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Abstract. In this paper, we classify two types ruled surfaces in
the three dimensional simply isotropic space I13 under the condi-
tion ∆xi= λixi where ∆ is the Laplace operator with respect to
the first fundamental form and λ is a real number. We also give
explicit forms of these surfaces.
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1 Introduction

Let x : M→Em be an isometric immersion of a connected n-dimensional
manifold in the m-dimensional Euclidean space Em. Denote by H and ∆
the mean curvature and the Laplacian of M with respect to the Riemannian
metric on M induced from that of Em, respectively. Takahashi ([17]) proved
that the submanifolds in Em satisfying ∆x = λx, that is, all coordinate func-
tions are eigenfunctions of the Laplacian with the same eigenvalue λ ∈ R,
are either the minimal submanifolds of Em or the minimal submanifolds of
hypersphere Sm−1 in Em.

As an extension of Takahashi theorem, in [8] Garay studied hypersurfaces
in Em whose coordinate functions are eigenfunctions of the Laplacian, but not
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necessarily associated to the same eigenvalue. He considered hypersurfaces
in Em satisfying the condition ∆x = Ax, where A ∈Mat (m,R) is an m×m-
diagonal matrix, and proved that such hypersurfaces are minimal (H = 0) in
Em and open pieces of either round hyperspheres or generalized right spher-
ical cylinders. Related to this, Dillen, Pas and Verstraelen ([6]) investigated
surfaces in E3 whose immersions satisfy the condition ∆x = Ax + B,where
A ∈Mat (3,R) is a 3× 3-real matrix and B ∈ R3.

The notion of an isometric immersion x is naturally extended to smooth
functions on submanifolds of Euclidean space or pseudo-Euclidean space.
The most natural one of them is the Gauss map of the submanifold. In par-
ticular, if the submanifold is a hypersurface, the Gauss map can be identified
with the unit normal vector field to it. Dillen, Pas and Verstraelen ([7])
studied surfaces of revolution in the three dimensional Euclidean space E3

such that its Gauss map G satisfies the condition ∆G = AG,where A ∈Mat
(3,R). Baikoussis and Verstraelen ([3]) studied the helicoidal surfaces in E3.
Yoon ([19, 20]) classified the surfaces of revolution and the translation sur-
faces in the 3-dimensional Galilean space and pseudo-Galilean 3-space under
the condition ∆xi = λixi and ∆ri = λiri,where λi ∈ R. Karacan and Yoon
([10, 11]) classified translation surfaces and helicoidal surfaces in the three-
dimensional simply isotropic space I13.

Kamenarović ([9]) studied the natural geometry of ruled surfaces and
defined equations for the three types ruled surfaces in simply isotropic space
I13. Sipus and Divjak ([15]) studied some mappings of skew ruled surfaces in
simply isotropic space which preserve the generators.

The main purpose of this paper is to complete classification of special
non-developable ruled surfaces of Type 3 and Type 4 defined by W.Vogel
in the three dimensional simply isotropic space I13 in terms of the position
vector field and the Laplacian operator.

2 Preliminaries

Motions and metric Isotropic geometry is based on the following group G6

of affine transformations (x, y, z)→ (x′, y′, z′) in R3,

x′ = a+ x cos θ − y sin θ (2.1)

y′ = b+ x sin θ + y cos θ

z′ = c+ +c1x+ c2y + z,
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where a, b, c, c1, c2, θ ∈ R. Such affine transformations are called isotropic
congruence transformations or isotropic motions . We see that isotropic
motions appear as Euclidean motions (a translation and a rotation) in the
projection onto the xy−plane the result of this projection, P = (x, y, z) →
P ′ = (x, y, 0) is called the ”top view” ([11]). Hence, an isotropic motion
is composed of a Euclidean motion in the xy−plane and an affine shear
transformation in the z−direction.

On the other hand, the isotropic distance of two points P = (x1, y1, z1)
and Q = (x2, y2, z2) is defined as the Euclidean distance of the top views,
i.e.,

d (P,Q)i =

√
(x1 − x2)2 + (y1 − y2)2. (2.2)

Let X = (x1, y1, z1) and Y = (x2, y2, z2) be vectors in I13. The isotropic
inner product of X and Y is defined by

〈X, Y 〉i =

{
z1z2, if xi = yi = 0,

x1x2 + y1y2, if otherwise.
(2.3)

We call a vector of the form X = (0, 0, z) in I13 an isotropic vector, and
a non-isotropic vector otherwise. Consider a Cr-surface M, 1 ≤ r , in I13
parameterized by

x(u, v) = (x(u, v), y(u, v), z(u, v)) .

A surface M immersed in I13 is called admissible if it has no isotropic tangent
planes. We restrict our framework to admissible regular surfaces ([21]).

For such a surface, the coefficients E,F,G of its first fundamental form
are calculated with respect to the induced metric and the coefficients L,M,N
of the second fundamental form, with respect to the normal vector field of
a surface which is always completely isotropic. The first and the second
fundamental form of M are defined by

I = Edu2 + Fdudv +Gdv2, (2.2)

II = Ldu2 +Mdudv +Ndv2,

where

E = 〈xu,xu〉i , F = 〈xu,xv〉i , G = 〈xv,xv〉i , (2.3)

L =
det (xu,xv,xuu)√

EG− F 2
,M =

det (xu,xv,xuv)√
EG− F 2

, N =
det (xu,xv,xvv)√

EG− F 2
.

Since EG − F 2 > 0, for the function in the denominator we often put
W 2 = EG−F 2. The isotropic unit normal vector field is given by U = (0, 0, 1) .
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The isotropic curvature K and the isotropic mean curvature H are defined
by

K =
LN −M2

EG− F 2
, 2H =

EN − 2FM +GL

EG− F 2
. (2.6)

The surface M is said to be isotropic flat (resp. isotropic minimal), if K
(resp. H) vanishes ([1, 10, 12, 16, 21]).

It is well known in terms of local coordinates {u, v} of M the Laplacian
operators ∆ of the first fundamental form on M are defined by ([2,4])

∆x = − 1√
EG− F 2

[
∂

∂u

(
Gxu − Fxv√
EG− F 2

)
− ∂

∂v

(
Fxu − Exv√
EG− F 2

)]
. (2.7)

3 Ruled Surfaces in I1
3

Let M be ruled surface in I13 given by the parametrization

x : I×R→ I13 (3.1)

(u, v) → x(u, v) = α(u) + vβ(u).

We call the base curve α and the director curve β,where α is a differentiable
curve parametrized by its arc length, i.e., 〈α′, α′〉i = 1 and 〈β, β〉i = 1 .
The curve β is orthogonal to the tangent vector field Tα of the base curve
α, i.e., 〈β′, Tα〉 = 0. First of all, we consider non isotropic plane curves α
and β parametrized by α(u) = (u, 0, f(u)) and β(u) = (0, 1, g(u)) .Then the
surface M is parametrized by

x(u, v) = (u, v, f(u) + vg(u)) . (3.2)

We consider isotropic curve α = (0, 0, f(u)) and non isotropic space curve
β parametrized by β(u) = (cosu, sinu, g(u)) ,where 〈β, β〉i = 1. Then the
surface M is parametrized by

x(u, v) = (v cosu, v sinu, f(u) + vg(u)) . (3.3)

The functions f and g are smooth functions of one variable. We call the
surfaces given by (3.2) and (3.3) as ruled surfaces of Type 3 and Type 4 in
the three dimensional simply isotropic space I13, respectively ([12, 18]).
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4 Ruled Surfaces of Type 3 Satisfying ∆xi= λixi

In this section, we classify the ruled surface of Type 3 in I13 satisfying the
equation

∆xi= λixi, (4.1)

where λi∈R, i=1, 2, 3 and

∆x = (∆x1,∆x2,∆x3) ,

where
x1 = u, x2 = v, x3 = f(u) + vg(u).

For the ruled surface given by (3.2), the coefficients of the first and second
fundamental form are

E = 1, F = 0, G = 1, (4.2)

L = 0, M = g′, N = f ′′ + vg′′, (4.3)

respectively. The Gaussian curvature K and the mean curvature H are

K = −g′2 , H =
f ′′ + vg′′

2
, (4.4)

respectively.

Proposition 4.1. The Ruled surface given by (3.2) in the three dimensional
simply isotropic space I13 are isotropic flat or developable (K = 0), iff g(u) =
c1 for constant c1.

Suppose that the surface has non zero the Gaussian curvature, so g′(u) 6=
0. By a straightforward computation, the Laplacian operator on M with the
help of (3.2) and (2.7) turns out to be

∆xi = (0, 0,−f ′′(u)− vg′′(u)) . (4.5)

Suppose that M satisfies (4.1). Then from (4.5), we have

(f ′′(u) + vg′′(u)) = −λ (f(u) + vg(u)) , (4.6)

where λ ∈ R. This means that M is at most of 1-type. First of all, we
assume that M satisfies the condition ∆xi = 0. We call a surface satisfying
that condition a harmonic surface or isotropic minimal. In this case, we get
from (4.6)

f ′′(u) + vg′′(u) = 0. (4.7)
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The general solutions of the equation (4.7) with respect to f and g are given
by

f(u) = c1u+ c2 − vg(u),

g(u) = c3u+ c4 −
f(u)

v
,

where ci ∈ R. Here, the functions f and g are related. Based on the selection
of the function f(u), it is possible to obtain other form of the function g(u).
For example, if we choose f(u) = lnu, we have g(u) = c3u + c4 − lnu

v
. In

this case, M is parametrized by

x(u, v) =

(
u, v, lnu+ v

(
c3u+ c4 −

lnu

v

))
. (4.8)

Theorem 4.2. Let M be a ruled surface given by (3.2) in I13. If M is
harmonic or isotropic minimal, then it is congruent to an open part of the
surface

x(u, v) =

(
u, v, f(u) + v

(
c3u+ c4 −

f(u)

v

))
.

If λ 6= 0, from (4.6), we have

(f ′′(u) + λf(u)) + v (g′′(u) + λg(u)) = 0). (4.9)

This equations are second order linear differential equations with constant
coefficients.We discuss two cases according to constant λ.

Case 1: Let λ > 0, from (4.9), we obtain

f(u) = c1 cosu
√
λ+ c2 sinu

√
λ− vg(u),

g(u) = c3 cosu
√
λ+ c4 sinu

√
λ− f(u)

v
,

where λ, ci 6= 0 ∈ R. Here, the functions f and g are related. Based on the
selection of the function f(u) or g(u), it is possible to obtain other form of
the function g(u) or f(u). For example, if we choose f(u) = lnu, In this
case, M is parametrized by

x(u, v) =

(
u, v, lnu+ v

(
c3 cosu

√
λ+ c4 sinu

√
λ− lnu

v

))
. (4.10)

Case 2: Let λ < 0, from (4.9), we obtain

f(u) = c1e
u
√
λ + c2e

−u
√
λ − vg(u),

g(u) = c3e
u
√
λ + c4e

−u
√
λ − f(u)

v
,
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where ci ∈ R. If we choose f(u) = lnu, we have

x(u, v) =

(
u, v, lnu+ v

(
c3e

u
√
λ + c4e

−u
√
λ − lnu

v

))
. (4.11)

Theorem 4.3. Let M be a non harmonic ruled surface given by (3.2) in the
three dimensional simply isotropic space I13. If the surface M satisfies the
condition ∆xi=λixi, where λi∈R, i=1, 2, 3, then it is congruent to an open
part of the following surfaces

x(u, v) =

(
u, v, f(u) + v

(
c3 cosu

√
λ+ c4 sinu

√
λ− f(u)

v

))
and

x(u, v) =

(
u, v, f(u) + v

(
c3e

u
√
λ + c4e

−u
√
λ − f(u)

v

))
.

5 Ruled Surfaces of Type 4 Satisfying ∆xi= λixi

In this section, we classify the ruled surface of Type 4 in I13 satisfying the
equation

∆xi= λixi, (5.1)

where λi∈R, i=1, 2, 3 and

∆x = (∆x1,∆x2,∆x3) ,

where
x1 = v cosu, x2 = v sinu, x3 = f(u) + vg(u).

For the ruled surface given by (3.3), the coefficients of the first and second
fundamental form are

E = v2, F = 0, G = 1, (5.2)

L = −f ′′ − vg′′ − vg, M = g′, N = 0, (5.3)

respectively. The Gaussian curvature K and the mean curvature H are

K = −g
′2

v2
, H = −f

′′ + v (g′′ + g)

2v2
, (5.4)

where v 6= 0,respectively.
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Proposition 5.1. The Ruled surface given by (3.3) in the three dimensional
simply isotropic space I13 are isotropic flat or developable (K = 0), iff g(u) =
c1 for constant c1.

Suppose that the surface has non zero the Gaussian curvature, so g′(u) 6=
0. By a straightforward computation, the Laplacian operator on M with the
help of (3.3) and (2.7) turns out to be

∆xi =

(
0, 0,−f

′′ + v (g′′ + g)

v2

)
. (5.5)

Suppose that M satisfies (5.1). Then from (5.5), we have

f ′′ + v (g′′ + g)

v2
= −λ (f + vg) , (5.6)

where λ ∈ R. This means that M is at most of 1-type. First of all, we
assume that M satisfies the condition ∆xi = 0. We call a surface satisfying
that condition a harmonic surface or isotropic minimal. In this case, we get
from (5.6)

f ′′(u) + v (g′′(u) + g(u)) = 0. (5.7)

The general solutions of the equation (5.7) with respect to f and g are given
by

f(u) = c1u+ c2 +

∫ u

1

(
−v
∫ z

1

(g′′(s) + g(s)) ds

)
dz,

g(u) = c3 cosu+ c4 sinu+ cosu

(∫ u

1

f ′′(x) sinx

v
dx

)
− sinu

(∫ u

1

f ′′(y) sin y

v
dy

)
,

where ci ∈ R. Here, the functions f and g are related. Based on the selection
of the function f(u) or g(u), it is possible to obtain other form of the function
g(u) or f(u). For example, if we choose f(u) = eu, we have

g(u) =
−eu + e cos(1− u) + 2c3v cosu+ 2c4v sinu+ eu sin 2u− e sin(1 + u)

2v
.

In this case, M is parametrized by

x(u, v) =

 v cosu,
v sinu,

eu + v
(
−eu+e cos(1−u)+2c3v cosu+2c4v sinu+eu sin 2u−e sin(1+u)

2v

)
 .

(5.8)
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Theorem 5.2. Let M be a ruled surface given by (3.3) in I13. If M is
harmonic or isotropic minimal, then it is congruent to an open part of the
surface

x(u, v) =


v cosu,
v sinu,

f(u) + v
(
c3 cosu+ c4 sinu+ cosu

(∫ u
1
f ′′(x) sinx

v
dx
)

− sinu
(∫ u

1
f ′′(y) sin y

v
dy
))

 .

If λ 6= 0, from (5.6), we have(
f ′′

v2
+ λf

)
+ v

(
(g′′ + g)

v2
+ λg

)
= 0. (5.9)

This equations are second order linear differential equations with constant
coefficients.We discuss two cases according to constant λ.

Case 1: λ > 0, (5.9) can be separated, we obtain(
f ′′

v2
+ λf

)
= 0 (5.10)

and (
(g′′ + g)

v2
+ λg

)
= 0. (5.11)

Therefore, we have

f(u) = c1 cosuv
√
λ+ c2 sinuv

√
λ,

g(u) = c3e
u
√
−(1+v2λ) + c4e

−u
√
−(1+v2λ),

where λ, ci 6= 0 ∈ R and (1 + v2λ) < 0. In this case, M is parametrized by

x(u, v) =


v cosu,
v sinu,(

c1 cosuv
√
λ+ c2 sinuv

√
λ
)

+ v
(
c3e

u
√
−(1+v2λ)

+c4e
−u
√
−(1+v2λ)

)
 (5.12)

Case 2: Let λ < 0, from (5.9), we obtain(
f ′′

v2
− λf

)
= 0 (5.13)
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and (
(g′′ + g)

v2
− λg

)
= 0. (5.14)

Therefore, we have

f(u) = c1e
uv
√
λ + c2e

−uv
√
λ,

g(u) = c3e
u
√
−1+v2λ + c4e

−u
√
−1+v2λ,

where λ, ci 6= 0 ∈ R and (−1 + v2λ) > 0. In this case, M is parametrized by

x(u, v) =

 v cosu,
v sinu,(

c1e
uv
√
λ + c2e

−uv
√
λ
)

+ v
(
c3e

u
√
−1+v2λ + c4e

−u
√
−1+v2λ

)
 .

(5.15)

Theorem 5.3. Let M be a non harmonic ruled surface given by (3.3) in the
three dimensional simply isotropic space I13. If the surface M satisfies the
condition ∆xi=λixi, where λi∈R, i=1, 2, 3, then it is congruent to an open
part of the surfaces (5.12) and (5.15).
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