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Relationship Between Hyper MV -algebras
and Hyperlattices

R. A. Borzooei, Akefe Radfar, and Sogol Niazian

Abstract. Sh. Ghorbani, et al. [9], generalized the concept
of MV-algebras and defined the notion of hyper MV -algebras.
Now, in this paper, we try to prove that any hyper MV -algebra
is a hyperlattice. First we prove that any hyper MV -algebra that
satisfies the semi negation property is a hyperlattice. Then with a
computer program, we show that any hyper MV-algebra of order
less than 6, is a hyperlattice. Finally, we claim that this result is
correct for any hyper MV -algebra.
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1 Introduction

The first studies regarding multiple-valued logics were conducted by J. Luka-
siewicz and E. Post when they introduced a three-valued logical system in
1920 [14]. The latter built a different n-valued logical system in 1921 [17].
Then Lukasiewicz and Tarski developed in 1930 [15] a logic for which the
truth values are the rationales in [0, 1]. In 1940, Gr.C. Moisil introduced the
three-valued Lukasiewicz algebras as algebraic models for the corresponding
logic of Lukasiewicz. In 1941, Moisil also defined n-valued Lukasiewicz alge-
bras. Then, in 1956, A. Rose showed that for a number of truth values greater
than 5 the Lukasiewicz algebras are no longer the algebras of Lukasiewicz
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logic. In fact, by defining the n-valued Lukasiewicz algebras, Moisil invented
a distinct logical system. In 1958, C.C. Chang defined MV -algebras as mod-
els for the infinitely valued Lukasiewicz-Tarski logic [5]. In 1977, R. Grigolia
introduced MV,-algebras to model the n-valued Lukasiewicz logic [10].

The study of hyperstructures, started in 1934 by Marty’s paper at the 8th
Congress of Scandinavian Mathematicians [16] where hypergroups were in-
troduced. Sh. Ghorbani et al. [9] applied the hyperstructure to MV -algebras
and introduce the concept of hyper MV -algebras which is a generalization
of MV-algebras and investigated some results. They also discussed quo-
tient structure and category of hyper MV-algebras ([8], [7]). Specially, they
clarified the relation between the class of hyper MV-algebras and hyper K-
algebras [2]. R. A. Borzooei et al. [1] proved that these relations are not true,
which unfortunately is used to prove some important results of several hyper
MV -algebras paper. L. Torkzadeh et al [18] discussed hyper MV -ideals and
define some hyperoperations on it. Then they get some results and give a
problem which want to prove or disprove the hyperoperations V and A are as-
sociative. As another hyper algebraic structures the notions of (weak) hyper
MYV -deductive systems and (weak) implicative hyper MV -deductive systems
are introduced in [12]. Then the relation among them are discussed. Also,
as a continue, new types of hyper MV -deductive systems are introduced in
[7newded]. Now, in this paper, we try to find a relationship between hyper
MV -algebras and hyperlattices.

2 Preliminary

In this section we give some definitions and properties of MV -algebras and
hyper MV -algebras which we need in the next section.

Definition 2.1. [5] An MV -algebra is an algebra (A, @, *,0) of type (2,2,0)
that satisfying the following axioms:

(MVI)z®(ydz)=(xdy) ® 2,

(MV2) xdy=y®u,

(MV3) x®0 =z,

(MV}) x** =z,

(MV5) x @ 0* = 0%,

(MV6) (x*®y) dy=(y* D) ®u.

Let A be an MV-algebra. We define the operations ® and & on A by,
rQy = (z*®y")* and xr ©y = x ©y*, for any z,y € A and we consider
1 =: 0* . Moreover, the relation x < y on A is defined by = < y if and
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only if z* @y = 1, for any z,y € A. The relation < is a partial order on
A which is called the natural order of A. This natural order determines a
lattice structure (A, V,A), where zVy =: (z©y*) @y and v Ay =: (z*Vy*)*,
for any z,y € A. As a first example of nontrivial MV -algebra, consider the
real unit interval [0, 1] with z @y = min{z +y, 1} and 2* =1 —z. It is easy
to see that ([0, 1], ®, *,0) is an MV-algebra.

Proposition 2.1. [5] Let A be an MV -algebra and x,y € A. Then the
following is hold:

(1) 1* =0,
(ii) @y = (2" Oy,
(i) x &1 =1,
(w) (zoy)dy=@yoz) e,
(v) @ x* =1,
(vi) x <y if and only if y* < z*,
(vii) if x <y, then for each z € A, x 2 <y®zandrx©2<y® z,
(viit) x ©@y < z if and only if x < y* @ z,
(ir) x© (yVz)=(z0y)V(rOz),
() x®yAz)= (DY) A(rd2).

Definition 2.2. [6] A hyperoperation on a nonempty set H is a map o :
HxH — P*(H) = P(H)—{0}. In this case, (H, o) is called a hypergroupoid.
Let (H,o0) be a hypergroupoid. Then an element a € H is called scalar if
la©x| =1, for any x € H. Moreover, if A and B are two non-empty subsets
of H, then we define Ao B, ao B and Aob as follows, for any a € A and
be B:

AoB = U (aob), aoB={a}oB, Aob= Ao{b}.

a€AbEB

Definition 2.3. [9] A hyper MV -algebra is a nonempty set M endowed with
a hyperoperation "®”, a unary operation "x” and a constant 707 satisfying
the following axioms, for all x,y,z € M, :

(HMV1) 2@ (y®2) = (z®y) D 2,

(HMV2) zdy =y Dz,
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(HMV3) (z*)* = x,

(HMVY}) (" @y) @y = (y ®z) @,

(HMVS5) 0% € = & 0%,

(HMV6) 0* € = @ z*,

(HMVT) z <y, y<ax = =1y
where ¥ K y is defined by 0* € x* @ y. For any A, B C M, we define A < B
if and only if there exista € A and b € B such that a < b. We define 0* :=1
and A* = {a* : a € A}.

Proposition 2.2. [9] Let (M, ®,*,0) be a hyper MV -algebra. Then for all
x,y,z € M and for all nonempty subsets A, B and C' of M the following
hold:

(i) Ao (BeC)=(AdB)aC,

(i) 0Lz, <1, < x and A K A,

(i1i) If * <y, then y* < z* and A < B implies B* < A*,
fiv) (A%) = A,

(v) 0 0={0} andz € B0,

(vi) Ify € x &0, then y < x.

Theorem 2.3. [1] Let M be a finite hyper MV -algebra such that 0@z = {z},
for all x € M. Then M is an MV -algebra.

Proposition 2.4. [18] Let (M, ®,*,0) be a hyper MV -algebra. Define the
following hyperopoerations on M as follows:

tVy= (" dy) dy, xAy= (" Vy")
Then for all x,y,z € M:
(i) ze€(zhz)N(xzVa),
(i) xVy=yVrzandxANy=yAux,
(tii) ze€(zN(xVy))N(xV(zAy)),
(iv) ifr <y, theny€xVy andx €x Ny,

(vi) zyy<K<aVyandz Ny <L x,y.
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3 Relationship between hyper MV-algebras and hy-
perlattices

In this section, we try to show that any finite hyper M V-algebra is a hyper-
lattice.

Definition 3.1. If * = z, for any x € M — {0,1}, then we say that M
satisfied the Semi Negation Property (or (SNP), for short).

Example 3.1. Let M = {0,a,b,1} and hyperoperation & and unary oper-
ation x on M are defined as follows;

D 0 a b 1
0 {0} {0a} {0b} A
a {02} A {0ab} A F 9l
b {0b} {0ab} A A
A A A A

Then it is easy to see that (M, ®, *,0) is a hyper MV -algebra that satisfying
the (SNP).

Note: Throughout this section, we let M be a hyper MV-algebra and
satisfies the (SNP), unless otherwise stated.

Lemma 3.1. For all z,y € M —{0,1}:
(1) = <y, implies v =y,
(i) if 0@ x={x}, theny ¢ 1 x.

Proof. (i) If x < y, then by Proposition 2.2(iii), y* < z* and so y < .
Hence, by (HMVT7), z =y .
(ii) On the contrary, let y € 1 @ z, for y € M —{0,1}. By (HMV4), we get

ydr=y" oz C(10x) dr=(c00)"®0=2"d0=2d0={z}.
Thus y @z = {z} = y* & . Now, by (HMV4),

r®dr = ¥er=Wodr)dr=>1"dy) Dy
@y dy=c"dy=cdy={z}.

Hence, x @ v = {z}. Also, by (HMV6), 1 =0* € 2* & x = 2 & = which is a
contradiction. Therefore, y ¢ 1@ x. ]

Lemma 3.2. For any x,y € M and A C M,
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(i) iflex®y, thenx=yorx=1o0ry=1;
(i) if x €0 1, then x € 0D A implies v € A;
(11i) if {0,1} C A or0,1 ¢ A, then A* = A.

Proof. (i) Let 1 =0* € x®y. lf x,y € M —{0,1}, then z < y and so by
Lemma 3.1(1), z =y. If t #0,1and y = 0, then 0* =1 € 20 =20
and implies that x < 0. Hence x = 0, which is a contradiction. Therefore, if
x # 0,1, then y = 1 and similarly, y # 0, 1 implies that x = 1. If z,y € {0,1}
and z =y =0,then 1 € x®y =0 0 = {0}, which is a contradiction. So,
r=1lory=1.

(ii) If € 0 @ A, then there is @ € A such that x € 0 & a. By Proposition
2.2(vi),z < a. By (i),a= 1,z =1orx = a. Since 1 € 0& 1, by Proposition
2.2(v), we get x # 1. Also, a = 1 means that x € 0 & 1 which against the
assumption. Thus z =a € A.

(iii) We know A* = {z*: z € A}. If {0,1} C A, then for any z € A, x =0
orz=1orx € M—{0,1} and so z* =1 or z* = 0 or z* = z. Hence, z* € A
ie. A*=A. Now, let 0,1 ¢ A. Then A C M — {0, 1} and since M satisfies
the (SNP), we get A* = A. ]

Theorem 3.3. [1] Let M be a hyper MV -algebra and = be an element of M
such that 0 ® v = {z} and x* =x. Then 0,z ¢ 1 ® x.

Lemma 3.4. Let x be an element of M —{0,1} such that 0&x = {z}. Then
we get

(i) 1oxz={1},001={1};
(i) x®x={1};
(iii) 0@y ={y}, forally e M —{0,1}.

Proof. (i) By Theorem 3.3, 0,z ¢ 1@ z and by Lemma 3.1(ii), y ¢ 1 ® z, for
ally € M —{0,1}. Thus 1 @z = {1}. Also, weget 001 =0 (1dz) =
lo(0dz)=10x={1}.

(ii) By part (i) and (HMV4), we get

r@r = 2¥@r=0qz)" dr=a"01)" ®1
(zel)el=1"0l=0s1={1}.
(iii) Let y € M — {0,1} and y # x. By Proposition 2.2(v), y € 0 & y. Now,

by the contrary, let 0 @y # {y}. Then there exists z € M such that z # y
and z € 0D y.
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If z # 0,1, then by Proposition 2.2(vi), z < y and so by Lemma 3.1(i) we
get z = y, which is a contradiction.

If z =1, then 1 € 0 ® y and so by Proposition 2.2(vi),1 < y. Hence y = 1
which is a contradiction by y # 0, 1.

If 2z=0,sincex € 00z C (00y)dxr=(0dx)By =xDy, weget x € xDY.
So, by (HMV4),

ler*@zC(zdy) dr= QY dr)Gr=0"dy) Py=ay)  dy.

Hence there is t € @ y such that 1 € t* @ y. By Lemma 3.2(i), t* = 1 or
t"* =yandsot=0ort=y. It meansthat 0 e xdyory e xdy. If
0 € x @y, then by (HMV1) and (ii),

rel@rzC(20y)dr=(dr)dy=1dy.

Hence, by (HMV4), weget t € xQy=a"dy C (1dy) dy=(yd0)* 0.
Since ¢ 0@ 1 = {1}, by Lemma 3.2(ii), we get z € (y & 0)*. So, x = z* €
(y®0))* =y @®0. Thus z < y and so by Lemma 3.1(i), x = y which is
a contradiction. Similarly, for the case y € = & y, we get a contradiction.
Therefore, 0 &y = {y}, for all y # 0, 1. O

Theorem 3.5. If M is finite and z be an element of M — {0,1} such that
0@ x = {x}, then M is an MV -algebra.

Proof. Let M be finite and z € M — {0, 1} such that 0 ® z = {z}. Then by
Lemma 3.4(iii), 0 ® y = {y}, for all y € M — {0,1}. Moreover, by Lemma
3.4(i), 0&1 = {1} and by Proposition 2.2(v), 000 = {0}. Hence 0@y = {y}
for all y € M and so by Theorem 2.3, M is an MV -algebra. O]

Proposition 3.6. Let M be finite and proper. Then for all distinct elements
x,y,z € M —{0,1},

P) 0®x={0,xz},

) ifxre0®l, then0€0D1,

) T,y€r Dy,

) xe€ldxor0eldx. Indeed, 1 & x # {1},
Py) ifyg0@1, theny ¢ 1@ x,

) ifxd0®1, thenx €1 x,

)

1@ C (0@ 1) U{0,z},
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(P) 101C0®1,

(Py) ifycxdx, theny e 0 1. Indeed, t B x C (0D 1)U{0,x},
(Pyp) 001\{0,2} Czdx,

(P1) 01C(zdz)U(ldz) and {0,2} C(zdz)U (1 d x),
(P2) (z@z)U(1dz)=(0d1)U{0,z},

(Pi3) z€x@y impliesx € yd z,

(Puy) ifz€x®y, thenz,y,z€ 01 orz,y,2¢ 0 1,

(P5) 0@1l)U(z@y)U{0} CaVy,

(Pig) ifz,y¢0®1, thenzxd (xrdy) U{0} =z yU{0}.

Proof. (Py) : Let there exists x € M — {0, 1} such that 0 ® z = {z}, by the
contrary. Then by Theorem 3.5, M is an MV-algebra and so it is not proper
which is a contradiction. Hence 0 & x # {z}, for all x € M — {0,1}. Thus
there is y € 0 @ x and y # z. By Lemma 3.1 (i), we imply that y € {0,1}.
Thusy =0ory =1 Ify =1, then1 € 064 x and so 1 < z. Hence, by
Proposition 2.2 (vi), x = 1 which is a contradiction with z € M — {0,1}.
Thus, y =0 € 0& x, for all x € M — {0,1}. Therefore, 0 ® x = {0,x}, for
all z € M —{0,1}.

(Py):Let x € 0 1. Then by (P),0€ 00z C00(0d1) =(000)D1 =
04 1. Hence, 0 € 06p 1.

(Pg)): Let z,y € M — {0,1} be two distinct elements. By (P;) and
(HMV1),
rc0d2rC 00y =00 (zdy),

Then there exists t € x &y such that x € 0 t. Thusz < tandsol € xPHt.
Now, by Lemma 3.2(i), we get z € zPyor 1l € xdy. But l € xdy =" Dy
implies © = y, which is a contradiction. Therefore, z € x ®y. By the similar
way, y € r D y.

(P,) : Since 0 < 0, 1 € 0@ 0. By (HMVy) and (P), 1 € 0° @0 C
O0@z)*@0=(1dz)" ®x By Lemma 3.2(1), 1l € (1@ x)* or z € (1D z)*.
Therefore, 0 e 1Gzxorx € 1dx. Soldx # {1}.

(Ps) : Let y € 0p 1. On the contrary, if y € 1® x, then by (P), (P5) and
(HMV4), ycydr=y" @z C(1dz) dr=(rd0)*®0={0,2}) 0=
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(1®0)U(z®0)=(041)U{0,2}.Thus y € 0 1, which is a contradiction.
Hence y € 1 @ .

(Ps) :Let x €0 1. If 0p 1 # {1}, then by (P), 0 € 0@ 1 and so by
(HMV1) and (P,),

{0,z} =0z C (10 =10 00z)=10{0,2} =(1®0)U(1®x).

Now, since z ¢ 0@ 1, hence x € 1@ z. If 0@ 1 = {1}, then by routine
calculations, we get 1 @ x = {0, 2,1} > x.

(P;):Letye 1@z and y #{0,2}. Theny=1ory#0,1 and y # z. If
y = 1, then by Proposition 2.2(v), y =1 € 0& 1. Now, let z,y € M — {0, 1}
be distinct and y ¢ 0 @ 1, by the contrary. Then by (Ps), y € 1 @ x, which
is a contradiction. Hence y € 0@ 1 ie. (I1®2)\ {0,z} C 0d 1. So
1oz C(0e1)u{0,z}.

(Ps): Let z € 1®1. Then by (P;) and (HMV1), 2z € 02z C 0B (1d1) =
(0@ 1) @ 1. Thus there is t € 0@ 1 such that x € t & 1. By (FPr),
reldt C(0e1)U{0,t}. Thus z € 0 1 or z = t. We note that
r=tmeansz=t€0®1. Hencex € 0®landso1Pd1C 0 1.

(Py) : Let y € x @z and y # x. Then by (HMV4) and (P),

ye€ (z@r)U(1@z)={z,1}@®x={0,2}"@r=00z) Pr=(zd1)" ®1.

Hence there ist € 1 @ x such that y € 1 & t*. We notethat t =1ort =0 or
te M—{0,1}.

Ift=1,thenye1®1*=140. If t =0, then y € 1 ® 1 and so by (Fy),
yeldlC0al.

Ift € M—{0,1}, then by (P;), y € 1t C (001)uU{0,¢}. Thusy € 01 or
y=t Ify=t theny=1tec 1dx. Againby (P;),y € 1&z C (061)U{0,x}.
Since x and y are distinct and y # 0, we get y € 0P 1 in all cases. Therefore,
r@®zx\{0,z,1} C0®landso,byle 01, zdzC (001)U{0,z}.

(Pyp) : Since z < z, we get 1 € x @ x. By (HMV1), we get
061C0@(zdx)=00x)dxr={0,z}U(xdx).
Hence 0 1\ {0,2} Cx @ x.
(P11) : Since 0 < z, we conclude that 0* € 1 @ z. By (HMV4),
0plC(zpl)®l=0or)®r={0,z2}Pr=(zdz)U(1dx) (1).
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Also, if x € 0 ® 1, then by (P2) we get 0 € 0@ 1. Thus {0,2} C0d 1 C
(x@x)U(l@z). If 2 €01, then by (FPs), x € 1@ z. Hence, by (Py),
(HMV1) and (1), {0,2} =0®2C 0@ (1dz)=00z)d1={0,2}d1 =
Oel)U@el)C(z@r)U(zd1).

(P12) : By (P;), (Py) and (Pyy), the proof is clear.

(Pi3):Let z€x®y. Thenl € 2d2*=202C (2dy)dz=0®(yd2).
By Lemma 3.2(i), l e y@zorz € y®z. If 1 € y@ z, then by Lemma 3.2(i),
y = z, that is a contradiction. Therefore, x € y & z.

(Py):Let z€xdy, 2€0®1 and z € 0 1, by the contrary. By (Py3),
z €x®y, impliesz € y®z. Since z € 01, weget x € 2Py C (001) Dy =
0® (1@ y). Since z ¢ 0@ 1, by Lemma 3.2(ii), x € 1 @ y. Also, by (F5),
x & 1 @ y which is a contradiction. So, x € 0 ® 1. Similarly, y € 0 & 1.
Therefore, x,y,z € 0@ 1.

Now, let 2z € 0@ 1 and = € 0 ® 1, by the contrary. Then z € x Gy C
0el)dy =06 (1®y) and so by Lemma 3.2(ii), z € 1 & y. Also, by
(Ps), z ¢ 1 @y, which is a contradiction. So z ¢ 0@ 1. Similarly, y ¢ 0@ 1.
Therefore, z,y,2 ¢ 0 ® 1.

(Pi5) : By (B3), n,y € zdyandsor @y =2"@y C (zDy) Dy =
(*Py)* Dy=2xVy. Also by (P)

Oe\{0,y}Cysy=y"@ycC@ay) dy=0"@y)  ®Yy=0Vy.

Since y € z ®y C x Vy, it is enough to show that 0 € x V y:

By (Pn), (z@z)U(1l®z)=(0®1)U{0,z}. ThusO€xzdzor0ecldu.
Ifoex@r, then0exdr=a0"d2C (yba) dr=(y" @) dr=cVy.
So 0 € z V y and the proof is complete.

[f0O€ 1@, thenbyl e ydy, 0€zdl Caxd(ydy) = (rBy) By. It means
that there is t € x @ y such that 0 € ¢t & y. We note that by Lemma 3.1(i),
l¢rxdyandsot#1. If t =0,then 0 € x &y C xVy and the proof is
complete. Otherwise, t € M —{0,1} and 0 € tPy=t" Gy C (zDy) Dy =
xVy. So, 0 € xVyin all cases. Now, we get

(zay)U0a1)U{0} CxVy.
(Pig) : Let z,y ¢ 0@ 1. Since by (P3), y € @ y, we conclude that

r®y Card(rdy). Now, let t € @ (v & y) be arbitrary. Then there is
u € x @y such that t € x G u. Since z,y € 0 1 by (Pry), we get u & 06 1.
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Again since x,u € 0 @ 1, we conclude that ¢t € 0 ® 1. Also, we have

r@(xdy) = (z@2)dyC((0d1)U{0,2}) Dy by (Py)
Oel) ey u{0,ytu(zey) by ()
0@ (1ay)ui{0,ytu(zay) by (HMV1)

(
(
(
0o (Vo) uU{0,y})uilyu(roy) by ()
(
0@
0@

1N

000U U(0ey) U{0,y}uU(zay)
®1)U{0,y}U(zDy) by Proposition 2.2(v)
Hu{otu(z®y) by (/)

Since t 0@ 1, we get t € (x@y)U{0} andsox® (x Dy) C (zdy) U{0}.
Therefore, @ (zr @ y) U {0} = (x dy) U{0}. O

Lemma 3.7. For all distinct elements x,y € M — {0, 1},
() avy=(z®y)U0®1) U0},

(i1) OVe=1Vae=(0®1)U{0,z},

B [ {0y ifom1={1},
(vi1) 1\/1_0@1and0\/0—{0@1 if 0@1# {1},

: 01\ {1H)u{0,z} if O,z €xPu,
() zve= { 0 1)u{0,z} otherwise,

(v) OV1=0@1.

Proof. (i) By (Pi5), (0® 1)U (z @ y) U {0} C =V y. We note that by
Lemma 3.1(1), l gz @y andso 0 € s dyorzdy C M —{0,1}. Thus
(x@y) C(rdy\{0})U{l}. Now, we get

Tz Vy

ey eyC(zay\{0h)u{l}) ey

(zey)oy)uley) =(@ooy)U(ley), by (HMVI)
z@((021)U{0,y})U(lay), by (F)
(za(001)U(zal)U(zay)U(ldy)
(z@0)@1)U{0,ztU(z@y)U(0®1)U{0,y},by (P1) and ()
0p1)U(za@l)U{0,z}U(zdy)U{0,y}

001 U{0,z,ytU(z@y) by ()

0@1l)u{0}u(zady) by (Ps).

N NN

o~ o~ o~
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Therefore, zVy = (06 1) U (z @ y) U {0}.

(
(x® (00 1)U{0,2}. Also, by (Pp), 1V = (0 x)*®x={l,2}®x =
(1® (zoz)=001)U{0,2} =0Va.

(iii) If 0@ 1= {1}, then OVO = (10 0)*®0=1"® 0 =0® 0 = {0} and
IVi=0a®l) ®1l=0a1. If0® 1 # {1}, then by (P2),0 € 0@ 1 and so
by Lemma 3.2(iii), (0@ 1)* =0 1. Thus

ii) By (P1),0Vve=(z@0)*®0={0,z}*®0={l,2}®0=(140)U
0) =
) U

0VO=(120)0"20=(120000=020a1=051.
Also, by (Pg), we get
V1= (0e1)®l=(001)0l =00(1d1) C08(081) = (000)D1 = 0 1.

Since 0* =1 € 0®1, wehave 0 € (0®1)*andso 061 C (0B 1)* 1 =1V 1.
Therefore, in the two cases, 1V1 =06 1.

(iv) At the first, we prove that 1 € = V « if and only if 0 € z © = or
rexdr. lflexVae=(r&r) &z, then there is z € x & z, such that
1 € 2@ x. By Lemma 3.2(1), 2* =1l or z* =2. Thusz=0€ zdx or
z=ux € x@®x. Conversely, if 0 € zd x or x € x & x, then since v < 1 and
r < x, we conclude that 1 e x 1 and 1 € x d x. So

1 € z0l=200"Cad(zdz) =zVuz,
1l € z@r=0"@zxC(zdx) dr=aVu.

Thus 1 € x V z, for two cases.

Now, let t € xVz = (z@®x)*@x. Then there is u € x@x such that t € u* dx.
If u=0,then by (Pr),t€1®x C (001)U{0,z}. If u=1, then by (P,),
te0@x={0,2} CO001)U{0,2}. If u e M —{0,1}, then we get

teudr C (zdzx)@xC(001)U{0,2}) Dz by (Py)
(el @r)u(0er)U (s )
(0ez)e1)U{0,2} U (zd ) by (HMV1) and (P)
C (0el)U(za1)u{0,z} by (P)
c (0o)u{0,z} by (P)
Hence t € (0@ 1) U{0,z} in all cases. Therefore, x Vo C (0 & 1) U {0, z}.
Conversely, let t € (0 1) \ {0,2,1}. Then by (Pm) t € x®x. By (P3),
tetdr=t"@0zxC(r@x)*@x=zVae Thus (00 1)\ {0,2,1} CzVux.
On the other hand, {0,2} = 0@z =1"® 2 C (rdz)* B x =2 V. Hence,
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Oe1\{1}H)u{0,z} Cz V.

V)OVI=1"®0)*a0=(000®0=0®20=160. O
Lemma 3.8. For all distinct element x,y,z € M — {0,1},

(1) ifx,ye0®1, thenOVer=1Ve=aVy=0®1 andxVr=0d1\{1}
or 0@ 1,

(17) ifre0@landy €0®1, thenaxVy=(0d1)U{y} andyVy =
(0&1)u{0,y},

(i11) (x®yY)Vz=aV(ydz)=001)U{0}U(zdy) D 2).

Proof. (i) Let z,y € 0® 1. Since, by (F), 0 € 0® 1, by Lemma 3.7,
OVez=1Vz=0&landxVae=0&1\ {1} or 04 1. Moreover, since, by
(Py), 2y C0®1, by Lemma 3.7, zVy = (x@y)U(0d 1) U{0} =0 1.

(ii) Let z € 0d1l and y € 0 1. Then by (), 0 € 0& 1. Also, by Lemma
3.2(i) and assumption we get 1 ¢ x @ y. By (P4), we imply that z ¢ x Dy
for all distinct elements x,y,z € M — {0,1}. Hence, by (P;), x ®y = {z,y}
or x ®y ={0,z,y}. So, by Lemma 3.7(i), x Vy = (z ®y) U (0 1) U{0} =
O& 1) Uiy}

(iii) By Lemma 3.7(i) and (HMV1) we get

oy vz = (Jtvz= (JO0onu{oju(te:=)

texPy texPy
= 01 U{0}u((zdy) @ 2)
= 0eHUu{olu(zd (yo2))
= Joonpu{otu@zeu)

ucydz

= U zVu=zV(yd=z).

ueydz

We note that, since by (P3), z,y € x ®y and by Lemma 3.7, 2Vz C 0V z =
1V z C zVz we can suppose that z # t € M — {0,1}, without loss of
generality (similarly, z # v € M — {0, 1}). O

Lemma 3.9. For all distinct elements x,y,z € M — {0,1} we have

() OVO0® 1) =0@1=1V (0@ 1)



8 R. A. Borzooei and A. Radfar and S. Niazian An. U.V.T.

(0e1), if te0®1,

(1) (0@1)\/95:0\/37:1\/35:{ 0 1)U{0,x}, otherwise.

(1i) VvV (xVz) =00 1) U{0}U(z& (& 2));

(w) OV (y@z)=0a1)Uu{0}U(y® 2).

Proof. (i) If 01 = {1}, then by Lemma 3.7(v), 0V (0®1)=0Vv1=0&1.
If0® 1= {0,1}, then by Lemma 3.7(iii), 0V (0 & 1) = (0V0O)U (0 V1) =
0 1)U (0@ 1) =0 1. Otherwise, there exists z € M — {0, 1} such that
x€0@ 1 and so by (P),0€ 0® 1. Thus

ovel) = [Jovy=@voupoviyu [J (v
te0d1 te(0p1)—{0,1}
= (0e1)u(O@1)u(0®1)uU{0,f}, by Lemma 3.7(ii),(ii)
= 01  Since 0,f €0 1.

Therefore, 0V (0 ® 1) = 0 @ 1, for all cases. Similarly, we can prove
IVO0e1) =0 1.

(i) 0@ 1= {1} or 0d1 = {0,1}, then by the similar way of (i) and
using Lemma 3.7(ii), we get (0@ 1) Vo = (0 1) U{0,x}. Let there exists
s € M —{0,1} such that s € 0&1. Then by (P), 0 € 0&1. Now, if z ¢ 01,
then we get

Oelve = [JEve)=0Ova)u(lva)u U (t'V z)
te0pl x#t'e(041)—{0,1}
= (001)U{0,2} U(0® 1)U {z}, by Lemmas 3.7(ii), 3.8(ii)
= (0e1)U{0,z}=0Vz=1Vuz.

For the case z € 0 @ 1, the proof is similar. Therefore, (0 ® 1) V& =
(0 1)U {0, z}, for all cases.
The proof of (iii) and (iv) is routine. O

Theorem 3.10. Let M be finite. Then for all x,y,z € M,
(xVy)Vz=aV(yVz) and (xANy)ANz=aN(YyAz).

Proof. Case 1: Let z,y,z € M such that x = z. Then by commutativity of
V7 we get
zV(yVe)=yVe)Ve=(xVy) V.
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Case 2: Let z,y,z € M — {0,1} be distinct elements and z ¢ 0 @® 1 (for
z € 0@ 1 the proof is similar). Then

V(yVz) = zVvV({(081)Uu{0}U(yea=2)

= (@Vv(0ae1))U(zV0)U(xV (y® 2)),by Lemma 3.7(i)

(
= (0
(

V
®1)U{0,z} U(xzV (y® z)), by Lemmas3.9(ii), 3.7(ii)
®1)U{0} U (xdy® z),by Lemma 3.8(iii) and (P3).

By the similar way, we get (zVy)Vz = (001)U{0}U((z®y)Dz). Therefore,
zV(yVvz)=(xVy)Vz.

Case 3: Let z,y,z € M — {0,1} such that z = y. Then
(i) if x,2 € 0® 1, then by Lemma 3.8(i) and Lemma 3.9(ii), z V (z V 2) =
V(0@&1l) =0 1. Also, it is routine to see that (z V)V z =06 1.
Therefore, zV (zVz2)=0®1=(zVa)Vz.

(ii) If r € 01 and z ¢ 0 1, then by Lemma 3.8(ii) and Lemma 3.9(ii),
zV(zVz) =2zV(0B1)U{z}) = (zv(0@1))U(zVz) = (061)U(0B1)U{z} =
(0@ 1) U{z}. Since by Lemma 3.8(i), z Ve = (0@ 1)\ {1} or 0 1, we get
(xvx)Vz = (081)U{z} = 2V (xVz) in both cases. Thus zV(zVz) = (zVz)Vz.

(iii) If x,2 € 0 1, then

zV(zV z)
= V(0 U{0}U(za 2))
zV(0& 1)) (xVv0)U(z V (z & z)),by Lemma 3.7(i)

{
0e1)uU {O z}U(xV (x® z)),by Lemma 3.9(ii), 3.7(ii)

= 0e1)U{0,z} U0 1)U{0}U(x & (z & 2),by Lemma 3.9(iii)
O HU{0lU(z® (z® 2)
(0@ 1)U (x® z)U{0}, by (P3) and (Pys).

Also, we have,

xVax)Vz
0@ 1)u{0,z})Vz
0@1)Vz)U(0Vz)U(zVz), by Lemma 3.8(ii)

0@ 1)U{0,2} U (0@ 1) U{0}U (& =), by Lemmas 3.9(i), 3.7(ii)
0@ 1)U{0}U (2@ 2), by Py.
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Thus z V (x V 2) = (x V) V z. For the case x,y,z2 € M — {0, 1} such that
y = z, the proof is similar.

Case 4: Let x € {0,1} and y,z € M — {0, 1} be distinct elements. We
suppose & = 0 (for = 1 the proof is similar)

OV(yVvz) = 0V((021)U{0}U(y® 2)), Lemma 3.7(i)
= OvOel)uOvouOVv(yad=z))
0@ 1)u{0}uU(0V (y® z)),by Lemma 3.9(i)
(04 1)U{0}U (y & 2), by Lemma 3.9(iv).
On the other hand,
(i) If = ¢ 0 1, then
Vy) Vv

0
Obeu {0 yH vz
O0e1)V ) (0V z)U(y V z), by Lemma 3.7(ii)

(
= (
= {

0e1)U {O 2} U0 1)U{0} U (y @ 2),by Lemmas 3.9(ii), 3.7(ii),(i)

(0@ 1)U{0} U (y @ z), by Lemma 3.7(i), (i) and (P3).

(ii) If z € 0@ 1, then by Lemma 3.9(ii) and Lemma 3.8(i), this is routine to
see that (0Vy)Vz = (061)U{0}U(y®=2). Hence, (0Vy)Vz = 0V(yVz) for any
cases. If y € {0,1} and z,z € M —{0,1} or z € {0,1} and z,y € M —{0, 1},
then we can prove by the similar way.

Case 5: Let z € {0,1} and y,z € M — {0, 1} such that y = z. Suppose
that = 0 (for z = 1 the proof is similar).
(i) If y ¢ 0 1, then

Ovy)vy = (0@1)u{0,y})Vy
= ((0s®1)V y) (0Vy)U(y Vy), by Lemma 3.7(ii)

(
{
e 1)U {O, y}U(yVy) by Lemmas 3.9(ii), 3.7(ii)
(0 1)U {0,y}, by Lemma 3.8(ii).
Moreover, by Lemma 3.9(i) and Lemma 3.8(ii),
OV(yVy = 0v((0e1)u{o,y}=0OVO0al)uOVO)U(OVy)
= (0@ U{0,y}=(0Vy) Vy.

(ii) If y € 06 1, then it is routine to see that 0V (yVy) =061 = (0Vy) Vy.
Similarly, =y € M —{0,1}, 2 € {0,1} orz =2z € M —{0,1}, y € {0,1}
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can be proved.

Case 6: Let z,y € {0,1} and z € M — {0,1}. Suppose xz =y = 0 (for
x =1 or y =1 the proof is similar).

Ov(OVvz) = 0V((0a1)u{0,z})
= (0V(0&1)UuOVv0o)U(0Vz),by Lemma 3.7(ii)
= (0elu{oju(Oal1)u{o,z}
= (0@ 1)U{0,z},by Lemma 3.9(i)
= 0vVe=(0V0)Vz.

Similarly, z,2 € {0,1}, y € M —{0,1} or y,z € {0,1}, z € M — {0,1} can
be proved.

Case 7: Let x,y,z € {0,1}. Suppose z =y =0, z=1and 01 = {1}.
Then by Lemas 3.7(v) and 3.9(i), we get 0OV (0V1) =0V (0 1) =0&1=
0V 1= (0VvO0)VlL1. For other cases the proof is similar.

Finally, by definition of A, it can easily prove that z A (y A z) = (x Ay) A
z. [

Definition 3.2. [11] Let L be a nonempty set endowed with hyperoperations
A and V. Then (L,A,V) is called a hyperlattice if for any a,b,c € L, the
following conditions are satisfied:

(i)a€ana,a€aVa;

(i) aNb=bAa,aVb=>bVa;

(iii) (aNb)ANc=aN(bAc), (avVb)Ve=aV (bVc);

(iv)a€an(aVb),acaV(aNb).

Corollary 3.11. If M is a finite hyper MV -algebra that satisfies the (SNP),
then M 1is a hyperlattice.

Proof. By Theorem 3.10 and Proposition 2.4, the proof is clear. O

Corollary 3.12. Any finite hyper MV -algebra of the orders 2 and 3, satisfies
the (SNP), and so is a hyperlattice.

Computer Check: All hyper MV -algebras of orders 4, 5 and 6, are hyper-
lattices.
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Example 3.2. (i) Let M = {0,a,b,1} and hyperoperation @& and unary
operation x on M are defined as follows;

@ 0 a b 1
0 {0y {0a} {b} (b1}
lz:a; {0,a} {0,a} {b,1} {b,1}
1

T
o T
O =

{b} {b1} {b1} {b,1}
{b1} {b1} {b1} {b1}

Then by routine calculations (M, &, *,0) is a hyper MV-algebra, which dose
not satisfies the (SNP.) But (M, Vv, A) is a hyperlattice.

(ii) Let M = [0, 1]. We define unary operetion ” x” and hyperoperation ” @& ”
on M by 2* =1—x and x ®y = [0, min{l,z + y}]. Then (M,®,*,0) is
a hyper MV-algebra. It is easy to see that z* # x for any = # % ie. M is
not satisfied (SNP). But by routine calculation we get « V y = [0, 1] and so
xV(yVz)=1[0,1 = (xVy)Vzforall x,y,z2 € M. By the similar way,
cA(yNz) = (xAy)Az, forall x,y,z € M. Hence (M, Vv, A) is a hyperlattice.

Note: In Corollary 3.11, the condition ”finite with (SNP)” is sufficient but
it is not necessary. Indeed, we have not found any finite or infinite hyper
MV -algebra, which is not a hyperlattice.

Open problem: Any hyper MV -algebra is a hyperlattice.
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