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Timişoara
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Abstract. In this present paper we introduce and investigate
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1 Introduction

Let Σp denote the class of all meromorphic functions f of the form

f(z) = z−p +
∞∑

n=1−p

anz
n (p ∈ N = {1, 2, ...}) (1.1)

which are analytic in the punctured disc U∗ = {z : z ∈ C and 0 < |z| < 1} =
U\{0}. For simplicity, we write Σ1 = Σ. If f and g are analytic in U , we say
that f is subordinate to g written symbolically as follows:
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f ≺ g or f ≺ g,

if there exists a Schwarz function w, which (by definition) is analytic in U
with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that f = g(w(z)) (z ∈ U). In
particular, if the function g is univalent in U , then we have the following
equivalence (cf., e.g., [4]; see also [12], [13])

f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For functions f ∈ Σp, given by (1.1), and g ∈ Σp defined by

g(z) = z−p +
∞∑

n=1−p

bnz
n (p ∈ N), (1.2)

then the Hadamard product ( or convolution ) of f and g is given by

(f ∗ g)(z) = z−p +
∞∑

n=1−p

anbnz
n = (g ∗ f)(z) . (1.3)

Now, we defined a linear operator For f, g ∈ Σp, λ ≥ 0, ` > 0, p ∈
N, m ∈ N0 = N ∪ {0}, we define the linear operator Dm

λ,`,p (f ∗ g) : Σp → Σp

by:

D0
λ,l,p (f ∗ g) (z) = (f ∗ g)(z) = z−p +

∞∑
n=1−p

anbnz
n.

D1
λ,l,p(f ∗ g)(z) = (1− λ) (f ∗ g)(z) +

λ

`zp+`−1
(
zp+`(f ∗ g)(z)

)′
= (1− λ)

[
z−p +

∞∑
n=1−p

anbnz
n

]
+

λ

`zp+`−1

[
z` +

∞∑
n=1−p

anbnz
n+p+`

]′

= z−p +
∞∑

n=1−p

[
`+ λ (n+ p)

`

]
anbnz

n.

D2
λ,`,p(f ∗ g)(z) = (1− λ)D1

λ,`,p(f ∗ g)(z) +
λ

`zp+`−1
(
zp+`D1

λ,`,p(f ∗ g)(z)
)′

= z−p +
∞∑

n=1−p

[
`+ λ (n+ p)

`

]2
anbnz

n (1.4)

and (in general)
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Dm
λ,`,p(f ∗ g)(z) = (1− λ)Dm−1

λ,`,p (f ∗ g)(z) +
λ

`zp+`−1
(
zp+`Dm−1

λ,`,p (f ∗ g)(z)
)′

= z−p +
∞∑

n=1−p

[
`+ λ (n+ p)

`

]m
anbnz

n. (1.5)

From (1.5) it is easy to verify that

λz
(
Dm
λ,`,p(f ∗ g)

)′
(z) = `Dm+1

λ,`,p (f ∗ g)(z)− (`+ λp)Dm
λ,`,p(f ∗ g)(z) (1.6)

We observe that the linear operator Dm
λ,`,p(f ∗g) reduces to several interesting

operators for different choices of n, λ, `, p and the function g:
(i) For g = z−p

1−z (or bn = 1), Dm
λ,`,p(f ∗ g) = Imp (λ, `), was introduced and

studied by El-Ashwah [9], the operator Imp (λ, `), contains as special cases (see
[2], [5] and [17]);

(ii) For m = 0 and

g = z−p +
∞∑

n=1−p

(α1)n...(αq)n
(β1)n...(βs)n

.
zn

n!
(1.7)

(
αi ∈ C; i = 1, ..., q; βj ∈ C\Z−0 = {0,−1,−2, ...} ; j = 1, ..., s;

q ≤ s+ 1; q, s ∈ N0, p ∈ N; z ∈ U) ,

and

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 if ν = 0; θ ∈ C∗ = C\{0},
θ(θ − 1)...(θ + ν − 1) if ν ∈ N; θ ∈ C.

We have D0
λ,p(f ∗ g)(z) = (f ∗ g)(z) = Hq,s

p (α1)f, where Hq,s
p (α1) is a mero-

morphically p− modified version of familiar Dziok-Srivastava linear operator
[6, 7] .

Recently, Liu and Srivastava [11], Raina and Srivastava [15], and Aouf
[1] obtained many interesting results involving the linear operator Hq,s

p (α1),
and was further studied in a subsequent investigation by wang et al [18]. In
particular, for

q = 2, s = 1, α1 = a β1 = c and α2 = 1
we obtain the following linear operator

Lp(a, c)f = Hp(α1, 1; β1)f (z ∈ U∗)
which was introduced and investigated earlier by Liu and Srivastava [10], and
was further studied in a subsequent investigation by Srivastava et al [16].
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Let P denote the class of functions of the form

p(z) = 1 +
∞∑
n=1

pnz
n ,

which are analytic in U and satisfy the following condition

Re p(z) > 0 (z ∈ U) .

Throughout this paper, we assume that p, k ∈ N, εk = exp
(
2πi
k

)
,

Fm
p,λ,`,k(f ∗g)(z) =

1

k

k−1∑
j=0

εipk D
m
λ,`,p(f ∗g)(z)

(
εjkz
)

= z−p+ ...(f, g ∈ Σp), (1.8)

Gm
p,λ,`(f∗g)(z) =

1

2

[
Dm
λ,`,p(f ∗ g)(z) +Dm

λ,`,p(f ∗ g)(
−
z)

]
= z−p+...(f, g ∈ Σp) ,

(1.9)
and

Hm
p,λ,`(f∗g)(z) =

1

2

[
Dm
λ,`,p(f ∗ g)(z)−Dm

λ,`,p(f ∗ g)(−−z)

]
= z−p+... (f, g ∈ Σp).

(1.10)
Clearly, for k = 1, we have

Fm
p,λ,`,1(f ∗ g)(z) = Dm

λ,`,p(f ∗ g)(z) .

Making use of the integral operator Dm
λ,`,p(f ∗g) and the above mentioned

principle of subordination between analytic functions, we now interoduce and
investigate the following subclasses of the class Σp of meromorphic functions.
Definition 1. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is
said to be in the class Fmp,λ,`,k(α;ϕ) if it satisfies the following subordination
condition:

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α

(
Dm+1
λ,`,p (f ∗ g)

)′
(z)
]

p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(z) + αFm+1
p,λ,`,k(f ∗ g)(z)

] ≺ ϕ(z), (1.11)

for some α (α ≥ 0), where ϕ ∈ P, Fm
p,λ,`,k(f ∗ g) is defined by (1.8) and

Fm+1
p,λ,`,k(f ∗ g)(z) 6= 0 (z ∈ U∗).

For simplicity, we write

Fmp,λ,`,k(0;ϕ) = Fmp,λ,`,k(ϕ) .
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Remark 1. In [20], Zou and Wu introduced and investigated a subclass
MS∗s (α) of Σ consisting of functions which are meromorphically α-starlike
with respect to symmetric points and satisfy the following inequality:

Re

{
−
z
[
(1 + α)(f ∗ g)

′
(z) + α(z(f ∗ g)

′
(z))

′]
(1 + α)Ts(f ∗ g)(z) + αz(Ts(f ∗ g))′(z)

}
> 0 (z ∈ U) ,

where

Ts(f ∗ g)(z) =
1

2
[(f ∗ g)(z)− (f ∗ g)(−z)] . (1.12)

Remark 2. For α = 0 and λ = ` = 1, we have the class Fmp,1,1k(0;ϕ) =
Fmp,k(ϕ), where the class Fmp,k(ϕ) consisting of functions f, g ∈ Σp which sat-
isfy the following subordination condition:

−
z
(
Dm
p (f ∗ g)

)′
(z)

pFm
p,k(f ∗ g)(z)

≺ ϕ(z),

where ϕ ∈ P and

Fm
p,k(f ∗ g)(z) =

1

k

k−1∑
j=0

εjpk (Dm
p (f ∗ g))(εjkz) 6= 0 (z ∈ U∗) .

Definition 2. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is said to

be in the class Ĝm
p,λ,`(α;ϕ) if it satisfies the following subordination condition:

−

[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α

(
Dm+1
λ,`,p (f ∗ g)

)′
(z)
]

p
[
(1 + α)Gm

p,λ,`(f ∗ g)(z) + αGm+1
p,λ,` (f ∗ g)(z)

] ≺ ϕ(z) ( α ≥ 0).

Definition 3. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is said to
be in the class ℵmp,λ,`(α;ϕ) if it satisfies the following subordination condition:

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)(z)

)′
+ α

(
Dm+1
λ,`,p (f ∗ g)(z)

)′]
p
[
(1 + α)Hm

p,λ,`(f ∗ g)(z) + αHm+1
p,λ,` (f ∗ g)(z)

] ≺ ϕ(z) (α ≥ 0).

Remark 3. In [19], Zou and Wu introduced and investigated a subclass
MS∗sc(α) of Σ consisting of functions which are meromorphically α-starlike
with respect to symmetric conjugate points and satisfy the following inequal-
ity:

Re

{
−
z
[
(1 + α)(f ∗ g)

′
(z) + α(z(f ∗ g)

′
(z))

′]
(1 + α)Tsc(f ∗ g)(z) + αz(Tsc(f ∗ g)(z))′

}
> 0 (z ∈ U) ,
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where

Tsc(f ∗ g)(z) =
1

2

[(
(f ∗ g)(z)− (f ∗ g)(−z)

)]
. (1.13)

Definition 4. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is
said to be in the class =mp,λ,`,k(α;ϕ) if it satisfies the following subordination
condition:

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α(Dm+1

λ,`,p (f ∗ g))
′
(z)
]

p
[
(1 + α)£m

p,λ,`,k(f ∗ g)(z) + α£m+1
p,λ,`,k(f ∗ g)(z)

] ≺ ϕ(z)

(α ≥ 0; £ ∈ Fmp,λ,`,k(α;ϕ).

Definition 5. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is said to

be in the class Ĉm
p,λ,`(α;ϕ) if it satisfies the following subordination condition:

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α(Dm+1

λ,`,p (f ∗ g))
′
(z)
]

p
[
(1 + α)χmp,λ,`(f ∗ g)(z) + αχm+1

p,λ,` (f ∗ g)(z)
] ≺ ϕ(z)

(α ≥ 0;χ ∈ Ĝm
p,λ,`(α;ϕ).

Definition 6. Let g ∈ Σp be defined by (1.2). A function f ∈ Σp is said to

be in the class Ŕm
p,λ,`(α;ϕ) if it satisfies the following subordination condition:

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α(Dm+1

λ,`,p (f ∗ g))
′
(z)
]

p
[
(1 + α)ηmp,λ,`(f ∗ g)(z) + αηm+1

p,λ,` (f ∗ g)(z)
] ≺ ϕ(z)

(α ≥ 0; η ∈ ℵmp,λ,`(α;ϕ).

In order to establish our main results we shall make use the following
lemmas.

Lemma 1 ([8], [12]). Let β, γ ∈ C. Suppose also that φ is convex and
univalent in U with

φ(0) = 1 and Re(βφ(z) + γ) > 0 (z ∈ U) .

If p is analytic in U with p(0) = 1, then the following subordination:

p(z) +
zp
′
(z)

βp(z) + γ
≺ φ(z)

implies that
p(z) ≺ φ(z) .
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Lemma 2 [14]. Let β, γ ∈ C. Suppose also that φ is convex and univalent
in U with

φ(0) = 1 and Re(βφ(z) + γ) > 0 .

Also let
q(z) ≺ φ(z).

If p ∈ P and satisfies the following subordination:

p(z) +
zp
′
(z)

βp(z) + γ
≺ φ(z) ,

then
p(z) ≺ φ(z) .

Lemma 3. Let f ∈ Fmp,λ,`,k(α;ϕ). Then

−
z
[
(1 + α)

(
Fm
p,λ,`,k(f ∗ g)

)′
(z) + α

(
Fm+1
p,λ,`,k(f ∗ g)

)′
(z)
]

p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(z) + αFm+1
p,λ,`,k(f ∗ g)(z)

] ≺ ϕ(z). (1.14)

Furthermore, if ϕ ∈ P with

Re

(
`

αλ
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) ,

then

−
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

≺ ϕ(z).

Proof. Making use of (1.8), we have

Fm
p,λ,`,k(f ∗ g)(εjkz) =

1

k

k−1∑
n=0

εnpk D
m
λ,`,p(f ∗ g)

(
εn+jk z

)
= ε−jpk .

1

k

k−1∑
n=0

ε
(n+j)p
k Dm

λ,`,p(f ∗ g)
(
εn+jk z

)
= ε−jpk Fm

p,λ,`,k(f ∗ g)(z) (j ∈ {0, 1, ..., k − 1})(1.15)

and

(
Fm
p,λ,`,k(f ∗ g)

)′
(z) =

1

k

k−1∑
n=0

ε
j(p+1)
k

(
Dm
λ,`,p(f ∗ g)

)′ (
εjkz
)
. (1.16)
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Replacing m by m+ 1 in (1.15) and (1.16), respectively, we obtain

Fm+1
p,λ,`,k(f ∗ g)(εjkz) = ε−jpk Fm+1

p,λ,`,k(f ∗ g)(z) (j ∈ {0, 1, ..., k − 1}) (1.17)

and (
Fm+1
p,λ,`,k(f ∗ g)

)′
(z) =

1

k

k−1∑
n=0

ε
j(p+1)
k

(
Dm+1
λ,`,p (f ∗ g)

)′ (
εjkz
)
. (1.18)

From (1.15) and (1.18), we obtain

−
z
[
(1 + α)

(
Fm
p,λ,`,k(f ∗ g)

)′
(z) + α

(
Fm+1
p,λ,`,k(f ∗ g)

)′
(z)
]

p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(z) + αFm+1
p,λ,`,k(f ∗ g)(z)

]
= −1

k

k−1∑
j=0

εjkz
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(εjkz) + α

(
Dm+1
λ,`,p (f ∗ g)

)′
(εjkz)

]
p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(εjkz) + αFm+1
p,λ,`,k(f ∗ g)(εjkz)

] (z ∈ U).

(1.19)

Moreover, since f ∈ Fmp,λ,`,k(α;ϕ), it follows that

−
εjkz
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(εjkz) + α

(
Dm+1
λ,`,p (f ∗ g)

)′
(εjkz)

]
p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(εjkz) + αFm+1
p,λ,`,k(f ∗ g)(εjkz)

] ≺ ϕ(z)

(j ∈ {0, 1, ..., k − 1}) . (1.20)

By noting that ϕ is convex and univalent in U , we conclude from (1.19) and
(1.20) that the assertion (1.14) of Lemma 3 holds true.

Next, making use of the relationships (1.6) and (1.8), we have

z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)+

(
p+

`

λ

)
Fm
p,λ,`,k(f∗g)(z) =

`

λk

k−1∑
j=0

εjpk
(
Dm+1
λ,`,p (f ∗ g)

) (
εjkz
)

=
`

λ
Fm+1
p,λ,`,k(f ∗ g)(z) (f ∈ Σp) . (1.21)

Let f ∈ Fmp,λ,`,k(α;ϕ) and suppose that

ψ(z) = −
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

(z ∈ U) . (1.22)

Then ψ is analytic in U and ψ(0) = 1. It follows from (1.21) and (1.22) that

`

λ
+ p− pψ(z) =

`

λ

Fm+1
p,λ,`,k(f ∗ g)(z)

Fm
p,λ,`,k(f ∗ g)(z)

. (1.23)
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From (1.22) and (1.23), we obtain

z
(
Fm+1
p,λ,`,k(f ∗ g)

)′
(z) =

−pλ
`

{
zψ
′
(z) +

[
`

λ
+ p− pψ(z)

]
ψ(z)

}
Fm
p,λ,`,k(f∗g)(z) (z ∈ U∗) .

(1.24)
It now follows from (1.14) and (1.22)-(1.24) that

−
z
[
(1 + α)

(
Fm
p,λ,`,k(f ∗ g)

)′
(z) + α

(
Fm+1
p,λ,`,k(f ∗ g)

)′
(z)
]

p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(z) + αFm+1
p,λ,`,k(f ∗ g)(z)

]
=

αλ
`
zψ
′
(z) +

{
(1 + α) + αλ

`

[
`
λ

+ p− pψ(z)
]}
ψ(z)

(1 + α) + αλ
`

[
`
λ

+ p− pψ(z)
]

= ψ(z) +
zψ
′
(z)

`
λα

+ 2 `
λ

+ p− pψ(z)
≺ ϕ(z) . (1.25)

Thus, since

Re

(
`

λα
+ 2

`

λ
+ p− pψ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) ,

by means of (1.25) and Lemma 1, we find that

ψ(z) = −
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

≺ ϕ(z).

This completes the proof of Lemma 3.
By similarly applying the method of proof of Lemma 3, we can easily get

the following results for the classes Ĝm
p,λ,`(α;ϕ) and ℵmp,λ,`(α;ϕ).

Lemma 4. Let f ∈ Ĝm
p,λ,`(α;ϕ). Then

−
z
[
(1 + α)

(
Gm
p,λ,`(f ∗ g)

)′
(z) + α

(
Gm+1
p,λ,` (f ∗ g)

)′
(z)
]

p
[
(1 + α)Gm

p,λ,`(f ∗ g)(z) + αGm+1
p,λ,` (f ∗ g)(z)

] ≺ ϕ(z) .

Furthermore, if ϕ ∈ P with

Re

(
`

λα
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) ,

then

−
z
(
Gm
p,λ,`(f ∗ g)(z)

)′
pGm

p,λ,`(f ∗ g)(z)
≺ ϕ(z).
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Lemma 5. Let f ∈ ℵmp,λ,`(α;ϕ). Then

−
z
[
(1 + α)

(
Hm
p,λ,`(f ∗ g)

)′
(z) + α

(
Hm+1
p,λ,` (f ∗ g)

)′
(z)
]

p
[
(1 + α)Hm

p,λ,`(f ∗ g)(z) + αHm
p,λ,`(f ∗ g)(z)

] ≺ ϕ(z).

Furthermore, if ϕ ∈ P with

Re

(
`

λα
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) ,

then

−
z
(
Hm
p,λ,`(f ∗ g)

)′
(z)

pHm
p,λ,`(f ∗ g)(z)

≺ ϕ(z).

In this paper, we obtain inclusion relationships integral representation,
and convolution properties for each of the following function classes which
we have introduced here: Fmp,λ,`,k(α;ϕ), Ĝm

p,λ,`(α;ϕ) and ℵmp,λ,`(α;ϕ) as well as

=mp,λ,`,k(α;ϕ) , Ĉm
p,λ,`(α;ϕ) and Ŕm

p,λ,`(α;ϕ). The methods used here to obtain
our main results are similar to those of Wang et al. [18], Srivastava et al.
[16], and Zou et al.([19],[20]).

2 A set of inclusion relationships

We first provide some inclusion relationships for the following function classes
Fmp,λ,`,k(α;ϕ), Ĝm

p,λ,`(α;ϕ) and ℵmp,λ,`(α;ϕ) as well as =mp,λ,`,k(α;ϕ), Ĉm
p,λ,`(α;ϕ)

and Ŕm
p,λ,`(α;ϕ).

Theorem 1. Let ϕ ∈ P with

Re

(
`

λα
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) .

Then

Fmp,λ,`,k(α;ϕ) ⊂ Fmp,λ,`,k(ϕ) .

Proof. Let f ∈ Fmp,λ,`,k(α;ϕ) and suppose that

q(z) = −
z
(
Dm
λ,`,p(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

(z ∈ U) . (2.1)
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Then q is analytic in U and q(0) = 1. It follows from (1.6) and (2.1) that

q(z)Fm
p,λ,`,k(f ∗ g)(z) =

−`
λp
Dm+1
λ,`,p (f ∗ g)(z) +

`
λ

+ p

p
Dm
λ,`,p(f ∗ g)(z) . (2.2)

Differentiating both sides of (2.2) with respect to z and using (2.1), we obtain

zq
′
(z) +

(
`

λ
+ p+

z(Fm
p,λ,`,k(f ∗ g))

′
(z)

Fm
p,λ,`,k(f ∗ g)(z)

)
q(z)

=
−`
λp

z
(
Dm+1
λ,`,p (f ∗ g)

)′
(z)

Fm
p,λ,`,k(f ∗ g)(z)

. (2.3)

It now follows from (1.11), (1.22), (1.23), (2.1) and (2.3) that

−
z
[
(1 + α)

(
Dm
λ,`,p(f ∗ g)

)′
(z) + α

(
Dm+1
λ,`,p (f ∗ g)

)′
(z)
]

p
[
(1 + α)Fm

p,λ,`,k(f ∗ g)(z) + αFm+1
p,λ,`,k(f ∗ g)(z)

]
=

αλ
`
zq
′
(z) +

{
(1 + α) + αλ

`

[
`
λ

+ p− pψ(z)
]}
q(z)

(1 + α) + αλ
`

[
`
λ

+ p− pψ(z)
]

= q(z) +
zq
′
(z)

`
λα

+ 2 `
λ

+ p− pψ(z)
≺ ϕ(z) . (2.4)

Moreover, since

Re

(
`

λα
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) ,

by Lemma 3, we have

ψ(z) = −
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

≺ ϕ(z).

Thus, by (2.4) and Lemma 2, we find that

q(z) ≺ ϕ(z) ,

that is, that f ∈ Fmp,λ,`,k(ϕ). This implies that

Fmp,λ,`,k(α;ϕ) ⊂ Fmp,λ,`,k(ϕ) .

The proof of Theorem 1 is evidently completed.
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In view of Lemmas 4 and 5, and by similarly applying the method of proof
of Theorem 1, we can easily obtain the inclusion relationships Ĝm

p,λ,`(α;ϕ) ⊂
Ĝm
p,λ,`(ϕ) and ℵmp,λ,`(α;ϕ) ⊂ ℵmp,λ,`(ϕ).

Theorem 2. Let ϕ ∈ P with

Re

(
`

λα
+ 2

`

λ
+ p− pϕ(z)

)
> 0 (α > 0;λ > 0; z ∈ U) .

Then
=mp,λ,`,k(α;ϕ) ⊂ =mp,λ,`,k(ϕ).

Proof. Let f ∈ =mp,λ,`,k(α;ϕ) and suppose that

p(z) = −
z
(
Dm
λ,`,p(f ∗ g)

)′
(z)

p£m
p,λ,`,k(f ∗ g)(z)

(z ∈ U) . (2.5)

Then p is analytic in U and p(0) = 1. It follows from (1.6) and (2.5) that

p(z)£m
p,λ,`,k(f ∗ g)(z) = − `

λp
Dm+1
λ,`,p (f ∗ g)(z) +

`
λ

+ p

p
Dm
λ,`,p(f ∗ g)(z) . (2.6)

Differentiating both sides of (2.6) with respect to z and using (2.5), we have

zp
′
(z) +

(
`

λ
+ p+

z
(
£m
p,λ,`,k(f ∗ g)

)′
(z)

£m
p,λ,`,k(f ∗ g)(z)

)
p(z)

= − `

λp

z
(
Dm+1
λ,`,p (f ∗ g)

)′
(z)

£m
p,λ,`,k(f ∗ g)(z)

.

Furthermore, we suppose that

ϕ(z) = −
z
(
£m
p,λ,`,k(f ∗ g)

)′
(z)

p£m
p,λ,`,k(f ∗ g)(z)

(z ∈ U).

The remainder of the proof of Theorem 2 is similar to that of Theorem 1.
We, therefore, choose to omit the analogous details involved. We thus find
that

p(z) ≺ ϕ(z),

which implies that f ∈ =mp,λ,`,k(ϕ). The proof of Theorem 2 is thus completed.
In view of Lemmas 4 and 5, and by similarly applying the method of proof

of Theorem 2, we can easily obtain the inclusion relationships Ĉm
p,λ,`(α;ϕ) ⊂

Ĉm
p,λ,`(ϕ) and Ŕm

p,λ,`(α;ϕ) ⊂ Ŕm
p,λ,`(ϕ).
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In view of Lemmas 3 to 5, and by similarly applying the method of proofs
of Theorems 1 and 2 obtained by Srivastava et al. [16], we can easily obtain
the following inclusion relationships.
Corollary 1. Let ϕ ∈ P with

Re

(
`

λ
+ p− pϕ(z)

)
> 0 (λ > 0; z ∈ U) .

Then

Fm+1
p,λ,`,k(ϕ) ⊂ Fmp,λ,`,k(ϕ) .

The result of Corollary1 also holds true for the classes Ĝm+1
p,λ,` (ϕ) and

ℵm+1
p,λ,` (ϕ).

Corollary 2. Let ϕ ∈ P with

Re

(
`

λ
+ p− pϕ(z)

)
> 0 (λ > 0; z ∈ U) .

Then

=m+1
p,λ,`,k(ϕ) ⊂ =mp,λ,`,k(ϕ) .

The result of Corollary2 also holds true for the classes Ĉm+1
p,λ,` (ϕ) and

Ŕm+1
p,λ,` (ϕ).

Remark 3. (i) Putting m = 0, `
λ

= α1 and g is given by (1.7), in
Theorem 1, we obtain the result obtained by Wang et al [18];

(ii) Putting g = z−p

1−z (or bn = 1), in Theorem 1, we obtain the result
obtained by Aouf et al [3] .

3 Integral representation

In this section, we prove a number of integral representations associated with
the function classes Fmp,λ,`,k(ϕ), Ĝm

p,λ,`(ϕ) and ℵmp,λ,`(ϕ) .
Theorem 3. Let f ∈ Fmp,λ,`,k(ϕ). Then

Fm
p,λ,`,k(f ∗ g)(z) = z−p. exp

−p
k

k−1∑
j=0

z∫
0

ϕ(w(εjkξ))− 1

ξ
dξ

 , (3.1)

where Fm
p,λ,`,k(f ∗ g) is defined by (1.8) and w is analytic in U with w(0) = 0

and |w(z)| < 1 (z ∈ U).
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Proof. Suppose that f ∈ Fmp,λ,`,k(ϕ). We observe that the condition (1.11)
(with α = 0) can be written as follows:

−
z
(
Dm+1
λ,`,p (f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

= ϕ(w(z)) (z ∈ U) , (3.2)

where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U).
Replacing z by εjkz (j = 0, 1, ..., k − 1) in (3.2), we find that (3.2) also holds
true, that is, that

−
εjkz
(
Dm+1
λ,`,p (f ∗ g)

)′
(εjkz)

pFm
p,λ,`,k(f ∗ g)(εjkz)

= ϕ
(
w(εjkz)

)
(z ∈ U) . (3.3)

We note that

Fm
p,λ,`,k(f ∗ g)(εjkz) = ε−jpk Fm

p,λ,`,k(f ∗ g)(z) (z ∈ U) .

Thus, by letting j = 0, 1, ..., k − 1 in (3.3), successively, and summing the
resulting equations, we get

−
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

=
1

k

k−1∑
j=0

ϕ
(
w(εjkz)

)
(z ∈ U) . (3.4)

We next find from (3.4) that(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

Fm
p,λ,`,k(f ∗ g)(z)

+
p

z
=
−p
k

k−1∑
j=0

ϕ
(
w(εjkz)

)
− 1

z
(z ∈ U∗) , (3.5)

which, upon integration, yields

log
(
zpFm

p,λ,`,k(f ∗ g)(z)
)

=
−p
k

k−1∑
j=0

z∫
0

ϕ
(
w(εjkξ)

)
− 1

ξ
dξ . (3.6)

The assertion (3.1) of Theorem 3 can now easily be derived from (3.6).
Theorem 4. Let f ∈ Fmp,λ,`,k(ϕ). Then

Dm
λ,`,p(f∗g)(z) = −p

z∫
0

ζ−p−1ϕ(w(ζ)). exp

−p
k

k−1∑
j=0

ζ∫
0

ϕ(w(εjkξ))− 1

ξ
dξ

 dζ,

(3.7)
where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U).
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Proof. Suppose that f ∈ Fmp,λ,`,k(ϕ). Then, in light of (3.1) and (3.2), we
have (

Dm
λ,`,p(f ∗ g)

)′
(z) = −

pFm
p,λ,`,k(f ∗ g)(z)

z
.ϕ(w(z))

= −pz−p−1ϕ(w(z)). exp

−p
k

k−1∑
j=0

z∫
0

ϕ(w(εjkξ))− 1

ξ
dξ

 , (3.8)

which, upon integration, leads us easily to the assertion (3.7) of Theorem 4.
In view of Lemma 3, we can obtain another integral representation for

the function class Fmp,λ,`,k(ϕ).
Theorem 5. Let f ∈ Fmp,λ,`,k(ϕ). Then

Dm
λ,`,p(f ∗ g)(z) = −p

z∫
0

ζ−p−1ϕ(w2(ζ)). exp

−p z∫
0

ϕ(w1(ξ))− 1

ξ
dξ

 d ζ,

(3.9)
where the function wj (j = 1, 2) are analytic in U with wj(0) = 0 and
|wj(z)| < 1 (z ∈ U ; j = 1, 2).

Proof. Suppose that f ∈ Fmp,λ,`,k(ϕ). We then find from (1.14) (with α = 0)
that

−
z
(
Fm
p,λ,`,k(f ∗ g)

)′
(z)

pFm
p,λ,`,k(f ∗ g)(z)

= ϕ(w1(z)) (z ∈ U) ,

where w1 is analytic in U and w1(0) = 0. Thus, by similarly applying the
method of proof of Theorem 3, we find that

Fm
p,λ,`,k(f ∗ g)(z) = z−p. exp

−p z∫
0

ϕ(w1(ξ))− 1

ξ
dξ

 . (3.11)

From (3.2) and (3.11), we have(
Dm
λ,`,p(f ∗ g)

)′
(z) = −

pFm
p,λ,`,k(f ∗ g)(z)

z
. ϕ(w2(z))

= −pz−p−1ϕ(w2(z)). exp

−p z∫
0

ϕ(w1(ξ))− 1

ξ
dξ

 , (3.12)

where the functions wj(z) (j = 1, 2) are analytic in U with wj(0) = 0 and
|wj(z)| < 1 (z ∈ U ; j = 1, 2). Upon integrating both sides of (3.12), we
readily arrive at the assertion (3.9) of Theorem 5.
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Remark 4. The result of Theorem 5 also holds true for the classes Ĝm
p,λ,`(ϕ)

and ℵmp,λ,`(ϕ). So we omit the details involved.
In view of Lemmas 4 and 5, and by similarly applying the methods of

proof of Theorems 3 and 4, we can easily obtain the results for the function
classes Ĝm

p,λ,`(ϕ) and ℵmp,λ,`(ϕ).
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