 F (x) .

(s5) For x0 ∈ Ω0 and x1 ∈ Ω0 satisfying (s4) there exists η ≥ 0 such that∥∥A (x1, x0)−1 F (x0)
∥∥ ≤ η.

(s6) Define q (t) := ψ (η, t, t) for each t ∈ [0,+∞). Equation

t (1− q (t))− η = 0

has positive solutions. Denote by s the smallest such solution.
(s7) U (x0, s) ⊂ Ω, where

s =
η

1− q0

and q0 = ψ (η, s, s) .

Next, we present the semi-local convergence analysis for method (1.6)
using the conditions (S) and the preceding notation.

Theorem 2.1. Assume that the conditions (S) hold. Then, sequence {xn}
generated by method (1.6) starting at x0 ∈ Ω is well defined in U (x0, s),
remains in U (x0, s) for each n = 0, 1, 2, ... and converges to a solution
x∗ ∈ U (x0, s) of equation F (x) = 0. Moreover, suppose that there exists
a continuous and nondecreasing function ψ1 : [0,+∞)4 → [0,+∞) such that
for each x, y, z ∈ Ω1

‖F (x)− F (y)− A (z, y) (x− y)‖ ≤

βψ1 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖ , ‖z − x0‖) ‖x− y‖

and q1 = ψ1 (η, s, s, s) < 1.
Then, x∗ is the unique solution of equation F (x) = 0 in U (x0, s) .

Proof. By the definition of s and (s5), we have x1 ∈ U (x0, s). The proof is
based on mathematical induction on k. Suppose that ‖xk − xk−1‖ ≤ qk−1

0 η
and ‖xk − x0‖ ≤ s.

We get by (1.6), (s2)− (s5) in turn that

‖xk+1 − xk‖ =
∥∥A−1

k F (xk)
∥∥ =

∥∥A−1
k (F (xk)− F (xk−1)− Ak−1 (xk − xk−1))

∥∥
≤
∥∥A−1

k

∥∥ ‖F (xk)− F (xk−1)− Ak−1 (xk − xk−1)‖ ≤

β−1βψ (‖xk − xk−1‖ , ‖xk−1 − x0‖ , ‖yk − x0‖) ‖xk − xk−1‖ ≤
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ψ (η, s, s) ‖xk − xk−1‖ = q0 ‖xk − xk−1‖ ≤ qk0 ‖x1 − x0‖ ≤ qk0η (2.1)

and

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ...+ ‖x1 − x0‖

≤ qk0η + ...+ η =
1− qk+1

0

1− q0

η <
η

1− q0

= s.

The induction is completed. Moreover, we have by (2.1) that for m =
0, 1, 2, ...

‖xk+m − xk‖ ≤
1− qm0
1− q0

qk0η.

It follows from the preceding inequation that sequence {xk} is complete in
a Banach space B1 and as such it converges to some x∗ ∈ U (x0, s) (since
U (x0, s) is a closed ball). By letting k → +∞ in (2.1) we get F (x∗) = 0.
To show the uniqueness part, let x∗∗ ∈ U (x0, s) be a solution of equation
F (x) = 0. By using (1.6) and the hypothesis on ψ1, we obtain in turn that

‖x∗∗ − xk+1‖ =
∥∥x∗∗ − xk + A−1

k F (xk)− A−1
k F (x∗∗)

∥∥ ≤∥∥A−1
k

∥∥ ‖F (x∗∗)− F (xk)− Ak (x∗∗ − xk)‖ ≤

β−1βψ1 (‖x∗∗ − xk‖ , ‖xk−1 − x0‖ , ‖xk − x0‖ , ‖x∗∗ − x0‖) ‖x∗∗ − xk‖ ≤

q1 ‖x∗∗ − xk‖ ≤ qk+1
1 ‖x∗∗ − x0‖ ,

so lim
k→+∞

xk = x∗∗. We have shown that lim
k→+∞

xk = x∗, so x∗ = x∗∗.

Remark 2.1. (1) The equation in (s6) is used to determine the smallness of
η. It can be replaced by a stronger condition as follows. Choose µ ∈ (0, 1).
Denote by s0 the smallest positive solution of equation q (t) = µ. Notice that
if function q is strictly increasing, we can set s0 = q−1 (µ). Then, we can
suppose instead of (s6) :

(s′6) η ≤ (1− µ) s0

which is a stronger condition than (s6).
However, we wanted to leave the equation in (s6) as uncluttered and as

weak as possible.
(2) Condition (s2) can become part of condition (s3) by considering
(s3)′ There exists a continuous and nondecreasing function ϕ : [0,+∞)3 →

[0,+∞) such that for each x, y ∈ Ω1∥∥A (x, y)−1 [F (x)− F (y)− A (x, y) (x, y)]
∥∥ ≤

ϕ (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖) ‖x− y‖ .
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Notice that
ϕ (u1, u2, u3) ≤ ψ (u1, u2, u3)

for each u1 ≥ 0, u2 ≥ 0 and u3 ≥ 0. Similarly, a function ϕ1 can replace ψ1

for the uniqueness of the solution part. These replacements are of Mysovskii-
type [6], [11], [15] and influence the weaking of the convergence criterion in
(s6), error bounds and the precision of s.

(3) Suppose that there exist β > 0, β1 > 0 and L ∈ L (B1, B2) with
L−1 ∈ L (B2, B1) such that ∥∥L−1

∥∥ ≤ β−1

‖A (x, y)− L‖ ≤ β1

and
β2 := β−1β1 < 1.

Then, it follows from the Banach lemma on invertible operators [11], and∥∥L−1
∥∥ ‖A (x, y)− L‖ ≤ β−1β1 = β2 < 1

that A (x, y)−1 ∈ L (B2, B1). Let β = β−1

1−β2 . Then, under these replacements,

condition (s2) is implied, therefore it can be dropped from the conditions
(S).

(4) Clearly method (1.5) converges under the conditions (S), since (1.6)
implies (1.5).

(5) We wanted to leave condition (s4) as uncluttered as possible, since
in practice equations (1.6) (or (1.5)) may be solvable in a way avoiding the
already mentioned conditions of the contraction mapping principle. However,
in what follows we examine the solvability of method (1.5) under a stronger
version of the contraction mapping principle using the conditions (V ) :

(v1) = (s1) .
(v2) There exist functions w1 : [0,+∞)4 → [0,+∞), w2 : [0,+∞)4 →

[0,+∞) continuous and nondecreasing such that for each x, y, z ∈ Ω

‖I + A (x, z)− A (y, z)‖ ≤ w1 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖ , ‖z − x0‖)

‖A (x, z)− A (y, z)‖ ≤ w2 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖ , ‖z − x0‖) ||x− y||
and

w1 (0, 0, 0, 0) = w2 (0, 0, 0, 0) = 0.

Set

h (t, t, t, t) =

{
w1 (2t, t, t, t) + w2 (2t, t, t, t) (t+ ‖x0‖) , z 6= x0

w1 (2t, t, t, 0) + w2 (2t, t, t, 0) ‖x0‖ , z = x0.
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(v3) There exists τ > 0 satisfying

h (t, t, t, t) < 1

and

h (t, t, 0, t) t+ ‖F (x0)‖ ≤ t

(v4) U (x0, τ) ⊆ D.

Theorem 2.2. Suppose that the conditions (V ) are satisfied. Then, equa-
tion (1.5) is uniquely solvable for each n = 0, 1, 2, .... Moreover, if A−1

n ∈
L (B2, B1), the equation (1.6) is also uniquely solvable for each n = 0, 1, 2, ...

Proof. The result is an application of the contraction mapping principle. Let
x, y, z ∈ U (x0, τ). By the definition of operator Pz, (v2) and (v3), we get in
turn that

‖Pz (x)− Pz (y)‖ = ‖(I + A (x, z)− A (y, z)) (x− y)− (A (x, z)− A (y, z)) z‖

≤ ‖I + A (x, z)− A (y, z)‖ ‖x− y‖+ ‖A (x, z)− A (y, z)‖ ‖z‖

≤ [w1 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖ , ‖z − x0‖) +

w2 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖ , ‖z − x0‖) (‖z − x0‖+ ‖x0‖)] ‖x− y‖

≤ h (τ, τ, τ, τ) ‖x− y‖

and

‖Pz (x)− x0‖ ≤ ‖Pz (x)− Pz (x0)‖+ ‖Pz (x0)− x0‖

≤ h (‖x− x0‖ , ‖x− x0‖ , 0, ‖z − x0‖) ‖x− x0‖+ ‖F (x0)‖

≤ h (τ, τ, 0, τ) τ + ‖F (x0)‖ ≤ τ.

Remark 2.2. Section 2 and Section 3 have an interest independent of Section
4. It is worth noticing that the results especially of Theorem 2.1 can apply
in Abstract Fractional Calculus as illustrated in Section 4. By specializing
function ψ, we can apply the results of say Theorem 2.1 in the examples
suggested in Section 4. In particular for (4.28), we choose ψ (u1, u2, u3) =

λu
(n+1)α
1

βΓ((n+1)α)((n+1)α+1)
for u1 ≥ 0, u2 ≥ 0, u3 ≥ 0 and λ, α are given in Section 4.

Similar choices for the other examples of Section 4. It is also worth noticing
that estimate (4.2) derived in Section 4 is of independent interest but not
needed in Theorem 2.1.
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3 Semi-local convergence for explicit methods

A specialization of Theorem 2.1 can be utilized to study the semi-local con-
vergence of the explicit methods given in the introduction of this study.
In particular, for the study of method (1.12) (and consequently of method
(1.11)), we use the conditions (S ′) :

(s′1) F : Ω ⊂ B1 → B2 is continuous and A (x, x) ∈ L (B1, B2) for each
x ∈ Ω.

(s′2) There exist β > 0 and Ω0 ⊂ B1 such that A (x, x)−1 ∈ L (B2, B1) for
each x ∈ Ω0 and ∥∥A (x, x)−1

∥∥ ≤ β−1.

Set Ω1 = Ω ∩ Ω0.
(s′3) There exist continuous and nondecreasing functions ψ0 : [0,+∞)3 →

[0,+∞), ψ2 : [0,+∞)3 → [0,+∞) with ψ0 (0, 0, 0) = ψ2 (0, 0, 0) = 0 such
that for each x, y ∈ Ω1

‖F (x)− F (y)− A (y, y) (x− y)‖ ≤

βψ0 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖) ‖x− y‖

and
‖A (x, y)− A (y, y)‖ ≤ βψ2 (‖x− y‖ , ‖x− x0‖ , ‖y − x0‖) .

Set ψ = ψ0 + ψ2.
(s′4) There exist x0 ∈ Ω0 and η ≥ 0 such that A (x0, x0)−1 ∈ L (B2, B1)

and ∥∥A (x0, x0)−1 F (x0)
∥∥ ≤ η.

(s′5) = (s6)
(s′6) = (s7).
Next, we present the following semi-local convergence analysis of method

(1.12) using the (S ′) conditions and the preceding notation.

Proposition 3.1. Suppose that the conditions (S ′) are satisfied. Then, se-
quence {xn} generated by method (1.12) starting at x0 ∈ Ω is well defined
in U (x0, s), remains in U (x0, s) for each n = 0, 1, 2, ... and converges to a
unique solution x∗ ∈ U (x0, s) of equation F (x) = 0.

Proof. We follow the proof of Theorem 2.1 but use instead the analogous
estimate

‖F (xk)‖ = ‖F (xk)− F (xk−1)− A (xk−1, xk−1) (xk − xk−1)‖ ≤

‖F (xk)− F (xk−1)− A (xk, xk−1) (xk − xk−1)‖+
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‖(A (xk, xk−1)− A (xk−1, xk−1)) (xk − xk−1)‖ ≤

[ψ0 (‖xk − xk−1‖ , ‖xk−1 − x0‖ , ‖xk − x0‖) +

ψ2 (‖xk − xk−1‖ , ‖xk−1 − x0‖ , ‖xk − x0‖)] ‖xk − xk−1‖ =

ψ (‖xk − xk−1‖ , ‖xk−1 − x0‖ , ‖xk − x0‖) ‖xk − xk−1‖ .

The rest of the proof is identical to the one in Theorem 2.1 until the unique-
ness part for which we have the corresponding estimate

‖x∗∗ − xk+1‖ =
∥∥x∗∗ − xk + A−1

k F (xk)− A−1
k F (x∗∗)

∥∥ ≤∥∥A−1
k

∥∥ ‖F (x∗∗)− F (xk)− Ak (x∗∗ − xk)‖ ≤

β−1βψ0 (‖x∗∗ − xk‖ , ‖xk−1 − x0‖ , ‖xk − x0‖) ≤

q ‖x∗∗ − xk‖ ≤ qk+1 ‖x∗∗ − x0‖ .

Remark 3.1. Comments similar to the ones given in Section 2 can follows
but for method (1.13) and method (1.14) instead of method (1.5) and method
(1.6), respectively.

4 Applications to X-valued Fractional Calculus

Here we deal with Banach space (X, ‖·‖) valued functions f of real domain
[a, b]. All integrals are of Bochner-type, see [13]. The derivatives of f are
defined similarly to numerical ones, see [16], pp. 83-86 and p. 93.

Let f : [a, b] → X such that f (m) ∈ L∞ ([a, b] , X), the X-valued left
Caputo fractional derivative of order α /∈ N, α > 0, m = dαe (d·e ceiling) is
defined as follows (see [3]):

(Dα
a f) (x) =

1

Γ (m− α)

∫ x

a

(x− t)m−α−1 f (m) (t) dt, (4.1)

where Γ is the gamma function, ∀ x ∈ [a, b] .
We observe that

‖(Dα
a f) (x)‖ ≤ 1

Γ (m− α)

∫ x

a

(x− t)m−α−1
∥∥f (m) (t)

∥∥ dt
≤
∥∥f (m)

∥∥
∞

Γ (m− α)

(∫ x

a

(x− t)m−α−1 dt

)
=

∥∥f (m)
∥∥
∞

Γ (m− α)

(x− a)m−α

(m− α)
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=

∥∥f (m)
∥∥
∞

Γ (m− α + 1)
(x− a)m−α . (4.2)

We have proved that

‖(Dα
a f) (x)‖ ≤

∥∥f (m)
∥∥
∞

Γ (m− α + 1)
(x− a)m−α ≤

∥∥f (m)
∥∥
∞

Γ (m− α + 1)
(b− a)m−α .

(4.3)
Clearly then (Dα

a f) (a) = 0.
Let n ∈ N we denote Dnα

a = Dα
aD

α
a ...D

α
a (n-times).

Let us assume now that

f ∈ C1 ([a, b] , X) , Dkα
a f ∈ C1 ([a, b] , X) , k = 1, ..., n;

D(n+1)α
a f ∈ C ([a, b] , X) , n ∈ N, 0 < α ≤ 1. (4.4)

By [4], we have

f (x) =
n∑
i=0

(x− a)iα

Γ (iα + 1)

(
Diα
a f
)

(a) + (4.5)

1

Γ ((n+ 1)α)

∫ x

a

(x− t)(n+1)α−1 (D(n+1)α
a f

)
(t) dt, ∀ x ∈ [a, b].

Under our assumption and conclusion, see (4.4), Taylor’s formula (4.5) be-
comes

f (x)− f (a) =
n∑
i=2

(x− a)iα

Γ (iα + 1)

(
Diα
a f
)

(a) +

1

Γ ((n+ 1)α)

∫ x

a

(x− t)(n+1)α−1 (D(n+1)α
a f

)
(t) dt, ∀ x ∈ [a, b], for 0 < α < 1.

(4.6)
Here we are going to operate more generally. Again we assume 0 < α ≤ 1,
and f : [a, b] → X, such that f ′ ∈ C ([a, b] , X). We define the following
X-valued left Caputo fractional derivatives:(

Dα
y f
)

(x) =
1

Γ (1− α)

∫ x

y

(x− t)−α f ′ (t) dt, (4.7)

for any x ≥ y; x, y ∈ [a, b] , and

(Dα
xf) (y) =

1

Γ (1− α)

∫ y

x

(y − t)−α f ′ (t) dt, (4.8)

for any y ≥ x; x, y ∈ [a, b] .
Notice D1

yf = f ′, D1
xf = f ′ by convention.
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Clearly here
(
Dα
y f
)
, (Dα

xf) are continuous functions over [a, b], see [3].

We also make the convention that
(
Dα
y f
)

(x) = 0, for x < y, and (Dα
xf) (y) =

0, for y < x.
Here we assume that Dkα

y f , Dkα
x f ∈ C1 ([a, b] , X), k = 1, ..., n; D

(n+1)α
y f,

D
(n+1)α
x f ∈ C ([a, b] , X) , n ∈ N; ∀ x, y ∈ [a, b] .

Then by (4.6) we obtain

f (x)− f (y) =
n∑
i=2

(x− y)iα

Γ (iα + 1)

(
Diα
y f
)

(y) +

1

Γ ((n+ 1)α)

∫ x

y

(x− t)(n+1)α−1 (D(n+1)α
y f

)
(t) dt, (4.9)

∀ x > y; x, y ∈ [a, b] , for 0 < α < 1,
and also it holds

f (y)− f (x) =
n∑
i=2

(y − x)iα

Γ (iα + 1)

(
Diα
x f
)

(x) +

1

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α−1 (D(n+1)α
x f

)
(t) dt, (4.10)

∀ y > x; x, y ∈ [a, b] , for 0 < α < 1.
We define the following X-valued linear operator

(A (f)) (x, y) =

∑n
i=2

(x−y)iα−1

Γ(iα+1)

(
Diα
y f
)

(y) +
(
D

(n+1)α
y f (x)

)
(x−y)(n+1)α−1

Γ((n+1)α+1)
, x > y,

∑n
i=2

(y−x)iα−1

Γ(iα+1)
(Diα

x f) (x) +
(
D

(n+1)α
x f (y)

)
(y−x)(n+1)α−1

Γ((n+1)α+1)
, y > x,

f ′ (x) , when x = y,

(4.11)

∀ x, y ∈ [a, b] , 0 < α < 1.
We may assume that

‖(A (f)) (x, x)− (A (f)) (y, y)‖ = ‖f ′ (x)− f ′ (y)‖ (4.12)

≤ Φ |x− y| , ∀ x, y ∈ [a, b] , with Φ > 0,

see also ([11], p. 3).
We estimate and have:
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i) case of x > y :

‖f (x)− f (y)− (A (f)) (x, y) (x− y)‖ =∥∥∥∥ 1

Γ ((n+ 1)α)

∫ x

y

(x− t)(n+1)α−1 (D(n+1)α
y f

)
(t) dt (4.13)

−
(
D(n+1)α
y f (x)

) (x− y)(n+1)α

Γ ((n+ 1)α + 1)

∥∥∥∥∥
(by [1], p. 426. Theorem 11.43)

=
1

Γ ((n+ 1)α)

∥∥∥∥∫ x

y

(x− t)(n+1)α−1 ((D(n+1)α
y f

)
(t)−

(
D(n+1)α
y f

)
(x)
)
dt

∥∥∥∥
(by [7])

≤ 1

Γ ((n+ 1)α)

∫ x

y

(x− t)(n+1)α−1
∥∥D(n+1)α

y f (t)−
(
D(n+1)α
y f

)
(x)
∥∥ dt

(we assume here that∥∥D(n+1)α
y f (t)−D(n+1)α

y f (x)
∥∥ ≤ λ1 |t− x| , (4.14)

∀ t, x, y ∈ [a, b] : x ≥ t ≥ y, where λ1 > 0)

≤ λ1

Γ ((n+ 1)α)

∫ x

y

(x− t)(n+1)α−1 (x− t) dt =

λ1

Γ ((n+ 1)α)

∫ x

y

(x− t)(n+1)α dt =
λ1

Γ ((n+ 1)α)

(x− y)(n+1)α+1

((n+ 1)α + 1)
. (4.15)

We have proved that

‖f (x)− f (y)− (A (f)) (x, y) (x− y)‖ ≤ λ1

Γ ((n+ 1)α)

(x− y)(n+1)α+1

((n+ 1)α + 1)
,

(4.16)
for any x, y ∈ [a, b] : x > y, 0 < α < 1.

ii) case of x < y :

‖f (x)− f (y)− (A (f)) (x, y) (x− y)‖ =

‖f (y)− f (x)− (A (f)) (x, y) (y − x)‖ =∥∥∥∥ 1

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α−1 (D(n+1)α
x f

)
(t) dt (4.17)
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−
(
D(n+1)α
x f (y)

) (y − x)(n+1)α

Γ ((n+ 1)α + 1)

∥∥∥∥∥ =

1

Γ ((n+ 1)α)

∥∥∥∥∫ y

x

(y − t)(n+1)α−1 ((D(n+1)α
x f

)
(t)−

(
D(n+1)α
x f

)
(y)
)
dt

∥∥∥∥ ≤
1

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α−1
∥∥(D(n+1)α

x f
)

(t)−
(
D(n+1)α
x f

)
(y)
∥∥ dt

(we assume that∥∥(D(n+1)α
x f

)
(t)−

(
D(n+1)α
x f

)
(y)
∥∥ ≤ λ2 |t− y| , (4.18)

∀ t, y, x ∈ [a, b] : y ≥ t ≥ x, where λ2 > 0)

≤ λ2

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α−1 (y − t) dt =

λ2

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α dt =
λ2

Γ ((n+ 1)α)

(y − x)(n+1)α+1

((n+ 1)α + 1)
. (4.19)

We have proved that

‖f (x)− f (y)− A (f) (x, y) (x− y)‖ ≤ λ2

Γ ((n+ 1)α)

(y − x)(n+1)α+1

((n+ 1)α + 1)
,

(4.20)
∀ x, y ∈ [a, b] : y > x, 0 < α < 1.

Conclusion Let λ := max (λ1, λ2) . It holds

‖f (x)− f (y)− (A (f)) (x, y) (x− y)‖ ≤ λ

Γ ((n+ 1)α)

|x− y|(n+1)α+1

((n+ 1)α + 1)
,

(4.21)
∀ x, y ∈ [a, b], where 0 < α < 1, n ∈ N.

One may assume that λ
Γ((n+1)α)

< 1.

(Above notice that (4.21) is trivial when x = y.)
Now based on (4.12) and (4.21), we can apply our numerical methods

presented in this article, to solve f (x) = 0.
To have (n+ 1)α + 1 ≥ 2, we need to take 1 > α ≥ 1

n+1
, where n ∈ N.
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