The concept of generalized convex contraction was introduced and studied by V. Istrăţescu and the notion of *b*-metric space was introduced by I. A. Bakhtin and S. Czerwik. In this paper we combine these two elements by studying iterated function systems consisting of generalized convex contractions on the framework of *b*-metric spaces. More precisely we prove the existence and uniqueness of the attractor of such a system providing in this way a generalization of Istrăţescu’s convex contractions fixed point theorem in the setting of complete strong *b*-metric spaces.

[1] Aghajani A., Abbas M., and Roshan J.R., Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64, (2014), 941-960.

[2] Alghamdia M.A., Alnafeia S.H., Radenović S., and Shahzad N., Fixed point theorems for convex contraction mappings on cone metric spaces, Math. Comput. Modelling, 54, (2011), 2020–2026.

[3] An T.V., Tuyen L.Q., and Dung N.V., Stone-type theorem on b-metric spaces and applications, Topology Appl., 185/186, (2015), 50-64.

[4] András Sz., Fiber Picard operators and convex contractions, Fixed Point Theory, 4, (2003), 121-129.

[5] András Sz., Ecuaţii integrale Fredholm-Volterra, Editura Didactică şi Pedagogică, Bucureşti, 2005.

[6] Andres J. and Rypka M., Multivalued fractals and hyperfractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22, (2012), DOI 10.1142/S02181127412500095.

[7] Aydi H., Bota M.F., Karapinar E., and Mitrović S., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., (2012), 2012–88.

[8] Bakhtin I.A., The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30, (1989), 26–37.

[9] Berinde V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, (1993), 3–9.

[10] Boriceanu M., Bota M., and Petruşel A., Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8, (2010), 367–377.

[11] Boriceanu M., Petruşel A., and Rus A.I., Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Int. J. Math. Stat., 6, (2010), 65–76.

[12] Bota M., Molnár A., and Varga C., On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory, 12, (2011), 21–28.

[13] Chifu C. and Petruşel A., Multivalued fractals and generalized multivalued contractions, Chaos Solitons Fractals, 36, (2008), 203–210.

[14] Chifu C. and Petruşel G., Fixed points for multivalued contractions in b-metric spaces with applications to fractals, Taiwanese J. Math., 18, (2014), 1365–1375.

[15] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1, (1993), 5–11.

[16] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46, (1998), 263–276.

[17] Dubey A.K., Shukla R., and Dubey R.P., Some fixed point results in b-metric spaces, Asian Journal of Mathematics and Applications, (2014), Article ID ama0147

[18] Dumitru D., Generalized iterated function systems containing Meir-Keeler functions, An. Univ. Bucur., Mat., 58, (2009), 109–121.

[19] Istrăţescu V., Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings (I), Libertas Math., 1, (1981), 151–164.

[20] V. Istrăţescu, Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters - I, Annali di Mat. Pura Appl., 130, (1982), 89–104.

[21] V. Istrăţescu, Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters, II, Annali di Mat. Pura Appl., 134, (1983), 327–362.

[22] Georgescu F., IFSs consisting of generalized convex contractions, An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat., in print

[23] Ghorbanian V., Rezapour S., and N. Shahzad, Some ordered fixed point results and the property, (P), Comput. Math. Appl., 63, (2012), 1361–1368.

[24] Gwóźdź-Lukowska G. and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356, (2009), 453–463.

[25] N. Hussain, M.A. Kutbi, Khaleghizadeh S., and P. Salimi, Discussions on recent results for α–Ψ-contractive mappings, Abstr. Appl. Anal., 2014, (2014), Article ID 456482, 13 pages.

[26] Hutchinson J.E., Fractals and self similarity, Indiana Univ. Math. J., 30, (1981), 713–747.

[27] Khamsi M.A. and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73, (2010), 3123–3129.

[28] Kir M. and Kizitune H., On some well known fixed point theorems in b-metric spaces, Turkish Journal of Analysis and Number Theory, 1, (2013), 13–16.

[29] Kirk W.A. and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer Heidelberg, 2014.

[30] Klimek M. and Kosek M., Generalized iterated function systems, multifunctions and Cantor sets, Ann. Polon. Math., 96, (2009), 25–41.

[31] Kutbi M.A., Karapinar E., Ahmad J., and Azam A., Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl, 2014, (2014), article ID 126.

[32] Latif A., Sintunavarat W., and Ninsri A., Approximate fixed point theorems for partial generalized convex contraction mappings in α-complete metric spaces, Taiwanese J. Math., 19, (2015), 315–333.

[33] Leśniak K., Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 52, (2004), 1–8.

[34] Máté L., The Hutchinson-Barnsley theory for certain noncontraction mappings, Period. Math. Hungar., 27, (1993), 21–33.

[35] Miandaragh M.A., Postolache M., and Rezapour S., Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., 2013, (2013), article 255.

[36] Mihail A. and Miculescu R., Applications of fixed point theorems in the theory of generalized IFS, Fixed Point Theory Appl., (2008), Art. ID 312876, 11 pp.

[37] Generalized IFSs on noncompact spaces A. Mihail and R. Miculescu, Fixed Point Theory Appl., (2010), Art. ID 584215, 15 pp.

[38] Miculescu R. and Mihail A., Reich-type iterated function systems, J. Fixed Point Theory Appl., 18, (2016), 285–296.

[39] Miculescu R. and Mihail A., A generalization of Istrăţescu’s fixed point theorem for convex contractions, in print, Fixed Point Theory (available at arXiv:1512.05490).

[40] Miculescu R. and Mihail A., Caristi-Kirk type and Boyd&Wong–Browder-Matkowski-Rus type fixed point results in b-metric spaces, in print, Filomat (available at arXiv:1512.03968)

[41] Mishra P.K., Sachdeva S., and Banerjee S.K., Some fixed point theorems in b-metric space, Turkish Journal of Analysis and Number Theory, 2, (2014), 19–22.

[42] Mohanta S.K., Some fixed point theorems using wt-distance in b-metric spaces, Fasc. Math., 54, (2015), 125–140.

[43] Mureşan V. and Mureşan A., On the theory of fixed point theorems for convex contraction mappings, Carpathian J. Math., 31, (2015), 365–371.

[44] Nashine H.N. and Kadelburg Z., Cyclic generalized ϕ-contractions in b-metric spaces and an application to integral equations, Filomat, 28, (2014), 2047–2057.

[45] Nazir T., Silvestrov S., and Qi Xiaomin, Fractals of generalized F-Hutchinson operator in b-metric spaces, J. Oper., 2016, (2016), article ID 5250394.

[46] Olatinwo M.O., A fixed point theorem for multi-valued weakly Picard operators in b-metric spaces, Demonstratio Math., 42, (2009), 599–606.

[47] Păcurar M., Sequences of almost contractions and fixed points in b-metric spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 48, (2010), 125–137.

[48] Petruşel A., Iterated function system of locally contractive operators, Rev. Anal. Numér. Théor. Approx., 33, (2004), 215–219.

[49] Roshan J.R., Hussain N., Sedghi S., and Shobkolaei N., Suzuki-type fixed point results in b-metric spaces, Math. Sci. (Springer), 9, (2015), 153–160.

[50] Roshan J.R., Parvaneh V., and Altun I., Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226, (2014), 725–737.

[51] M. Sarwar and Rahman M.U., Fixed point theorems for Ciric’s and generalized contractions in b-metric spaces, International Journal of Analysis and Applications, 7, (2015), 70–78.

[52] N.A.. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl., (2013), 2013–277.

[53] Secelean N.A., Generalized iterated function systems on the space l∞(X), J. Math. Anal. Appl., 410, (2014), 847–458.

[54] Secelean N.A., Countable Iterated Function Systems, Lambert Academic Publishing, 2013

[55] Shukla S., Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11, (2014), 703–711.

[56] Singh S.L., Czerwik S., Król K., and Singh A., Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24, (2008), 401–416.

[57] Strobin F. and J. Swaczyna, On a certain generalization of the iterated function systems, Bull. Australian Math. Soc., 87, (2013), 37–54.

[58] Strobin F., Attractors of generalized IFSs that are not attractors of IFSs, J. Math. Anal. Appl., 422, (2015), 99–108.

[59] Yingtaweesittikul H., Suzuki type fixed point for generalized multi-valued mappings in b-metric spaces, Fixed Point Theory and Applications, (2013), 215.