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On the Diophantine Equation

x2 − kxy + ky2 + ly = 0, l = 2n
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Abstract. We consider the Diophantine equation x2−kxy+ky2+
ly = 0 for l = 2n and determine for which values of the odd integer
k, it has a positive integer solution x and y.
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1 Introduction

There are many works about the Diophantine equations. Given k and l are
integers. Marlewski and Zarzycki [4] considered equation

x2 − kxy + y2 + lx = 0 (1)

for l = 1 and found that equation (1) has an infinite number of positive
integer solutions if and only if k = 3. Keskin [3] investigated positive integer
solutions of equation (1) for l = −1, 1 . He proved that when k > 3 equation
(1) with l = 1 has no positive integer solutions but equation (1) with l =
−1 has positive integer solutions. Moreover, he showed that the equation
x2 − kxy − y2 ∓ x = 0 and x2 − kxy − y2 ∓ y = 0 have positive solutions
when k ≥ 1. Yuan and Hu [5] considered equation (1) for l ∈ {1, 2, 4}.
They determined the value of k in the case of equation (1) has an infinite
number of positive integer solutions. They found that equation (1) for l = 1
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has infinitely many integer solutions if and only if k 6= 0 and ±1 which
generalized the work of Marlewski and Zarzycki [4]. After that Hu and
Le [1] considered equation (1) for non zero integer l. They characterized
the value of positive integer k that makes equation (1) has infinitely many
positive integer solutions. One year later Karaatli and Şiar [2] studied the
Diophantine equation

x2 − kxy + ky2 + ly = 0 (2)

for l ∈ {1, 2, 4, 8}.
In this paper, we will consider the Diophantine equation (2) for l = 2n

where n is a non-negative integer.

2 New Results

In order to prove the main theorem, we need the following auxiliary lemmas.

Lemma 2.1. Equation (2) has a solution if and only if the equation

X2 − kXY + kY 2 + LY = 0. (3)

has a solution a certain integer L|l and gcd(Y, L) = 1.

Proof. Let p be a prime such that p|y in equation (2). Then p|x2, whereupon
p|x. Suppose that p|gcd(y, l). Then p|l and p|y. From above we have p|x.
Let x = px′, y = py′ and l = pl′ for some integers x′, y′ and l′. It follows that

p2x′2 − kp2x′y′ + kp2y′2 + l′y′p2 = 0,

therefore
x′2 − kx′y′ + ky′2 + l′y′ = 0,

with l′|l. If gcd(l′, y′) > 1, we repeat the same process until gcd(Y, L) = 1
and

X2 − kXY + kY 2 + LY = 0

and L|l . If equation (3) has a solution (X, Y ) ∈ N2 with L|l, then let
a = l

L
, x = aX and y = aY for some integers X and Y . Then

x2 − kxy + ky2 + ly = 0
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We can then without loss of generality suppose that gcd(y, l) = 1 in
equation (2).

Lemma 2.2. If (x, y) is a solution to (2) with gcd(y, l) = 1, then y is a
square.

Proof. Let (x, y) be a solution to (2), and p a prime such that pt||y. Then

pt|x2. If t is an odd number then p
t+1
2 |x. Therefore p

3t+1
2 |xy and p2t|y2,

whereupon pt+1|xy and pt+1|y2. Hence pt+1|ly. But, p - l, then pt+1|y, which
is a contradiction. Then, if pt||y, t is even and y is a square.

Karaatli and Şiar [2] studied equation (2), when l ∈ {1, 2, 4, 8}. In the
next theorem, we will study equation (2) when l = 2n where n is a non-
negative integer and k is an odd integer. We prove the following.

Theorem 2.3. If l = 2n for non-negative integer n and k is an odd number,
then equation (2) has a positive solution only if k = 5 and all solutions are
x = ab, y = a2 with gcd(a, b) = 1 and (2b− 5a)2 − 5a2 = −4.

Proof. We solve equation (2), where gcd(y, l) = 1 and l = 1 or 2n.
Case 1: If l = 2n, n 6= 0. Lemma 2.2 implies that y is a square. Let

y = u2, then u2|x2, i.e., u|x. Let x = ut, where u and t ∈ N. Then, equation
(2) implies that

u2t2 − kutu2 + ku4 + lu2 = 0. (4)

Therefore
t2 − kut + ku2 + l = 0.

Since gcd(y, l) = 1, then u is odd. Then ku2+l is odd. The integer t2−kut =
t(t−ku) is even for every t ∈ N, then (t2−kut)+(ku2+l) is odd, and equation
(4) has no solution.

Case 2: If l = 1. Theorem 3.1 in [2] implies k = 5 and the rest of the
proof follows.

Remark 2.4. From Theorem 2.3, we know that equation (2) has a solution
when l = 2n for non-negative integer n and an odd integer k if and only if
k = 5. The solutions (x, y) are obtained from the solutions of the generalized
Pell equation

u2 − 5v2 = −4,

which is known to have infinitely many solutions (u, v).
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