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1 Introduction

Let K be the field of real or complex numbers, i.e., K =R or C and X be a
linear space over K.

Definition 1. A functional (-,-) : X x X — K is said to be a Hermitian
form on X if

(H1) (ax +by,z) = a(x,z) +b(y,2) fora,b € K and x,y,z € X;

(H2) (z,y) = (y,x) for all z,y € X.
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The functional (-, -) is said to be positive semi-definite on a subspace Y
of X if

(H3) (y,y) > 0 for every y € Y,
and positive definite on Y if it is positive semi-definite on Y and
(H4) (y,y) =0, y € Y implies y = 0.

The functional (-, -) is said to be definite on Y provided that either (-, -)
or — (+,) is positive semi-definite on Y.

When a Hermitian functional (-, ) is positive-definite on the whole space
X, then, as usual, we will call it an inner product on X and will denote it by
().

We use the following notations related to a given Hermitian form (-,-) on
X

Xo:={zr e X|(z,2) =0}, K :={zx € X|(z,2) <0}

and, for a given z € X,
X&) ={z e X|(r,2) =0} and L(z):={azlacK}.
The following fundamental facts concerning Hermitian forms hold:
Theorem 1 (Kurepa, 1968 [27]). Let X and (-,-) be as above.

1. If e € X is such that (e, e) # 0, then we have the decomposition

X =L @Px"“, (1.1)
where @ denotes the direct sum of the linear subspaces X® and L (e) ;

2. If the functional (-,-) is positive semi-definite on X© for at least one
e € K, then (-,-) is positive semi-definite on XI) for each f € K;

3. The functional (-,-) is positive semi-definite on X©) with e € K if and
only if the inequality
(@, 9)[* > (z,2) (y,9) (1.2)
holds for all x € K and all y € X;

4. The functional (-,-) is semi-definite on X if and only if the Schwarz’s
mequality
[, 9)” < (2,2) (y,9) (1.3)
holds for all x,y € X;
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5. The case of equality holds in (1.3) for x,y € X andin (1.2), forz € K,

y € X, respectively; if and only if there exists a scalar a € K such that

y—ax € Xéx) = XoN X,

Let X be a linear space over the real or complex number field K and let
us denote by H (X) the class of all positive semi-definite Hermitian forms on
X, or, for simplicity, nonnegative forms on X.

If (,-) € H(X), then the functional |-|| = (-, -)% is a semi-norm on X
and the following equivalent versions of Schwarz’s inequality hold:

l1* iyl = [z )" or el llyll = [(z.9)| (1.4)

for any x,y € X.
Now, let us observe that H (X)) is a convex cone in the linear space of all
mappings defined on X? with values in K, i.e.,

(€) ()1, (0)y € H(X) implies that (-,-); + (), € H(X);
(ee) @ >0and (+,-) € H(X) implies that o (,-) € H(X).
We can introduce on H (X)) the following binary relation [22]:
(,)9 > (), ifand onlyif |z|,>|z||, forall z e X. (1.5)
We observe that the following properties hold:
(b) )y = (), forall (-,-) € H(X);
(bb) ()3 = (+;-) and (- )y > (-, ), implies that (-, -); > (-,-);;
(bbb) () = (-;-)y and (-,-); = (-, -), implies that (- -), = (-,-);;

i.e., the binary relation defined by (1.5) is an order relation on H (X).

While (b) and (bb) are obvious from the definition, we should remark, for
(bbb), that if (-,-), > (-,-); and (-,-); > (-,+),, then obviously ||z|, = ||z||;
for all z € X, which implies, by the following well known identity:

2 2 . .2 .02
[||x + y”k — [Jz — ka +1 (Ha: + Zka — ||z — Zka)] (1.6)

|

(;U, y)k =

with x,y € X and k € {1,2}, that (z,y), = (z,y), for all z,y € X.



66 S.S. Dragomir An. U.V.T.

2 Superadditivity and Monotonicity of Some Mappings

Let us consider the following mapping [22]:
o HX) x X2 =R, o ((0)i2,9) =zl lyll = [ )],

which is closely related to Schwarz’s inequality (1.4).
The following simple properties of o are obvious:

(S) g (O{ <'7 ) 3 Ly y) = Qo ((7 ) 7:v,y) )
(SS) o ((7 ) ,y,l’) =0 ((a ) 7:v,y) )
(sss) o ((+,+);x,y) > 0 (Schwarz’s inequality);
for any a > 0, (-,-) € H(X) and z,y € X.
The following result concerning the functional properties of o as a function

depending on the nonnegative Hermitian form (-, -) has been obtained in [22]:

Theorem 2 (Dragomir & Mond, 1994 [22]). The mapping o satisfies the
following statements:

(i) For every (-,-), € 3 (X) (¢ = 1,2) one has the inequality
g ((7 ')1 + ('7 ')2 y T, 3/) Z o ((7 ')1 3 T, y) +o ((7 ')2 3 T, y) (2 O) (21>
forallx,y € X, i.e., the mapping o (-; x,y) is superadditive on H (X);
(ii) For every (-,-), € H(X) (¢ = 1,2) with (-,-), > (,-); one has
o (()a52,9) 20 ((5)y52,) (2 0) (2.2)
forallz,y € X, i.e., the mapping o (+;x,y) is nondecreasing on H (X) .
Remark 1. If we consider the related mapping [22]
or () 2,y) == [zl [yl = Re (z,y),
then we can show, as above, that o (-;x,y) is superadditive and nonde-
creasing on H (X).
Moreover, if we introduce another mapping, namely, [22]

TIH(X) x X2 =Ry, () s2,y) = (2] + llyl)” = e +yl*,
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which 1s connected with the triangle inequality
e +yll < flzll + Myl for any 2,y € X (2.3)
then we observe that
T(() 2, y) =20, ((, ) 1 2,y) (2.4)

for all (-,-) € H(X) and z,y € X, therefore o (-;x,y) is in its turn a su-
peradditive and nondecreasing functional on H (X).

Now consider another mapping naturally associated to Schwarz’s inequal-
ity, namely [22]

0:H(X)x X2 =Ry, 6(()52,9) = = yll* = (2, 9)
It is obvious that the following properties are valid:
(i) 0 ((+,+);x,y) > 0 (Schwarz’s inequality);
(i) (¢, )52,9) =6(()59,2);
(i) 0 (a();my) =a((-);2,y)

forall z,y € X, >0 and (-,-) € H(X).
The following theorem incorporates some further properties of this func-
tional [22]:

Theorem 3 (Dragomir & Mond, 1994 [22]). With the above assumptions,
we have:

(i) If (-,-), € H(X) (i =1,2), then
0 ((7 ')1 + ('7 ')2 ;xvy) —0 ((7 ')1 ;ZC,y) —0 ((7 ')2 ;:c,y) (25)
el vl 1N (> o).
> (aec[ 7 ik ]) 20
i.e., the mapping d (;x,y) is strong superadditive on H (X).
(ii) If (-,-), € H(X) (i =1,2), with (-,-)y > (-,-); , then

0 (()g529) = 0((5 )5 2,9) (2.6)

i, lyll, ’
de 1 1 :
Z( t[(uxuz—uxuf)g (uyui—unD =0

i.e., the mapping d (:;x,y) is strong nondecreasing on H (X) .
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Remark 2. If we consider the functional

0r () s2,y) = [l lyll® — Re ()]

then we can state similar properties for it. We omit the details.

Consider the functional 8 : H (X) x X? — R [23] defined by

NI

B(C)sayy) = (=l Iyl = (2, 9)7)* (2.7)

ol

It is obvious that B ((-,-);z,y) = [0 ((-,+);2,y)]* and thus it is monotonic

nondecreasing on H (X).
For the subclass JP (X), of all inner products defined on X, of H (X)
and y # 0, we may define

2l lgll” = 1G9 _ ()5 2,y)
lylI* lyl®

()5 y) =

The following result may be stated (see also [23]):

Theorem 4 (Dragomir & Mond, 1995 [23]). The functional v (-;x,y) is
superadditive and monotonic nondecreasing on JP (X) for any x,y € X with

y# 0.

Corollary 1. If (-,-), € JP(X) with (-,-)y > (-,+); and z,y € X are such
that x,y # 0, then:

2 2
Iylly " Nl

(Z0((s)157,9))

5((+ )5 2,0) ZmaX{HyHg ”93”3}5<<~,~>1;x,y> (2.8)

or equivalently, [23]
6 (()z32y) =0 (( )15 2,9) (2.9)
2 2 2 2
- { [ qul} 5(( ) c0).

2 2
lylly el

The following strong superadditivity property of ¢ (+; z,y) that is different
from the one above holds [23]:
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Corollary 2 (Dragomir & Mond, 1995 [23]). If (-,-), € 3P (X) and x,y € X
with x,y # 0, then

y) =0 (()2y) =0 ()5 2,y) (2.10)

)23 T,
S e 1 P

Remark 3. Obviously, all the inequalities above remain true if (-,-),, 1 = 1,2
are nonnegative Hermitian forms for which we have ||z||,, |y, # 0.

Finally, we may state the superadditivity result for the mapping 3 (see
[23]):

Theorem 5 (Dragomir & Mond, 1995 [23]). The mapping 5 defined by (2.7)
is superadditive on H (X) .

For various properties and results for nonnegative Hermitian forms, see

the book [12].

3 Vector Inequalities for n-Tuple of Operators

Let T = (T,...,T,) € B(H) x ... x B(H) := B™ (H) be an n-tuple of
bounded linear operators on the Hilbert space (H; (-,-)) and p = (p1, ..., pn) €
R%" an n-tuple of nonnegative weights not all of them equal to zero. For an
x € H, x # 0 we define

Zp] Tjx, V;x) <<ijv T) x x> (3.1)

where T = (T17 7Tn) ,V = (‘/17 e Vn> c B(n) (H) .
We need the following result:

Lemma 1. For any x € H, x # 0 and p = (p1,....,pn) € R we have that
(" )p 18 a nonnegative Hermitian form on B™ (H).

Proof. We have that

(T.T),, = <<Zpﬂ}*Tj> .r> - <(ij |Tj|2> > >0, (32)
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for any T = (11, ..., T;,)) € B™ (H), where the operator modulus is defined
by |A]? = A*A, Ae B (H).

The functional (-, ), is linear in the first variable and

(Vv = <(ipjTj*Vj) 5C>9C> = <~T7 <ipijVj> 9C> (3.3)
= <(ip]TJ*VJ) x,x> = <<ipj‘/;*Tj) I,J3> = (T,V>p’m
for any T = (Ty,...,T,), V = (W1, ..., V,,) € B™ (H). O

Remark 4. By the Schwarz inequality we have

n 2 n n
j=1 j=1 J=1
(3.4)
while from the triangle inequality we have
" 1/2
< (ij T + ‘/}\2> x, x> (3.5)
j=1
n 1/2 " 1/2
< <<ij |Tj|2) 1’$> + <<ij |Vj|2> 9035>
j=1 j=1

for any p = (p1,....,pn) € R T = (Th,...,T,,),V = (V4,...,V,,) € B"W (H)
and x € H.

For T = (T, ...,T,),V = (V4,..,V,,) € B®W (H)\ {0} and x € H, 2 # 0
we define the function of weights o (-;T,V,z) : R — [0, 00) by

o (p;T,V,z) := (T, T)} 1/2 2V, )1/2 (T, V),

<<Zp o ; >1/2 < (Zp W) :1:>/
(Smin) )|

(3.6)

3
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We can also define § (; T, V,z) : R — [0, 00) by

2

5 (0T Vo) 1= (T, T),,, (V. V), = [(T, V), (3.7)
(i) (S o
()

and 3 (T, V,z) : R — [0,00) by
B(5T,V,z)=1[6(p; T, V)] (3.8)

Utilising the results from the above section we then have the following
vector operator inequalities:

Theorem 6. Let T = (Ty,....T,),V = (Vi,...,V,) € B™ (H) \ {0} and
r e H.
(i) For any p,q €RY" we have

cp+q;T,Vz) >0 (p;T,V,z) +0(q;T,V,z)(>0), (3.9)

. (det (T, 7)) <v,v>;{i]> >0

(T.T); (V.V):
Bp+a;T, V) > B(p;T,V,a)+ B (q; T, V,z) (> 0);
showing that the functionals o (+; T,V,z), § (+;T,V,z) and B (-; T, V,z) are
superadditive as functions of weights.
(ii) If p,q ERY" with p > q, i.e. p; > ¢; for alli € {1,...,n}, then

and

o(p;T,V,x) >0 (q;T,V,z)(>0) (3.11)
and
(T, 7)) %, (V. V).

> (det ) (>0);

showing that the functionals o (-; T, V,x) and  (-; T, V,x) are nondecreasing
as functions of weights.

(T, T)qs (V.V)gs
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Similar inequalities may be stated by the use of the rest of the inequalities
for Hermitian forms from the above section, namely (2.8)-(2.10). However
the details are not presented here.

For other inequalities in inner product spaces and operators on Hilbert
spaces see [4]-[25] and the references therein.

4 Applications for Functions of Normal Operators

The following result holds:

Theorem 7. Let f(z) := Z;’io p;jz’ a power series with nonnegative coeffi-
cients and convergent on the open disk D (0, R), R > 0. If T and V are two
normal and commuting operators with ||T|*,|V|]> < R, then we have the
inequalities

1/2

((F (V) 2] < (f (ITP) 2, 2) " (F (V) 2, 2) (4.1)

and

1(F (TP 2, 2) + (f (VT) 2, 2) + (f (VT z,2) + (f (V) x,x>\”2 (4.2)
< (TR 2,2 4 (f (V) 22)”

for any x € H.

Proof. If we use the inequality (3.4) for powers of operators we have

m 2 m m
<ijVjzj,x> < <ij ’Tj‘2x7x> <ij 2x,a:> (4.3)
=0 =0

=0
for any m > 1 and x € H.

(V*)

‘ . 12 .
Since V and T are normal we have |T9|° = |T|* and ’(V*)]‘ 4k

for any j € {0,...,m} and by the commutativity of V' and T" we also have
VITI = (VT) for any j € {0,...,m} .
Therefore we can state that

<ij (VT)j x, x> < <ij |T\2j x,x> <ij \V|2j x, x> (4.4)

for any m > 1 and =z € H.
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Since all the series whose partial sums are involved in the inequality (4.4)
are convergent then by letting m — oo in (4.4) we get (4.1).
By the normality and commutativity of V' and T we have

Zpa

Then from (4.2) we have

m 1/2
<ij [|T|2j + (VT)Y +(V*T*) + |V|2J} xx> (4.5)

m 1/2 m 1/2
§=0 §=0

for any m > 1 and x € H.
Since all the series whose partial sums are involved in the inequality (4.5)
are convergent then by letting m — oo in (4.5) we get (4.2). O

TJ

ij TP 4+ (VT + (VT 4 V7.

By utilizing Theorem 6 and a similar argument to the one from Theorem
7 we also have:

Theorem 8. Let f(2) := > 22 p;2 and g(z) == Y72 q;%° be two power
series with nonnegative coefficients and convergent on the open disk D (0, R) ,
R>0.IfT andV are two normal and commuting operators with | T||*, ||V ||”
R and if we define the functionals

o (fi T, V)= (f (ITP) w.2) " (f (V) 2,2)"”* = |(f (VT) z,2)],
S(f; T, V) = (f (ITF)z,) (f (V) 2,2) = [(f (VT) z, )|

and
BUHT V)= [(f (TP)z.x) (F (V) 2, 2) = [(f (VD) 2, 2)[*]
where x € H, then

o(f+¢;T,Vx)>o(f;T,Vx)+o(g;T,V,x) (>0), (4.6)

O(f+g;T,Va)=6(f;T,V,x)=0(g;T,V,x) (4.7)

{f(ITP) =, >1/2 (VP x’$>1/2 2
> (d (g (IT)?) x, x> (g (IV]) $,$>1/2 ]) (>0)
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and

B(f+g:T,Vx)>p(f;T,Vx)+B(g:T,V,x)(>0) (4.8)

for any x € H.
Moreover, if p; > q; for all j € N, then we have

o(f;T,Vux)>0o(g;T,V,x) (>0), (4.9)
and

5(f;T7 V,l') —5(Q;T,V,l') (41())

> [ de (f (IT2) 2, )" FVE) o) > .
_ <dt[<<f—9><|T|2>m>”2 <(f—g)(|V|2)a:,:v>l/2D =0

for any x € H.

Some important examples of power series with nonnegative coefficients
are

1 A
m:nzzoA . AeD(0,1); (4.11)
In — —ilv AeD(0,1);
nl_)\_nzln ) 9 )

=1
exp(A) =Y AL A EG
n=0

. o = 1 2n+1 .
Slnh/\—;m)\ 7)\6@,

S 1 2n
COSh)\:Zm)\ ,)\G(C.
n=0

Other important examples of functions as power series representations with
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nonnegative coefficients are:

1 142 ~— 1 o '
(n+3)

i T
sin ™ (A) = ; V7T (2n+ 1) n!
tanh ™ ()\) = i

n=1

NN e D(0,1);

1
AN e D(0,1);

n:12n—1
L+ a) T+ 8T (1),
2F1<04,6,7,)\)—§ n'F(a)F(ﬁ)F(n—i—fy) A 70576a7>0a
Ae D(0,1)

where I' is Gamma function.
If T and V are two normal and commuting operators with |||, ||V < 1,
then we have the inequalities

(L =VT) " 2, )) (4.13)
< (= 1r?) ) (= VP) )
and
|(In(1y — VT) ' z,z)| (4.14)

for any x € H, © # 0.
For any 7" and V normal and commuting operators we have

1/2

[(exp (VT) z, z)| < (exp (|T|2) x, :17>1/2 (exp (|V|2) z,x) ', (4.15)

1/2

|[(sinh (VT) z,z)| < (sinh (|T|2) x, ZL‘>1/2 (sinh (|V|2) T, 1) (4.16)

and
[(cosh (VT) 2, 2| < (cosh (IT?) z,z)""* (cosh |V ?) z,z)"*  (4.17)

for any x € H.
Now, observe that if we take

: S 1 .
f (A) =sinh \ = Z WA2 +1
n=0 ’
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and
o0

1 n
g(\) =cosh A = Z W)\Q
n=0 ’

then f (A) + g (\) =exp A for any A € C.
If we use the superadditivity properties from (4.6)-(4.8) we have for any
T and V normal and commuting operators
(exp (|T| )z, $> <exp (|V| )z, $> exp (VT)z,x)| (4.18)
> (sinh (|T| )a:,:v> <smh (|V| )z, $> — |(sinh (VT') z, )|
+ (cosh (|T|2) x, :)3>1/ (cosh (|V| )z, x> — |{cosh (VT) z,z)| (> 0),

(exp (|T|2) z,z) (exp (|V]2) z,z) — |(exp (VT) x, )| (4.19)
<Sinh (|T|2) z,z) (sinh (|V|2) z, ) + |[(sinh (VT) z, )|
x,x) (cosh (]V! )a,z) + [{f (VT) 2, z)[

(ITT) 2
( tl (sinh (|T?) z,2)""* (sinh (|V ) 2, )" D > 0)

cosh ( |T| >1/2 (cosh (|V|2) x,x>1/2

cosh

and

[{exp (|T|2) z,z) (exp (|V|2) z,z) — |(exp (VT) z, x>|2] V2 (4.20)
> [(sinh (|T|2) x,z) (sinh (|V|2) z,z) — |(sinh (VT) z, x>|2} 12

+ [(cosh (ITP?) 2, 2) {cosh (|V[?) &, z) — |{cosh (VT) z, 2)*] /* (> 0)
for any x € H.

Now, consider the series 45 = > 2 (A", A € D(0,1) and In =5 =
Sl ENT X e D(0,1) and define p, =1, n >0, go =0, ¢, = +, n > 1 then

n=1n
we observe that for any n > 0 we have p, > q,.

Making use of the monotonicity properties from (4.9) and (4.10) we can
state that

(=17 ) { (= V) ) (421)
— }<(1H — VT)_1 x,x>‘

> (in (10 = 1)) (i (10 = V) )

— {In(1y — VT)fla:,@‘ (>0)
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and
(= 1T1) " 22) (= [VP) ) (4.22)
~ (= V) )
> <ln (g — TP xa:> <ln (L — V) x.iv>
— (I (1g = VT) "z, 2)|* (> 0)

for any 7" and V' two normal and commuting operators with ||T]], ||V < 1
and x € H.

5 Applications for One and Two Operators

If we write the inequality (3.4) for p; =1, j € {1, ...,n} then we have

(Bom) = ={ () (B ) o0

for any x € H.
If we take in this n = 2 we get

(VT + Vo) o, o)]” < (1T + 1) w,0) (W + [Val*) 2,2)  (5.2)

for any T3, Ty, V1, Vo € B(H) and any x € H.
If we take T'= (A, B) and V = (B*,+£A*) in (5.2), where A, B € B(H),

then we have
(BA+ AB)z,2)|> < ((|A? + |B|*) z,2) {(|A*]” + |B*|") 2, 2)  (5.3)

for any x € H.
In particular, for B = A* in (5.3) we get

((A*A = AA) 2, 2)| < ((JAF + A7) . 2) (5.4)

for any x € H.
If we take in (5.2) T'= (C,I) and V = (I, £D*) where C,D € B(H),
then we get

(C £ D)z, 2)* < {((|IC]>+ 1) w,2) {(| D] + 1) z,z) (5.5)
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for any x € H, and by taking in this inequality C' = BA and D = AB where
A,B € B(H), then we get
((BA+ AB) z,z)|* < <(|BA|2 + 1)z, ) <(|B*A*|2 + 1)z, ) (5.6)
for any x € H. In particular, if B = A*, then
((A*A+ AA) 2, 2) P < ((JA]* + 1) 2, 2) { (A" + 1) z, @) (5.7)

for any x € H.
Moreover, if we choose T'= (B,I) and V = (A*,(AB)") in (5.2), where
A, B € B(H), then we get

) B +1 |A*]” + |(AB)"[?
s (2 ().

for any x € H.
Since

|A*]” + |(AB)"|” = AA* + ABB*A* = A (I + |B*") A*

then we have

(ABz, 2)|? < <<‘B’22”> m> <<A <%B’2) A*) M> (5.8)

for any x € H.
Moreover, if we take in (5.8) A = I, then we get

(Bz, )| < <<‘B’2+[> x:p><<%> $x> (5.9)

for any B € B (H) and for any = € H.
Also, if we choose A = B in (5.8), then we get

) 1/2 2 1/2
’<B2x,x>‘ < <<|B|2+ ]> x,x> <B (%) B*x,x> (5.10)

while for A = B* we get

1/2 1/2
o (BN N (1B /
|Bx||” < 5 z,x B —5 Bz, x (5.11)
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for any B € B (H) and for any = € H.
Let C' = A+iB be the Cartesian decomposition of the operator C'. Then
A and B are selfadjoint and

1 1
A* 4+ B = S (CC+0C) =5 (IC*+[C*%).
Moreover
A= CJ;C =:ReC and B = C;,C =:ImC.
1

If we apply the inequality (5.2) for "= (A,il),V = (I, B) then we get

(O, 2)| < ((ReC12 + 1) 2, 2)* (Im CP + 1) 2, )", (5.12)

for any C' € B (H) and for any = € H.

6 Other Inequalities for Sums

On utilizing the inequality for two operators above we can obtain other in-
equalities for sums as follows:

Theorem 9. For any (p1,...,p,) € R, (Ay, ..., 4,), (B, ..., By,) € B™ (H)
and x € H we have the inequality

((gee)- |
(B ()N (24) )

Proof. Applying the inequality (5.8) we have

B + 1 v 1+|B;J v
A B, x)| < |z, A | ——L— | A | 2,2
’< 717 2 J 2 J

(6.2)

2

(6.1)

for any v € H and j € {1,...,n}.
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Using the generalized triangle inequality for modulus, the inequality (6.2)
and the weighted Cauchy-Bunyakowsky-Schwarz inequality we have

‘< (i:ijij> x,x>‘ (6.3)

<> i [(A;Bjx, z)]
=1

= <<B”)w>“<(f(%)Aﬁ)wf”
A(CE

[ ({2 )
(B Y (225) )

for any € H and the inequality (6.1) is proved. O

 (A;Bjz, x)

1/2

Corollary 3. For any (pi,...,p,) € RY", (Bi,...,B,) € B™ (H) andx € H
we have the inequality

‘< (ZPB) > 2 | (6.4
(S0 ()N () )
(g

(5 (F5) ) (5o (5 (557 ) )
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()
(N ) )

)

< <§n:pj (IRe B, + 1) xx> <zn:pj (IIm B;|* + 1) xx> .

j=1 j=1

2

(6.6)

(6.7)

7 Inequalities for Numerical Radius

The numerical radius w (T') of an operator T on H is given by [26, p. §:
w(T) =sup {[Al, A € W(T)} = sup {[{Tz,2)], [|=[| = 1} (7.1)

It is well known that w (:) is a norm on the Banach algebra B (H) of all
bounded linear operators 7' : H — H. This norm is equivalent with the
operator norm. In fact, the following more precise result holds [26, p. 9]:

Theorem 10 (Equivalent norm). For any T € B (H) one has
w(T) < |7 < 2w(T). (7.2)

We recall also that if 7" is normal operator, then w (T') = ||T|| .

For a survey of recent inequalities for numerical radius, see [20] and the
references therein.

We have the following result:

Theorem 11. For any (p1, ..., pn) € R**, (Vi,.., Vo), (Th, ..., T,,) € B™ (H)
we have the inequalities

u’ (vam) <
j=1

w? <_ijvj*if}) < a(ij m|2)a+ (1-a) (me) (7.4)

101 Vil (7.3)

and
1
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for a € (0,1).

Proof. Taking the supremum over ||z|| =1 in (3.4) we have

o)
§||iu:pl<<;plej!2) T, >|Supl<<ZpJ|V!) >

2

sup
llz]|=1

Since
n 2 n
sup [( (Y o pViTy | wx )| =w® () piA;B; |,
e (St )< [Som]
and

IISIIIlpl < (ij |V}|2) $7x> - | ij |V3|2
Zi= j=1 j=1

then by (7.5) we deduce the desired result (7.3).

If p€(0,1), then we have the following inequality for positive operators
P>0

(PPr,x) < (Px,z)? for any z € H, ||z| = 1.

Therefore, if a € (0, 1) then

(o))

«

(&) ] =)

1 o
S, w) >
j=1

VAN
—
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and

1 11—«

(Err)on)-{[Errer) ]+

1 11—«

n I—a
<((Smmr) o)
j=1
for any = € H, ||z|| = 1.

If we multiply these two inequalities and use the weighted arithmetic
mean-geometric mean inequality, we have

L I
(o) ) ()
)]
) oo (o) ]

for any z € H, ||z| = 1.
From (3.4) and (7.6) we have

n 2
‘< (ijvj*Tj> xx> (7.7)
j=1
< < o (ij |Tj|2> +(-a (Zp] v ) >
j=1
for any = € H, ||z|| = 1.
Taking the supremum over ||z|| = 1 in (7.7) we get (7.4). O

In a similar way, by utilizing (6.1) we can prove the following result as
well:
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Theorem 12. For any (p1, ..., pn) € RY, (A, ..., Ay), (B, ..., By) € B™ (H)
we have the inequality

w? (Zn: ijij> (7.8)

S ()| 5 (0 (2120 )

i=1
n B2 +1
> pj —5

J=1

<

In particular, we have

w? (Z ijj> <
j=1

" (1+]|B
> (S o
j=1

w? (i ijJ?) (7.10)

" (BRI | 1+[B[" .
< ij <]T ij B; Tj Bi ||
7=1 7=1
n 2
> p;i|Bl; (7.11)
j=1
n B|?+1 n (1+1B
<\ —5—)|||2w |\ B | —5 | B
j=1 Jj=1
and
j=1 j=1 j=1

Utilising the above results we can state various inequalities for power
series of normal operators. However the details are not presented here.
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