
DOI: 10.1515/awutm-2017-0007 Analele Universităţii de Vest,
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1 Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

We adopt the standard notations of value distribution theory (see [5]). For
a non-constant meromorphic function f , we denote by T (r, f) the Nevanlinna
characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}
as r →∞ possibly outside a set of finite linear measure. We denote by T (r)
the maximum of T (r, f) and T (r, g). The notation S(r) denotes any quantity
satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible exceptional set
of finite linear measure.
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A meromorphic function a(z) is called a small function with respect to
f , provided that T (r, a) = S(r, f). The order of f is defined by

ρ(f) = lim sup
r−→∞

log T (r, f)

log r
.

Definition 1.1. [7] Let k be a nonnegative integer or infinity. For a ∈
C∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k.
If Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k. We
write f , g share (a, k) to mean that f , g share the value a with weight k.

We now require the following definitions.

Definition 1.2. [6] For a ∈ C∪{∞}we denote by N(r, a; f |= 1) the counting
function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f
whose multiplicities are not greater(less) than m where each a point is counted
according to its multiplicity. N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined
similarly, where in counting the a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m)and N(r, a; f |> m)
are defined analogously.

Definition 1.3. [7] Let k ∈ N∪{∞}. We denote by Nk(r, a; f) the counting
function of a-points of f , where an a-point of multiplicity m is counted m
times if m ≤ k and k times if m > k. Then Nk(r, a; f) = N(r, a; f) +
N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k). Clearly N1(r, a; f) = N(r, a; f).

For the sake of simplicity we also use the notation

m∗ :=

{
m, if m ≤ k + 1
k + 2, if m > k + 1

where m(≥ 1) and k(≥ 0) are integers.
We first recall the following uniqueness result of X. G. Qi, L. Z. Yang and

K. Liu [9] obtained in 2010.

Theorem A. [9] Let f(z) and g(z) be two transcendental entire functions of
finite order and η be a non-zero complex constant and let n ≥ 6 be an integer.
If fn(z)f(z + η) and gn(z)g(z + η) share 1 CM, then either f(z)g(z) = t1 or
f(z) = t2g(z) for some constants t1 and t2 satisfying tn+1

1 = tn+1
2 = 1.

Next we state Zhang’s [12] following result.
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Theorem B. [12] Let f(z) and g(z) be two transcendental entire functions
of finite order and α(z)(6≡ 0) be a small function with respect to both f(z)
and g(z). Suppose that η is a nonzero complex constant and n ≥ 7 is an
integer. If fn(z)(f(z) − 1)f(z + η) and gn(z)(g(z) − 1)g(z + η) share α(z)
CM, then f(z) ≡ g(z).

In 2013, S. S. Bhoosnurmath and S. R. Kabbur [1] improved Theorem B
in the following manner.

Theorem C. Let f(z) and g(z) be two transcendental entire functions of
finite order and α(z)(6≡ 0) be a small function with respect both f(z) and g(z).
Suppose that c is a nonzero complex constant and n, m are positive integers
such that n ≥ m+6. If fn(z)(fm(z)−1)f(z+c) and gn(z)(gm(z)−1)g(z+c)
share α(z) CM, then f(z) ≡ tg(z), where tm = 1.

Recently generalizing Theorem C, P. Sahoo and B. Saha [8] proved the
following results.

Theorem D. Let f(z) and g(z) be two transcendental entire functions of
finite order and α(z)(6≡ 0) be a small function with respect both f(z) and
g(z). Suppose that c is a nonzero complex constant, n(≥ 1), m(≥ 1) and
k(≥ 0) are integers satisfying n ≥ 2k+m+6. If (fn(z)(fm(z)−1)f(z+c))(k)

and (gn(z)(gm(z) − 1)g(z + c))(k) share (α(z), 2), then f(z) ≡ tg(z), where
tm = 1.

Theorem E. Let f(z) and g(z) be two transcendental entire functions of
finite order and α(z)(6≡ 0) be a small function with respect both f(z) and g(z).
Suppose that c is a nonzero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are
integers satisfying n ≥ 2k+m+6, when m ≤ k+1 and n ≥ 4k−m+10, when
m > k+ 1. If (fn(z)(f(z)− 1)mf(z+ c))(k) and (gn(z)(g(z)− 1)mg(z+ c))(k)

share (α(z), 2), then either f(z) ≡ g(z) or f(z) and g(z) satisfy the algebraic
equation R(f, g) = 0, where R(f, g) is given by

R(ω1, ω2) = ωn1 (ω1 − 1)mω1(z + c)− ωn2 (ω2 − 1)mω2(z + c).

The two theorems Theorem D [8] and Theorem E [8] stated above are
no doubt a useful contribution in the field differential polynomial of shift
operators. But unfortunately there are some gaps in the proof of theorems.

For example we consider page 41, 8-th line from top under the case FG ≡
1. The authors said

N(r,
1

f
) = S(r, f), N(r,

1

f − 1
) = S(r, f).
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But when[
fn(fm − 1)f(z + c)

](k)[
gn(gm − 1)g(z + c)

](k)
≡ α2(z),

one can not always conclude N(r, 1
f−1) = S(r, f) under the situation. Actu-

ally N(r, 1
f−1) = S(r, f) is true only when zeros of f − 1 are of multiplicities

at least k + 1.
Again we consider page 42, 4-th line from top under the case FG ≡ 1.

The authors here also claimed

N(r,
1

f
) = S(r, f), N(r,

1

f − 1
) = S(r, f).

But with m ≤ k, N(r, 1
f−1) = S(r, f) is not always true under the situation

when[
fn(z)(f(z)− 1)mf(z + c)

](k)[
gn(z)(g(z)− 1)mg(z + c)

](k)
≡ α2(z).

Actually here N(r, 1
f−1) = S(r, f) happens only when zeros of f − 1 are of

multiplicities at least k + 1.
So the validity of the theorems D and E are at stake. So it will be

interesting to find the correct form of the theorems. In the paper we rectify
the errors in Theorems D and E at the cost of considering the fact that
α(z)(6≡ 0) be a small function with respect to f and g with finitely many
zeros which improve and generalize all the results demonstrated so far. We
now present the following two theorems which are the main results of the
paper.

Theorem 1.1. Let f(z) and g(z) be two transcendental entire functions of
finite order, cj(j = 1, 2, . . . , s) be finite complex constants and α(z)(6≡ 0) be
a small function with respect both f(z) and g(z) with finitely many zeros.
Suppose that n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying n ≥ 2k +
2m∗ −m+ s+ 5. If (fn(z)(f(z)− 1)m

∏s
j=1 f(z + cj))

(k) and (gn(z)(g(z)−
1)m

∏s
j=1 g(z + cj))

(k) share (α(z), 2), then either f(z) ≡ g(z) or f(z) and
g(z) satisfy the equation R(f, g) = 0, where R(f, g) is given by R(ω1, ω2) =
ωn1 (ω1 − 1)m

∏s
j=1 ω1(z + cj)− ωn2 (ω2 − 1)m

∏s
j=1 ω2(z + cj).

Theorem 1.2. Let f(z) and g(z) be two transcendental entire functions of
finite order, cj(j = 1, 2, . . . , s) be finite complex constants and α(z)(6≡ 0)
be a small function with respect both f(z) and g(z) with finitely many ze-
ros. Suppose that n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying n ≥
max{2k + m + s + 5, 3s + 3}. If (fn(z)(fm(z) − 1)

∏s
j=1 f(z + cj))

(k) and

(gn(z)(gm(z) − 1)
∏s

j=1 g(z + cj))
(k) share (α(z), 2), then f(z) ≡ tg(z) for

some constant t such that tn+s = tm = 1.
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Remark 1.1. When m > k + 1, then the above Theorem 1.1 holds without
the condition “α(z) with finitely many zeros”.

Definition 1.4. We denote by N(r,∞; fn(z)f(z+c) = f(z) | f(z+c) 6=∞)
the counting function of those common poles of fn(z)f(z + c) and f(z) in
|z| < r, where each such point is not a pole of f(z + c) and each such point
is counted according to its multiplicity in N(r,∞; fn(z)f(z+ c)). We denote
by N(r,∞; f(z + c) | f(z) = ∞) the counting function of common poles of
f(z) and f(z + c) in |z| < r, where each such point is counted according to
its multiplicity in N(r,∞; fnf(z + c)) and we denote by N(r,∞; fn(z)f(z +
c) = f(z + c) | f(z) 6= ∞) the counting function of those common poles
of fn(z)f(z + c) and f(z + c) in |z| < r, where each such point is not a
pole of f(z) and each such point is counted according to its multiplicity in
N(r,∞; fn(z)f(z + c)).

2 Lemmas

Lemma 2.1. [10] Let f be a non-constant meromorphic function and let
an(z)(6≡ 0), an−1(z), ... , a0(z) be meromorphic functions such that
T (r, ai(z)) = S(r, f) for i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [13] Let f be a non-constant meromorphic function and p, k
be positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)

Lemma 2.3. [2] Let f(z) be a meromorphic function of finite order ρ, and
let c ∈ C \ {0} be fixed. Then for each ε > 0, we have

m(r,
f(z + c)

f(z)
) +m(r,

f(z)

f(z + c)
) = O(rρ−1+ε).

The following lemma has little modifications of the original version (Theorem
2.1 of [2])
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Lemma 2.4. [4] Let f be a non-constant meromorphic function of finite
order and c ∈ C. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Arguing a similar manner as in Lemma 2.6 [3] we obtain the following
lemma.

Lemma 2.5. Let f(z) be an entire function of finite order ρ and cj(j =
1, 2, . . . , s) be finite complex constants. Let m(≥ 0), n(≥ 1) be integers and
P (ω) = amω

m + am−1ω
m−1 + . . . + a1ω + a0 be a nonzero polynomial. Then

for each ε > 0, we have

T (r, fn(z)P (f)(z)
s∏
j=1

f(z + cj)) = (n+m+ s) T (r, f) +O(rρ−1+ε).

Lemma 2.6. Let f(z) be a transcendental meromorphic function of finite
order and and cj(j = 1, 2, . . . , s) be finite complex constants. Suppose n(≥
1) is an integer such that n > s. Let Φ(z) = fn(z)Fs(z), where Fs(z) =∏s

j=1 f(z + cj). Then we have

(n− s) T (r, f) ≤ T (r,Φ) + S(r, f).

Proof. Note that

N(r,∞; Φ(z))

= N(r,∞; fn(z) = f(z) | Fs(z) 6=∞) +N(r,∞;Fs(z) | f(z) =∞)

+N(r,∞; fn(z)Fs(z) = Fs(z) | f(z) 6=∞)

≥ N(r,∞; fn(z))−N(r, 0;Fs(z)),

i.e.,

N(r,∞; fn) ≤ N(r,∞; Φ) +N(r, 0;Fs(z)) + S(r, f).
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Now by Lemmas 2.3 and 2.4 we have

m(r, fn) = m(r,
Φ

Fs(z)
)

≤ m(r,Φ) +m(r,
1

Fs(z)
) + S(r, f)

= m(r,Φ) + T (r, Fs(z))−N(r, 0;Fs(z)) + S(r, f)

= m(r,Φ) +N(r,∞;Fs(z)) +m(r, Fs(z))−N(r, 0;Fs(z)) + S(r, f)

≤ m(r,Φ) +N(r,∞;Fs(z)) +m(r,
Fs(z)

f s(z)
) +m(r, f s(z))−N(r, 0;Fs(z))

+S(r, f)

= m(r,Φ) + s N(r,∞; f) + s m(r, f)−N(r, 0;Fs(z)) + S(r, f)

= m(r,Φ) + s T (r, f)−N(r, 0;Fs(z)) + S(r, f).

By Lemma 2.1 we get

n T (r, f) = N(r,∞; fn) +m(r, fn) ≤ T (r,Φ) + s T (r, f) + S(r, f),

i.e.,

(n− s) T (r, f) ≤ T (r,Φ) + S(r, f).

This completes the Lemma.

Lemma 2.7. Let f(z), g(z) be two transcendental entire functions of finite
order and cj(j = 1, 2, . . . , s) be finite complex constants. Let m(≥ 1) and
n(≥ 1) be integers such that n ≥ 3s+ 3. If

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj) ≡ gn(z)(gm(z)− 1)
s∏
j=1

g(z + cj),

then f(z) ≡ tg(z) for some constant t such that tm = tn+s = 1

Proof. Suppose

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj) ≡ gn(z)(gm(z)− 1)
s∏
j=1

g(z + cj). (2.3)

Let h = f
g
. Clearly from (2.3) we get

gm(z)[hn+m(z)Hs(z)− 1] ≡ hn(z)Hs(z)− 1, (2.4)
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where Hs(z) =
∏s

j=1 h(z + cj). First we suppose that h is non-constant. We
assert that both hn+m(z)Hs(z) and hn(z)Hs(z) are non-constant. If not, let
hn+m(z)Hs(z) ≡ c1 ∈ C \ {0}. Then we have

hn+m(z) ≡ c1
Hs(z)

.

Now by Lemmas 2.1, 2.3 and 2.4 we get

(n+m) T (r, h) = T (r, hn+m) + S(r, h)

= T (r,
c1

Hs(z)
) + S(r, h)

≤
s∑
j=1

[N(r, 0;h(z + cj)) +m(r,
1

h(z + cj)
)] + S(r, h)

≤
s∑
j=1

N(r, 0;h(z)) +
s∑
j=1

m(r,
1

h(z)
) + S(r, h)

≤ s T (r, h) + S(r, h),

which is a contradiction. Similarly we can prove that hn(z)Hs(z) is non-
constant. Thus from (2.4) we have

fm(z) ≡ hm(z)
hn(z)Hs(z)− 1

hn+m(z)Hs(z)− 1
and gm(z) ≡ hn(z)Hs(z)− 1

hn+m(z)Hs(z)− 1
. (2.5)

Let z0 be a zero of hn+m(z)Hs(z)− 1. Since g is an entire function, it follows
that z0 is also a zero of hn(z)Hs(z)− 1. Then clearly hm(z0)− 1 = 0 and so

N(r, 1;hn+mHs(z)) ≤ N(r, 1;hm) ≤ m T (r, h) +O(1).

So in view of Lemmas 2.1, 2.4, 2.6 and the second fundamental theorem we
get

(n+m− s) T (r, h)

= T (r, hn+m(z)Hs(z)) + S(r, h)

≤ N(r, 0;hn+mHs(z)) +N(r,∞;hn+mHs(z)) +N(r, 1;hn+mHs(z))

+S(r, h)

≤ N(r, 0;h) +
s∑
j=1

[N(r, 0;h(z + cj)) +N(r,∞;h(z + cj))] +N(r,∞;h)

+mT (r, h) + S(r, h)

≤ N(r, 0;h) +
s∑
j=1

[N(r, 0;h(z)) +N(r,∞;h(z))] +N(r,∞;h)

+m T (r, h) + S(r, h)

≤ (m+ 2s+ 2) T (r, h) + S(r, h),
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which contradicts with n > 3s + 2. Hence h is a constant. Since g is
transcendental entire function, from (2.4) we have

hn+m(z)
s∏
j=1

h(z + cj)− 1 ≡ 0⇐⇒ hn(z)
s∏
j=1

h(z + cj)− 1 ≡ 0

and so hm(z) = 1, hn+1 = 1. Thus f(z) ≡ tg(z) for a constant t such that
tm = tn+s = 1.
This completes the the proof.

Remark 2.1. Clearly Lemma 2.7 rectifies, improves and generalizes Lemma
5 [1].

Lemma 2.8. [7] Let f and g be two non-constant meromorphic functions
sharing (1, 2). Then one of the following holds:

(i) T (r, f) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)+S(r, f)+
S(r, g),

(ii) fg ≡ 1,

(iii) f ≡ g.

Lemma 2.9. Let f(z), g(z) be two transcendental entire functions of finite
order and cj(j = 1, 2, . . . , s) be finite complex constants. Let k(≥ 1), m(≥ 0),
n(≥ 1) be integers such that n > k. Suppose P1(ω) = amω

m + am−1ω
m−1 +

. . .+ a1ω+ a0 is a nonzero polynomial. Let a(z)(6≡ 0,∞) be a small function
with respect to f and g with finitely many zeros. If[
fn(z)P1(f)(z)

s∏
j=1

f(z + cj)
](k)

[gn(z)P1(g)(z)
s∏
j=1

g(z + cj)
](k)
≡ a2(z),

then P1(ω) reduces to a nonzero monomial, namely P1(ω) = aiω
i 6≡ 0 for

some i ∈ {0, 1, . . . ,m}.

Proof. Suppose on the contrary P1(ω) does not reduce to a nonzero mono-
mial, then, without loss of generality, we assume that P1(ω) = amω

m +
am−1ω

m−1 + . . . + a1ω + a0, where a0 6= 0, a1, . . . , am−1, am 6= 0 are complex
constants.

Since the number of zeros of a(z) is finite, it follows that f as well as g
has finitely many zeros. Then f(z) takes the form

f(z) = h(z)eα(z), (2.6)
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where h is a nonzero polynomial and α is a non-constant polynomial. Let

hi(z) = hn+i(z)
s∏
j=1

h(z + cj) and αi(z) = (n+ i)α(z) +
s∑
j=1

α(z + cj),

where i = 0, 1, 2, . . . ,m. Clearly

fn+i(z)
s∏
j=1

f(z + cj) = hi(z)eαi(z),

where i = 0, 1, 2, . . . ,m. Then by induction we have[
aif

n+i(z)
s∏
j=1

f(z + cj)
](k)

= ti(α
′

i, α
′′

i , . . . , α
(k)
i , hi, h

′

i, . . . , h
(k)
i )eαi , (2.7)

where ti(α
′
i, α

′′
i , . . . , α

(k)
i , hi, h

′
i, . . . , h

(k)
i ) (i = 0, 1, 2, . . . ,m) are differential

polynomials in
α

′
i, α

′′
i , . . . , α

(k)
i , hi, h

′
i, . . . , h

(k)
i . Since f(z) is a transcendental entire function,

from (2.7) we see that

ti(α
′

i, α
′′

i , . . . , α
(k)
i , hi, h

′

i, . . . , h
(k)
i ) 6≡ 0,

for i = 0, 1, 2, . . . ,m. Note that[
fn(z)P1(f)(z)

s∏
j=1

f(z + cj)
](k)

=
m∑
i=0

[
aif

n+i(z)
s∏
j=1

f(z + cj)
](k)

(2.8)

=
m∑
i=0

ti(z)eαi(z)

= e
nα(z)+

s∑
j=1

α(z+cj)
m∑
i=0

ti(z)eiα(z)

and so [fnP1(f)
∏s

j=1 f(z + cj)]
(k) 6≡ 0. Note that hi(z) and αi(z) are poly-

nomials, where i = 0, 1, . . . ,m. Consequently each ti(z)(i = 0, 1, . . . ,m) are
also polynomials. Since f(z) is a transcendental entire function, it follows
that T (r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. Note that

N(r, 0; [fnP1(f)
s∏
j=1

f(z + cj)]
(k)) ≤ N(r, 0;α2(z)) ≤ S(r, f).

Now from (2.8) we have

N(r, 0; tme
mα(z) + . . .+ t1e

α(z) + t0) ≤ S(r, f). (2.9)
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Since tme
mα(z) + . . . + t1e

α(z) is a transcendental entire function and t0(z) is
a polynomial, it follows that t0 is a small function of tme

mα(z) + . . .+ t1e
α(z).

So from (2.9) and using second fundamental theorem for small functions (see
[11]), we obtain

mT (r, f)

= T (r, tme
mα + . . .+ t1e

α) + S(r, f)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0) + S(r, f)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction. Hence P1(ω) is reduced to a nonzero monomial,
namely P1(ω) = aiω

i 6≡ 0 for some i ∈ {0, 1, . . .m}. This completes the
proof of the lemma.

Remark 2.2. If P1(ω) = amω
m+am−1ω

m−1+ . . .+a1ω+a0 be a polynomial,
where a0 6= 0, a1, . . . , am 6= 0 are complex constants, then by Lemma 2.9 we
have[
fn(z)P1(f)(z)

s∏
j=1

f(z + cj)
](k)

[gn(z)P1(g)(z)
s∏
j=1

g(z + cj)
](k)
6≡ a2(z).

Lemma 2.10. Let f(z) and g(z) be two transcendental entire functions of
finite order, cj(j = 1, 2, . . . , s) be finite complex constants. Suppose that
n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying n ≥ 2k+ 2m∗−m+s+ 3.
If (fn(z)(f(z)−1)m

∏s
j=1 f(z+ cj))

(k) ≡ (gn(z)(g(z)−1)m
∏s

j=1 g(z+ cj))
(k),

then fn(z)(f(z)− 1)m
∏s

j=1 f(z + cj) ≡ gn(z)(g(z)− 1)m
∏s

j=1 g(z + cj).

Proof. Proof of Lemma follows from the proof of Theorem 3 [8].

Lemma 2.11. Let f(z) and g(z) be two transcendental entire functions of
finite order, cj(j = 1, 2, . . . , s) be finite complex constants. Suppose that
n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying n ≥ 2k + m + s + 3. If
(fn(z)(fm(z) − 1)

∏s
j=1 f(z + cj))

(k) ≡ (gn(z)(gm(z) − 1)
∏s

j=1 g(z + cj))
(k),

then fn(z)(fm(z)− 1)
∏s

j=1 f(z + cj) ≡ gn(z)(gm(z)− 1)
∏s

j=1 g(z + cj).

Proof. Proof of Lemma follows from Theorem 3 [8].

3 Proofs of the Theorems

Proof of Theorem 1.1. Let

F (z) = [fn(z)P (f)(z)Fs(z)](k), G(z) = [gn(z)P (g)(z)Gs(z)](k),
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where F s(z) =
∏s

j=1 f(z+ cj), Gs(z) =
∏s

j=1 g(z+ cj) and P (ω) = (ω− 1)m.

Also we define F1(z) = F (z)
α(z)

and G1(z) = G(z)
α(z)

. Then F1 and G1 share (1, 2)

except for the zeros and poles of α(z). Now applying Lemma 2.8 we see that
one of the following three cases holds.
Case 1. Suppose

T (r, F1) ≤ N2(r, 0;F1) +N2(r, 0;G1) +N2(r,∞;F1) +N2(r,∞;G1)

+S(r, F1) + S(r,G1).

Using Lemmas 2.1, 2.2, 2.4 and 2.5 we get from the second fundamental
theorem that

(n+m+ s) T (r, f) (3.1)

≤ T (r, fn(z)P (f)F s)

≤ T (r, F ) +Nk+2(r, 0; fnP (f)F s)−N2(r, 0;F ) + S(r, f)

≤ T (r, F1) +Nk+2(r, 0; fnP (f)F s)−N2(r, 0;F ) + S(r, f)

≤ N2(r, 0;F1) +N2(r, 0;G1) +Nk+2(r, 0; fnP (f)F s)−N2(r, 0;F )

+S(r, f) + S(r, g)

≤ N2(r, 0;F ) +N2(r, 0;G) +Nk+2(r, 0; fnP (f)F s)−N2(r, 0;F )

+S(r, f) + S(r, g)

≤ Nk+2(r, 0; fnP (f)F s) +Nk+2(r, 0; gnP (g)Gs) + S(r, f) + S(r, g)

≤ Nk+2(r, 0; fn) +Nk+2(r, 0;P (f)) +Nk+2(r, 0;F s) +Nk+2(r, 0; gn)

+Nk+2(r, 0;P (g)) +Nk+2(r, 0;Gs) + S(r, f) + S(r, g)

≤ (k + 2)N(r, 0; f) +m∗N(r, 0; f) +N(r, 0;F s) + (k + 2)N(r, 0; g)

+m∗N(r, 0; g) +N(r, 0;Gs) + S(r, f) + S(r, g)

≤ (k + s+ 2 +m∗) T (r, f) + (k + s+ 2 +m∗) T (r, g) + S(r, f) + S(r, g)

≤ (2k + 2s+ 4 + 2m∗) T (r) + S(r).

In a similar way we can obtain

(n+m+ s) T (r, g) ≤ (2k + 2s+ 4 + 2m∗) T (r) + S(r). (3.2)

Combining (3.1) and (3.2) we see that

(n+m+ s) T (r) ≤ (2k + 2s+ 4 + 2m∗) T (r) + S(r),

i.e

(n+m− 2k − s− 4− 2m∗) T (r) ≤ S(r). (3.3)
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Since n ≥ 2k + 2m∗ −m+ s+ 5, (3.3) leads to a contradiction.
Case 2. Let F1 ≡ G1. Then

[fn(z)P (f)(z)
s∏
j=1

f(z + cj)]
(k) ≡ [gn(z)P (g)(z)

s∏
j=1

g(z + cj)]
(k).

Now by Lemma 2.10, we get

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj) ≡ gn(z)(g(z)− 1)m
s∏
j=1

g(z + cj). (3.4)

Let h = f
g
. First we suppose that h is non-constant. Then from (3.4) we can

say that

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj) ≡ gn(z)(g(z)− 1)m
s∏
j=1

g(z + cj),

i.e., f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where R(f, g) is
given byR(ω1, ω2) = ωn1 (ω1−1)m

∏s
j=1 ω1(z+cj)−ωn2 (ω2−1)m

∏s
j=1 ω2(z+cj).

Next we suppose that h is a constant. Then from (3.4) we get

fn(z)
s∏
j=1

f(z + cj)
m∑
i=0

(−1)i mCm−i f
m−i(z) (3.5)

≡ gn(z)
s∏
j=1

g(z + cj)
m∑
i=0

(−1)i mCm−ig
m−i(z).

Now substituting f = gh in (3.5) we get

m∑
i=0

(−1)i mCm−i g
m−i(z)(hn+m+s−i(z)− 1) ≡ 0,

which implies that h = 1. Hence f(z) ≡ g(z).
Case 3. F1G1 ≡ 1. Then[

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
](k)[

gn(z)(g(z)− 1)m
s∏
j=1

g(z + cj)
](k)

≡ α2(z).

Remaining part follows from Remark 2.2. This completes the proof.
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Proof of Theorem 1.2. Let

F (z) = [fn(z)P (f)(z)
s∏
j=1

f(z + cj)]
(k),

G(z) = [gn(z)P (g)(z)
s∏
j=1

g(z + cj)]
(k),

where P (ω) = ωm − 1. Also we define F1(z) = F (z)
α(z)

and G1(z) = G(z)
α(z)

. Then

F1 and G1 share (1, 2) except for the zeros and poles of α(z). Now applying
Lemma 2.8 we see that one of the following three cases holds.
Case 1. Suppose

T (r, F1) ≤ N2(r, 0;F1) +N2(r, 0;G1) +N2(r,∞;F1) +N2(r,∞;G1)

+S(r, F1) + S(r,G1).

Now applying the same technique as in the proof of Theorem 1.1, we get

(n− 2k − s− 4−m) T (r) ≤ S(r).

Since n ≥ 2k +m+ s+ 5, we arrive at a contradiction.
Case 2. Let F1 ≡ G1. Remaining part follows from Lemmas 2.7 and 2.11.
Case 3. F1G1 ≡ 1. Remaining part follows from Remark 2.2. This completes
the proof.
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