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Relationship Between Hyper MV -algebras
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Abstract. Sh. Ghorbani, et al. [9], generalized the concept
of MV -algebras and defined the notion of hyper MV -algebras.
Now, in this paper, we try to prove that any hyper MV -algebra
is a hyperlattice. First we prove that any hyper MV -algebra that
satisfies the semi negation property is a hyperlattice. Then with a
computer program, we show that any hyper MV -algebra of order
less than 6, is a hyperlattice. Finally, we claim that this result is
correct for any hyper MV -algebra.
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1 Introduction

The first studies regarding multiple-valued logics were conducted by J. Luka-
siewicz and E. Post when they introduced a three-valued logical system in
1920 [14]. The latter built a different n-valued logical system in 1921 [17].
Then Lukasiewicz and Tarski developed in 1930 [15] a logic for which the
truth values are the rationales in [0, 1]. In 1940, Gr.C. Moisil introduced the
three-valued Lukasiewicz algebras as algebraic models for the corresponding
logic of Lukasiewicz. In 1941, Moisil also defined n-valued Lukasiewicz alge-
bras. Then, in 1956, A. Rose showed that for a number of truth values greater
than 5 the Lukasiewicz algebras are no longer the algebras of Lukasiewicz
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logic. In fact, by defining the n-valued Lukasiewicz algebras, Moisil invented
a distinct logical system. In 1958, C.C. Chang defined MV -algebras as mod-
els for the infinitely valued Lukasiewicz-Tarski logic [5]. In 1977, R. Grigolia
introduced MVn-algebras to model the n-valued Lukasiewicz logic [10].

The study of hyperstructures, started in 1934 by Marty,s paper at the 8th
Congress of Scandinavian Mathematicians [16] where hypergroups were in-
troduced. Sh. Ghorbani et al. [9] applied the hyperstructure to MV -algebras
and introduce the concept of hyper MV -algebras which is a generalization
of MV -algebras and investigated some results. They also discussed quo-
tient structure and category of hyper MV -algebras ([8], [7]). Specially, they
clarified the relation between the class of hyper MV -algebras and hyper K-
algebras [2]. R. A. Borzooei et al. [1] proved that these relations are not true,
which unfortunately is used to prove some important results of several hyper
MV -algebras paper. L. Torkzadeh et al [18] discussed hyper MV -ideals and
define some hyperoperations on it. Then they get some results and give a
problem which want to prove or disprove the hyperoperations ∨ and ∧ are as-
sociative. As another hyper algebraic structures the notions of (weak) hyper
MV -deductive systems and (weak) implicative hyper MV -deductive systems
are introduced in [12]. Then the relation among them are discussed. Also,
as a continue, new types of hyper MV -deductive systems are introduced in
[?newded]. Now, in this paper, we try to find a relationship between hyper
MV -algebras and hyperlattices.

2 Preliminary

In this section we give some definitions and properties of MV -algebras and
hyper MV -algebras which we need in the next section.

Definition 2.1. [5] An MV -algebra is an algebra (A,⊕, ∗, 0) of type (2, 2, 0)
that satisfying the following axioms:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x,
(MV4) x∗∗ = x,
(MV5) x⊕ 0∗ = 0∗,
(MV6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Let A be an MV -algebra. We define the operations � and 	 on A by,
x � y =: (x∗ ⊕ y∗)∗ and x 	 y =: x � y∗, for any x, y ∈ A and we consider
1 =: 0∗ . Moreover, the relation x ≤ y on A is defined by x ≤ y if and
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only if x∗ ⊕ y = 1, for any x, y ∈ A. The relation ≤ is a partial order on
A which is called the natural order of A. This natural order determines a
lattice structure (A,∨,∧), where x∨y =: (x�y∗)⊕y and x∧y =: (x∗∨y∗)∗,
for any x, y ∈ A. As a first example of nontrivial MV -algebra, consider the
real unit interval [0, 1] with x⊕ y = min{x+ y, 1} and x∗ = 1− x. It is easy
to see that ([0, 1],⊕, ∗, 0) is an MV -algebra.

Proposition 2.1. [5] Let A be an MV -algebra and x, y ∈ A. Then the
following is hold:

(i) 1∗ = 0,

(ii) x⊕ y = (x∗ � y∗)∗,

(iii) x⊕ 1 = 1,

(iv) (x	 y)⊕ y = (y 	 x)⊕ x,

(v) x⊕ x∗ = 1,

(vi) x ≤ y if and only if y∗ ≤ x∗,

(vii) if x ≤ y, then for each z ∈ A, x⊕ z ≤ y ⊕ z and x� z ≤ y � z,

(viii) x� y ≤ z if and only if x ≤ y∗ ⊕ z,

(ix) x� (y ∨ z) = (x� y) ∨ (x� z),

(x) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Definition 2.2. [6] A hyperoperation on a nonempty set H is a map ◦ :
H×H → P ?(H) = P (H)−{∅}. In this case, (H, ◦) is called a hypergroupoid.
Let (H, ◦) be a hypergroupoid. Then an element a ∈ H is called scalar if
|a�x| = 1, for any x ∈ H. Moreover, if A and B are two non-empty subsets
of H, then we define A ◦ B, a ◦ B and A ◦ b as follows, for any a ∈ A and
b ∈ B:

A ◦B =
⋃

a∈A,b∈B

(a ◦ b), a ◦B = {a} ◦B, A ◦ b = A ◦ {b}.

Definition 2.3. [9] A hyper MV -algebra is a nonempty set M endowed with
a hyperoperation ”⊕”, a unary operation ”∗” and a constant ”0” satisfying
the following axioms, for all x, y, z ∈M , :

(HMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(HMV2) x⊕ y = y ⊕ x,
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(HMV3) (x∗)∗ = x,
(HMV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,
(HMV5) 0∗ ∈ x⊕ 0∗,
(HMV6) 0∗ ∈ x⊕ x?,
(HMV7) x� y, y � x ⇒ x = y

where x� y is defined by 0∗ ∈ x?⊕ y. For any A,B ⊆M , we define A� B
if and only if there exist a ∈ A and b ∈ B such that a� b. We define 0∗ := 1
and A∗ = {a∗ : a ∈ A}.

Proposition 2.2. [9] Let (M,⊕, ∗, 0) be a hyper MV -algebra. Then for all
x, y, z ∈ M and for all nonempty subsets A,B and C of M the following
hold:

(i) A⊕ (B ⊕ C) = (A⊕B)⊕ C,

(ii) 0� x, x� 1, x� x and A� A,

(iii) If x� y, then y∗ � x∗ and A� B implies B∗ � A∗,

(iv) (A∗)∗ = A,

(v) 0⊕ 0 = {0} and x ∈ x⊕ 0,

(vi) If y ∈ x⊕ 0, then y � x.

Theorem 2.3. [1] Let M be a finite hyper MV -algebra such that 0⊕x = {x},
for all x ∈M . Then M is an MV -algebra.

Proposition 2.4. [18] Let (M,⊕, ∗, 0) be a hyper MV -algebra. Define the
following hyperopoerations on M as follows:

x ∨ y = (x∗ ⊕ y)∗ ⊕ y, x ∧ y = (x∗ ∨ y∗)∗

Then for all x, y, z ∈M :

(i) x ∈ (x ∧ x) ∩ (x ∨ x),

(ii) x ∨ y = y ∨ x and x ∧ y = y ∧ x,

(iii) x ∈ (x ∧ (x ∨ y)) ∩ (x ∨ (x ∧ y)),

(iv) if x� y, then y ∈ x ∨ y and x ∈ x ∧ y,

(vi) x, y � x ∨ y and x ∧ y � x, y.
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3 Relationship between hyper MV -algebras and hy-
perlattices

In this section, we try to show that any finite hyper MV -algebra is a hyper-
lattice.

Definition 3.1. If x∗ = x, for any x ∈ M − {0, 1}, then we say that M
satisfied the Semi Negation Property (or (SNP), for short).

Example 3.1. Let M = {0, a, b, 1} and hyperoperation ⊕ and unary oper-
ation ∗ on M are defined as follows;

⊕ 0 a b 1
0 {0} {0,a} {0,b} A
a {0,a} A {0,a,b} A
b {0,b} {0,a,b} A A
1 A A A A

∗ 0 a b 1
1 a b 0

Then it is easy to see that (M,⊕, ∗, 0) is a hyper MV -algebra that satisfying
the (SNP).

Note: Throughout this section, we let M be a hyper MV -algebra and
satisfies the (SNP), unless otherwise stated.

Lemma 3.1. For all x, y ∈M − {0, 1}:

(i) x� y, implies x = y,

(ii) if 0⊕ x = {x}, then y /∈ 1⊕ x.

Proof. (i) If x � y, then by Proposition 2.2(iii), y∗ � x∗ and so y � x.
Hence, by (HMV7), x = y .
(ii) On the contrary, let y ∈ 1⊕ x, for y ∈M − {0, 1}. By (HMV4), we get

y ⊕ x = y∗ ⊕ x ⊆ (1⊕ x)∗ ⊕ x = (x⊕ 0)∗ ⊕ 0 = x∗ ⊕ 0 = x⊕ 0 = {x}.

Thus y ⊕ x = {x} = y∗ ⊕ x. Now, by (HMV4),

x⊕ x = x∗ ⊕ x = (y∗ ⊕ x)∗ ⊕ x = (x∗ ⊕ y)∗ ⊕ y

= (x⊕ y)∗ ⊕ y = x∗ ⊕ y = x⊕ y = {x}.

Hence, x⊕ x = {x}. Also, by (HMV6), 1 = 0∗ ∈ x∗ ⊕ x = x⊕ x which is a
contradiction. Therefore, y /∈ 1⊕ x.

Lemma 3.2. For any x, y ∈M and A ⊆M ,
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(i) if 1 ∈ x⊕ y, then x = y or x = 1 or y = 1;

(ii) if x 6∈ 0⊕ 1, then x ∈ 0⊕ A implies x ∈ A;

(iii) if {0, 1} ⊆ A or 0, 1 /∈ A, then A∗ = A.

Proof. (i) Let 1 = 0∗ ∈ x ⊕ y. If x, y ∈ M − {0, 1}, then x � y and so by
Lemma 3.1(i), x = y. If x 6= 0, 1 and y = 0, then 0∗ = 1 ∈ x ⊕ 0 = x∗ ⊕ 0
and implies that x� 0. Hence x = 0, which is a contradiction. Therefore, if
x 6= 0, 1, then y = 1 and similarly, y 6= 0, 1 implies that x = 1. If x, y ∈ {0, 1}
and x = y = 0, then 1 ∈ x⊕ y = 0⊕ 0 = {0}, which is a contradiction. So,
x = 1 or y = 1.
(ii) If x ∈ 0 ⊕ A, then there is a ∈ A such that x ∈ 0 ⊕ a. By Proposition
2.2(vi), x� a. By (i), a = 1, x = 1 or x = a. Since 1 ∈ 0⊕1, by Proposition
2.2(v), we get x 6= 1. Also, a = 1 means that x ∈ 0 ⊕ 1 which against the
assumption. Thus x = a ∈ A.
(iii) We know A∗ = {x∗ : x ∈ A}. If {0, 1} ⊆ A, then for any x ∈ A, x = 0
or x = 1 or x ∈M −{0, 1} and so x∗ = 1 or x∗ = 0 or x∗ = x. Hence, x∗ ∈ A
i.e. A∗ = A. Now, let 0, 1 /∈ A. Then A ⊆ M − {0, 1} and since M satisfies
the (SNP), we get A∗ = A.

Theorem 3.3. [1] Let M be a hyper MV -algebra and x be an element of M
such that 0⊕ x = {x} and x∗ = x. Then 0, x 6∈ 1⊕ x.

Lemma 3.4. Let x be an element of M−{0, 1} such that 0⊕x = {x}. Then
we get

(i) 1⊕ x = {1}, 0⊕ 1 = {1};

(ii) x⊕ x = {1};

(iii) 0⊕ y = {y}, for all y ∈M − {0, 1}.

Proof. (i) By Theorem 3.3, 0, x /∈ 1⊕ x and by Lemma 3.1(ii), y /∈ 1⊕ x, for
all y ∈ M − {0, 1}. Thus 1 ⊕ x = {1}. Also, we get 0 ⊕ 1 = 0 ⊕ (1 ⊕ x) =
1⊕ (0⊕ x) = 1⊕ x = {1}.
(ii) By part (i) and (HMV4), we get

x⊕ x = x∗ ⊕ x = (0⊕ x)∗ ⊕ x = (x∗ ⊕ 1)∗ ⊕ 1

= (x⊕ 1)∗ ⊕ 1 = 1∗ ⊕ 1 = 0⊕ 1 = {1}.

(iii) Let y ∈ M − {0, 1} and y 6= x. By Proposition 2.2(v), y ∈ 0⊕ y. Now,
by the contrary, let 0 ⊕ y 6= {y}. Then there exists z ∈ M such that z 6= y
and z ∈ 0⊕ y.
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If z 6= 0, 1, then by Proposition 2.2(vi), z � y and so by Lemma 3.1(i) we
get z = y, which is a contradiction.
If z = 1, then 1 ∈ 0 ⊕ y and so by Proposition 2.2(vi), 1 � y. Hence y = 1
which is a contradiction by y 6= 0, 1.
If z = 0, since x ∈ 0⊕x ⊆ (0⊕y)⊕x = (0⊕x)⊕y = x⊕y, we get x ∈ x⊕y.
So, by (HMV4),

1 ∈ x∗ ⊕ x ⊆ (x⊕ y)∗ ⊕ x = (y∗ ⊕ x)∗ ⊕ x = (x∗ ⊕ y)∗ ⊕ y = (x⊕ y)∗ ⊕ y.

Hence there is t ∈ x ⊕ y such that 1 ∈ t∗ ⊕ y. By Lemma 3.2(i), t∗ = 1 or
t∗ = y and so t = 0 or t = y. It means that 0 ∈ x ⊕ y or y ∈ x ⊕ y. If
0 ∈ x⊕ y, then by (HMV1) and (ii),

x ∈ 0⊕ x ⊆ (x⊕ y)⊕ x = (x⊕ x)⊕ y = 1⊕ y.

Hence, by (HMV4), we get x ∈ x⊕ y = x∗⊕ y ⊆ (1⊕ y)∗⊕ y = (y⊕ 0)∗⊕ 0.
Since x /∈ 0⊕ 1 = {1}, by Lemma 3.2(ii), we get x ∈ (y ⊕ 0)∗. So, x = x∗ ∈
((y ⊕ 0)∗)∗ = y ⊕ 0. Thus x � y and so by Lemma 3.1(i), x = y which is
a contradiction. Similarly, for the case y ∈ x ⊕ y, we get a contradiction.
Therefore, 0⊕ y = {y}, for all y 6= 0, 1.

Theorem 3.5. If M is finite and x be an element of M − {0, 1} such that
0⊕ x = {x}, then M is an MV -algebra.

Proof. Let M be finite and x ∈M − {0, 1} such that 0⊕ x = {x}. Then by
Lemma 3.4(iii), 0 ⊕ y = {y}, for all y ∈ M − {0, 1}. Moreover, by Lemma
3.4(i), 0⊕1 = {1} and by Proposition 2.2(v), 0⊕0 = {0}. Hence 0⊕y = {y}
for all y ∈M and so by Theorem 2.3, M is an MV -algebra.

Proposition 3.6. Let M be finite and proper. Then for all distinct elements
x, y, z ∈M − {0, 1},

(P1) 0⊕ x = {0, x},

(P2) if x ∈ 0⊕ 1, then 0 ∈ 0⊕ 1,

(P3) x, y ∈ x⊕ y,

(P4) x ∈ 1⊕ x or 0 ∈ 1⊕ x. Indeed, 1⊕ x 6= {1},

(P5) if y 6∈ 0⊕ 1, then y 6∈ 1⊕ x,

(P6) if x 6∈ 0⊕ 1, then x ∈ 1⊕ x,

(P7) 1⊕ x ⊆ (0⊕ 1) ∪ {0, x},
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(P8) 1⊕ 1 ⊆ 0⊕ 1,

(P9) if y ∈ x⊕ x, then y ∈ 0⊕ 1. Indeed, x⊕ x ⊆ (0⊕ 1) ∪ {0, x},

(P10) 0⊕ 1 \ {0, x} ⊆ x⊕ x,

(P11) 0⊕ 1 ⊆ (x⊕ x) ∪ (1⊕ x) and {0, x} ⊆ (x⊕ x) ∪ (1⊕ x),

(P12) (x⊕ x) ∪ (1⊕ x) = (0⊕ 1) ∪ {0, x},

(P13) z ∈ x⊕ y implies x ∈ y ⊕ z,

(P14) if z ∈ x⊕ y, then x, y, z ∈ 0⊕ 1 or x, y, z 6∈ 0⊕ 1,

(P15) (0⊕ 1) ∪ (x⊕ y) ∪ {0} ⊆ x ∨ y,

(P16) if x, y 6∈ 0⊕ 1, then x⊕ (x⊕ y) ∪ {0} = x⊕ y ∪ {0}.

Proof. (P1) : Let there exists x ∈ M − {0, 1} such that 0⊕ x = {x}, by the
contrary. Then by Theorem 3.5, M is an MV -algebra and so it is not proper
which is a contradiction. Hence 0 ⊕ x 6= {x}, for all x ∈ M − {0, 1}. Thus
there is y ∈ 0 ⊕ x and y 6= x. By Lemma 3.1 (i), we imply that y ∈ {0, 1}.
Thus y = 0 or y = 1. If y = 1, then 1 ∈ 0 ⊕ x and so 1 � x. Hence, by
Proposition 2.2 (vi), x = 1 which is a contradiction with x ∈ M − {0, 1}.
Thus, y = 0 ∈ 0 ⊕ x, for all x ∈ M − {0, 1}. Therefore, 0 ⊕ x = {0, x}, for
all x ∈M − {0, 1}.

(P2) : Let x ∈ 0⊕1. Then by (P1), 0 ∈ 0⊕x ⊆ 0⊕ (0⊕1) = (0⊕0)⊕1 =
0⊕ 1. Hence, 0 ∈ 0⊕ 1.

(P3) : Let x, y ∈ M − {0, 1} be two distinct elements. By (P1) and
(HMV1),

x ∈ 0⊕ x ⊆ (0⊕ y)⊕ x = 0⊕ (x⊕ y),

Then there exists t ∈ x⊕ y such that x ∈ 0⊕ t. Thus x� t and so 1 ∈ x⊕ t.
Now, by Lemma 3.2(i), we get x ∈ x⊕y or 1 ∈ x⊕y. But 1 ∈ x⊕y = x∗⊕y
implies x = y, which is a contradiction. Therefore, x ∈ x⊕ y. By the similar
way, y ∈ x⊕ y.

(P4) : Since 0 � 0, 1 ∈ 0∗ ⊕ 0. By (HMV4) and (P1), 1 ∈ 0∗ ⊕ 0 ⊆
(0⊕ x)∗ ⊕ 0 = (1⊕ x)∗ ⊕ x. By Lemma 3.2(i), 1 ∈ (1⊕ x)∗ or x ∈ (1⊕ x)∗.
Therefore, 0 ∈ 1⊕ x or x ∈ 1⊕ x. So 1⊕ x 6= {1}.

(P5) : Let y 6∈ 0⊕ 1. On the contrary, if y ∈ 1⊕x, then by (P1), (P3) and
(HMV4), y ∈ y ⊕ x = y∗ ⊕ x ⊆ (1⊕ x)∗ ⊕ x = (x⊕ 0)∗ ⊕ 0 = {0, x}∗ ⊕ 0 =
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(1⊕ 0) ∪ (x⊕ 0) = (0⊕ 1) ∪ {0, x}.Thus y ∈ 0⊕ 1, which is a contradiction.
Hence y 6∈ 1⊕ x.

(P6) : Let x 6∈ 0 ⊕ 1. If 0 ⊕ 1 6= {1}, then by (P2), 0 ∈ 0 ⊕ 1 and so by
(HMV1) and (P1),

{0, x} = 0⊕ x ⊆ (1⊕ 0)⊕ x = 1⊕ (0⊕ x) = 1⊕ {0, x} = (1⊕ 0) ∪ (1⊕ x).

Now, since x 6∈ 0 ⊕ 1, hence x ∈ 1 ⊕ x. If 0 ⊕ 1 = {1}, then by routine
calculations, we get 1⊕ x = {0, x, 1} 3 x.

(P7) : Let y ∈ 1⊕ x and y 6= {0, x}. Then y = 1 or y 6= 0, 1 and y 6= x. If
y = 1, then by Proposition 2.2(v), y = 1 ∈ 0⊕ 1. Now, let x, y ∈M − {0, 1}
be distinct and y 6∈ 0 ⊕ 1, by the contrary. Then by (P5), y 6∈ 1 ⊕ x, which
is a contradiction. Hence y ∈ 0 ⊕ 1 i.e. (1 ⊕ x) \ {0, x} ⊆ 0 ⊕ 1. So
1⊕ x ⊆ (0⊕ 1) ∪ {0, x}.

(P8) : Let x ∈ 1⊕1. Then by (P1) and (HMV1), x ∈ 0⊕x ⊆ 0⊕(1⊕1) =
(0 ⊕ 1) ⊕ 1. Thus there is t ∈ 0 ⊕ 1 such that x ∈ t ⊕ 1. By (P7),
x ∈ 1 ⊕ t ⊆ (0 ⊕ 1) ∪ {0, t}. Thus x ∈ 0 ⊕ 1 or x = t. We note that
x = t means x = t ∈ 0⊕ 1. Hence x ∈ 0⊕ 1 and so 1⊕ 1 ⊆ 0⊕ 1.

(P9) : Let y ∈ x⊕ x and y 6= x. Then by (HMV 4) and (P1),

y ∈ (x⊕x)∪ (1⊕x) = {x, 1}⊕x = {0, x}∗⊕x = (0⊕x)∗⊕x = (x⊕ 1)∗⊕ 1.

Hence there is t ∈ 1⊕ x such that y ∈ 1⊕ t∗. We note that t = 1 or t = 0 or
t ∈M − {0, 1}.

If t = 1, then y ∈ 1⊕ 1∗ = 1⊕ 0. If t = 0, then y ∈ 1⊕ 1 and so by (P8),
y ∈ 1⊕ 1 ⊆ 0⊕ 1.

If t ∈M−{0, 1}, then by (P7), y ∈ 1⊕t ⊆ (0⊕1)∪{0, t}. Thus y ∈ 0⊕1 or
y = t. If y = t, then y = t ∈ 1⊕x. Again by (P7), y ∈ 1⊕x ⊆ (0⊕1)∪{0, x}.
Since x and y are distinct and y 6= 0, we get y ∈ 0⊕1 in all cases. Therefore,
x⊕ x \ {0, x, 1} ⊆ 0⊕ 1 and so, by 1 ∈ 0⊕ 1, x⊕ x ⊆ (0⊕ 1) ∪ {0, x}.

(P10) : Since x� x, we get 1 ∈ x⊕ x. By (HMV1), we get

0⊕ 1 ⊆ 0⊕ (x⊕ x) = (0⊕ x)⊕ x = {0, x} ∪ (x⊕ x).

Hence 0⊕ 1 \ {0, x} ⊆ x⊕ x.

(P11) : Since 0� x, we conclude that 0∗ ∈ 1⊕ x. By (HMV4),

0⊕ 1 ⊆ (x⊕ 1)∗⊕ 1 = (0⊕x)∗⊕x = {0, x}∗⊕x = (x⊕x)∪ (1⊕x) (1).
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Also, if x ∈ 0 ⊕ 1, then by (P2) we get 0 ∈ 0 ⊕ 1. Thus {0, x} ⊆ 0 ⊕ 1 ⊆
(x ⊕ x) ∪ (1 ⊕ x). If x 6∈ 0 ⊕ 1, then by (P6), x ∈ 1 ⊕ x. Hence, by (P1),
(HMV1) and (1), {0, x} = 0⊕ x ⊆ 0⊕ (1⊕ x) = (0⊕ x)⊕ 1 = {0, x} ⊕ 1 =
(0⊕ 1) ∪ (x⊕ 1) ⊆ (x⊕ x) ∪ (x⊕ 1).

(P12) : By (P7), (P9) and (P11), the proof is clear.

(P13) : Let z ∈ x⊕y. Then 1 ∈ z⊕z∗ = z⊕z ⊆ (x⊕y)⊕z = x⊕ (y⊕z).
By Lemma 3.2(i), 1 ∈ y⊕ z or x ∈ y⊕ z. If 1 ∈ y⊕ z, then by Lemma 3.2(i),
y = z, that is a contradiction. Therefore, x ∈ y ⊕ z.

(P14) : Let z ∈ x⊕ y, z ∈ 0⊕ 1 and x 6∈ 0⊕ 1, by the contrary. By (P13),
z ∈ x⊕y, implies x ∈ y⊕z. Since z ∈ 0⊕1, we get x ∈ z⊕y ⊆ (0⊕1)⊕y =
0 ⊕ (1 ⊕ y). Since x /∈ 0 ⊕ 1, by Lemma 3.2(ii), x ∈ 1 ⊕ y. Also, by (P5),
x 6∈ 1 ⊕ y which is a contradiction. So, x ∈ 0 ⊕ 1. Similarly, y ∈ 0 ⊕ 1.
Therefore, x, y, z ∈ 0⊕ 1.

Now, let z 6∈ 0 ⊕ 1 and x ∈ 0 ⊕ 1, by the contrary. Then z ∈ x ⊕ y ⊆
(0 ⊕ 1) ⊕ y = 0 ⊕ (1 ⊕ y) and so by Lemma 3.2(ii), z ∈ 1 ⊕ y. Also, by
(P5), z 6∈ 1⊕ y, which is a contradiction. So x /∈ 0⊕ 1. Similarly, y /∈ 0⊕ 1.
Therefore, x, y, z /∈ 0⊕ 1.

(P15) : By (P3), x, y ∈ x ⊕ y and so x ⊕ y = x∗ ⊕ y ⊆ (x ⊕ y)∗ ⊕ y =
(x∗ ⊕ y)∗ ⊕ y = x ∨ y. Also by (P14)

(0⊕ 1) \ {0, y} ⊆ y ⊕ y = y∗ ⊕ y ⊆ (x⊕ y)∗ ⊕ y = (x∗ ⊕ y)∗ ⊕ y = x ∨ y.

Since y ∈ x⊕ y ⊆ x ∨ y, it is enough to show that 0 ∈ x ∨ y:
By (P12), (x⊕ x) ∪ (1⊕ x) = (0⊕ 1) ∪ {0, x}. Thus 0 ∈ x⊕ x or 0 ∈ 1⊕ x.
If 0 ∈ x⊕ x, then 0 ∈ x⊕ x = x∗⊕ x ⊆ (y⊕ x)∗⊕ x = (y∗⊕ x)∗⊕ x = x∨ y.
So 0 ∈ x ∨ y and the proof is complete.
If 0 ∈ 1⊕x, then by 1 ∈ y⊕y, 0 ∈ x⊕1 ⊆ x⊕(y⊕y) = (x⊕y)⊕y. It means
that there is t ∈ x ⊕ y such that 0 ∈ t ⊕ y. We note that by Lemma 3.1(i),
1 6∈ x ⊕ y and so t 6= 1. If t = 0, then 0 ∈ x ⊕ y ⊆ x ∨ y and the proof is
complete. Otherwise, t ∈M −{0, 1} and 0 ∈ t⊕ y = t∗⊕ y ⊆ (x⊕ y)∗⊕ y =
x ∨ y. So, 0 ∈ x ∨ y in all cases. Now, we get

(x⊕ y) ∪ (0⊕ 1) ∪ {0} ⊆ x ∨ y.

(P16) : Let x, y 6∈ 0 ⊕ 1. Since by (P3), y ∈ x ⊕ y, we conclude that
x ⊕ y ⊆ x ⊕ (x ⊕ y). Now, let t ∈ x ⊕ (x ⊕ y) be arbitrary. Then there is
u ∈ x⊕ y such that t ∈ x⊕ u. Since x, y 6∈ 0⊕ 1 by (P14), we get u 6∈ 0⊕ 1.



Vol. LIV (2016) Relationship Between Hyper MV -algebras and Hyperlattices85

Again since x, u 6∈ 0⊕ 1, we conclude that t 6∈ 0⊕ 1. Also, we have

x⊕ (x⊕ y) = (x⊕ x)⊕ y ⊆ ((0⊕ 1) ∪ {0, x})⊕ y by (P9)

= ((0⊕ 1)⊕ y) ∪ {0, y} ∪ (x⊕ y) by (P1)

= (0⊕ (1⊕ y)) ∪ {0, y} ∪ (x⊕ y) by (HMV 1)

⊆ (0⊕ ((0⊕ 1) ∪ {0, y})) ∪ {0, y} ∪ (x⊕ y) by (P7)

= (0⊕ 0⊕ 1) ∪ (0⊕ 0) ∪ (0⊕ y) ∪ {0, y} ∪ (x⊕ y)

= (0⊕ 1) ∪ {0, y} ∪ (x⊕ y) by Proposition 2.2(v)

= (0⊕ 1) ∪ {0} ∪ (x⊕ y) by (P3)

Since t 6∈ 0⊕ 1, we get t ∈ (x⊕ y) ∪ {0} and so x⊕ (x⊕ y) ⊆ (x⊕ y) ∪ {0}.
Therefore, x⊕ (x⊕ y) ∪ {0} = (x⊕ y) ∪ {0}.

Lemma 3.7. For all distinct elements x, y ∈M − {0, 1},

(i) x ∨ y = (x⊕ y) ∪ (0⊕ 1) ∪ {0},

(ii) 0 ∨ x = 1 ∨ x = (0⊕ 1) ∪ {0, x},

(iii) 1 ∨ 1 = 0⊕ 1 and 0 ∨ 0 =

{
{0} if 0⊕ 1 = {1},

0⊕ 1 if 0⊕ 1 6= {1},

(iv) x ∨ x =

{
(0⊕ 1 \ {1}) ∪ {0, x} if 0, x 6∈ x⊕ x,

(0⊕ 1) ∪ {0, x} otherwise,

(v) 0 ∨ 1 = 0⊕ 1.

Proof. (i) By (P15), (0 ⊕ 1) ∪ (x ⊕ y) ∪ {0} ⊆ x ∨ y. We note that by
Lemma 3.1(i), 1 6∈ x ⊕ y and so 0 ∈ x ⊕ y or x ⊕ y ⊆ M − {0, 1}. Thus
(x⊕ y)∗ ⊆ (x⊕ y \ {0}) ∪ {1}. Now, we get

x ∨ y

= (x⊕ y)∗ ⊕ y ⊆ ((x⊕ y \ {0}) ∪ {1})⊕ y

⊆ ((x⊕ y)⊕ y) ∪ (1⊕ y) = (x⊕ (y ⊕ y)) ∪ (1⊕ y) , by (HMV1)

⊆ x⊕ ((0⊕ 1) ∪ {0, y}) ∪ (1⊕ y) , by (P9)

= (x⊕ (0⊕ 1)) ∪ (x⊕ 0) ∪ (x⊕ y) ∪ (1⊕ y)

⊆ ((x⊕ 0)⊕ 1) ∪ {0, x} ∪ (x⊕ y) ∪ (0⊕ 1) ∪ {0, y}, by (P1) and (P7)

= (0⊕ 1) ∪ (x⊕ 1) ∪ {0, x} ∪ (x⊕ y) ∪ {0, y}
⊆ (0⊕ 1) ∪ {0, x, y} ∪ (x⊕ y) by (P7)

= (0⊕ 1) ∪ {0} ∪ (x⊕ y) by (P3).
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Therefore, x ∨ y = (0⊕ 1) ∪ (x⊕ y) ∪ {0}.

(ii) By (P1), 0 ∨ x = (x⊕ 0)∗ ⊕ 0 = {0, x}∗ ⊕ 0 = {1, x} ⊕ 0 = (1⊕ 0) ∪
(x⊕ 0) = (0⊕ 1)∪{0, x}. Also, by (P12), 1∨x = (0⊕x)∗⊕x = {1, x}⊕x =
(1⊕ x) ∪ (x⊕ x) = (0⊕ 1) ∪ {0, x} = 0 ∨ x.

(iii) If 0⊕ 1 = {1}, then 0 ∨ 0 = (1⊕ 0)∗ ⊕ 0 = 1∗ ⊕ 0 = 0⊕ 0 = {0} and
1 ∨ 1 = (0⊕ 1)∗ ⊕ 1 = 0⊕ 1. If 0⊕ 1 6= {1}, then by (P2), 0 ∈ 0⊕ 1 and so
by Lemma 3.2(iii), (0⊕ 1)∗ = 0⊕ 1. Thus

0 ∨ 0 = (1⊕ 0)∗ ⊕ 0 = (1⊕ 0)⊕ 0 = (0⊕ 0)⊕ 1 = 0⊕ 1.

Also, by (P8), we get

1∨1 = (0⊕1)∗⊕1 = (0⊕1)⊕1 = 0⊕(1⊕1) ⊆ 0⊕(0⊕1) = (0⊕0)⊕1 = 0⊕1.

Since 0∗ = 1 ∈ 0⊕1, we have 0 ∈ (0⊕1)∗ and so 0⊕1 ⊆ (0⊕1)∗⊕1 = 1∨1.
Therefore, in the two cases, 1 ∨ 1 = 0⊕ 1.

(iv) At the first, we prove that 1 ∈ x ∨ x if and only if 0 ∈ x ⊕ x or
x ∈ x ⊕ x. If 1 ∈ x ∨ x = (x ⊕ x)∗ ⊕ x, then there is z ∈ x ⊕ x, such that
1 ∈ z∗ ⊕ x. By Lemma 3.2(i), z∗ = 1 or z∗ = x. Thus z = 0 ∈ x ⊕ x or
z = x ∈ x⊕ x. Conversely, if 0 ∈ x⊕ x or x ∈ x⊕ x, then since x� 1 and
x� x, we conclude that 1 ∈ x⊕ 1 and 1 ∈ x⊕ x. So

1 ∈ x⊕ 1 = x⊕ 0∗ ⊆ x⊕ (x⊕ x)∗ = x ∨ x,

1 ∈ x⊕ x = x∗ ⊕ x ⊆ (x⊕ x)∗ ⊕ x = x ∨ x.

Thus 1 ∈ x ∨ x, for two cases.
Now, let t ∈ x∨x = (x⊕x)∗⊕x. Then there is u ∈ x⊕x such that t ∈ u∗⊕x.
If u = 0, then by (P7), t ∈ 1 ⊕ x ⊆ (0 ⊕ 1) ∪ {0, x}. If u = 1, then by (P1),
t ∈ 0⊕ x = {0, x} ⊆ (0⊕ 1) ∪ {0, x}. If u ∈M − {0, 1}, then we get

t ∈ u⊕ x ⊆ (x⊕ x)⊕ x ⊆ ((0⊕ 1) ∪ {0, x})⊕ x by (P9)

= ((0⊕ 1)⊕ x) ∪ (0⊕ x) ∪ (x⊕ x)

= ((0⊕ x)⊕ 1) ∪ {0, x} ∪ (x⊕ x) by (HMV1) and (P1)

⊆ (0⊕ 1) ∪ (x⊕ 1) ∪ {0, x} by (P9)

⊆ (0⊕ 1) ∪ {0, x} by (P7).

Hence t ∈ (0 ⊕ 1) ∪ {0, x} in all cases. Therefore, x ∨ x ⊆ (0 ⊕ 1) ∪ {0, x}.
Conversely, let t ∈ (0 ⊕ 1) \ {0, x, 1}. Then by (P10), t ∈ x ⊕ x. By (P3),
t ∈ t⊕ x = t∗ ⊕ x ⊆ (x⊕ x)∗ ⊕ x = x ∨ x. Thus (0⊕ 1) \ {0, x, 1} ⊆ x ∨ x.
On the other hand, {0, x} = 0⊕ x = 1∗ ⊕ x ⊆ (x⊕ x)∗ ⊕ x = x ∨ x. Hence,
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(0⊕ 1 \ {1}) ∪ {0, x} ⊆ x ∨ x.

(v) 0 ∨ 1 = (1∗ ⊕ 0)∗ ⊕ 0 = (0⊕ 0)∗ ⊕ 0 = 0∗ ⊕ 0 = 1⊕ 0.

Lemma 3.8. For all distinct element x, y, z ∈M − {0, 1},

(i) if x, y ∈ 0⊕1, then 0∨x = 1∨x = x∨y = 0⊕1 and x∨x = 0⊕1\{1}
or 0⊕ 1,

(ii) if x ∈ 0 ⊕ 1 and y 6∈ 0 ⊕ 1, then x ∨ y = (0 ⊕ 1) ∪ {y} and y ∨ y =
(0⊕ 1) ∪ {0, y},

(iii) (x⊕ y) ∨ z = x ∨ (y ⊕ z) = (0⊕ 1) ∪ {0} ∪ ((x⊕ y)⊕ z).

Proof. (i) Let x, y ∈ 0 ⊕ 1. Since, by (P2), 0 ∈ 0 ⊕ 1, by Lemma 3.7,
0 ∨ x = 1 ∨ x = 0⊕ 1 and x ∨ x = 0⊕ 1 \ {1} or 0⊕ 1. Moreover, since, by
(P14), x⊕ y ⊆ 0⊕ 1, by Lemma 3.7, x ∨ y = (x⊕ y) ∪ (0⊕ 1) ∪ {0} = 0⊕ 1.

(ii) Let x ∈ 0⊕1 and y 6∈ 0⊕1. Then by (P2), 0 ∈ 0⊕1. Also, by Lemma
3.2(i) and assumption we get 1 /∈ x ⊕ y. By (P14), we imply that z /∈ x ⊕ y
for all distinct elements x, y, z ∈M − {0, 1}. Hence, by (P3), x⊕ y = {x, y}
or x⊕ y = {0, x, y}. So, by Lemma 3.7(i), x ∨ y = (x⊕ y) ∪ (0⊕ 1) ∪ {0} =
(0⊕ 1) ∪ {y}.

(iii) By Lemma 3.7(i) and (HMV1) we get

(x⊕ y) ∨ z =
⋃

t∈x⊕y

t ∨ z =
⋃

t∈x⊕y

(0⊕ 1) ∪ {0} ∪ (t⊕ z)

= (0⊕ 1) ∪ {0} ∪ ((x⊕ y)⊕ z)

= (0⊕ 1) ∪ {0} ∪ (x⊕ (y ⊕ z))

=
⋃

u∈y⊕z

(0⊕ 1) ∪ {0} ∪ (x⊕ u)

=
⋃

u∈y⊕z

x ∨ u = x ∨ (y ⊕ z).

We note that, since by (P3), x, y ∈ x⊕ y and by Lemma 3.7, z ∨ z ⊆ 0∨ z =
1 ∨ z ⊆ x ∨ z, we can suppose that z 6= t ∈ M − {0, 1}, without loss of
generality (similarly, x 6= u ∈M − {0, 1}).

Lemma 3.9. For all distinct elements x, y, z ∈M − {0, 1} we have

(i) 0 ∨ (0⊕ 1) = 0⊕ 1 = 1 ∨ (0⊕ 1);
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(ii) (0⊕ 1) ∨ x = 0 ∨ x = 1 ∨ x =

{
(0⊕ 1), if x ∈ 0⊕ 1,

(0⊕ 1) ∪ {0, x}, otherwise.

(iii) x ∨ (x ∨ z) = (0⊕ 1) ∪ {0} ∪ (x⊕ (x⊕ z));

(iv) 0 ∨ (y ⊕ z) = (0⊕ 1) ∪ {0} ∪ (y ⊕ z).

Proof. (i) If 0⊕ 1 = {1}, then by Lemma 3.7(v), 0∨ (0⊕ 1) = 0∨ 1 = 0⊕ 1.
If 0 ⊕ 1 = {0, 1}, then by Lemma 3.7(iii), 0 ∨ (0 ⊕ 1) = (0 ∨ 0) ∪ (0 ∨ 1) =
(0⊕ 1) ∪ (0⊕ 1) = 0⊕ 1. Otherwise, there exists x ∈ M − {0, 1} such that
x ∈ 0⊕ 1 and so by (P2), 0 ∈ 0⊕ 1. Thus

0 ∨ (0⊕ 1) =
⋃

t∈0⊕1

(0 ∨ t) = (0 ∨ 0) ∪ (0 ∨ 1) ∪
⋃

t́∈(0⊕1)−{0,1}

(0 ∨ t́)

= (0⊕ 1) ∪ (0⊕ 1) ∪ (0⊕ 1) ∪ {0, t́}, by Lemma 3.7(ii),(iii)

= 0⊕ 1 Since 0, t́ ∈ 0⊕ 1.

Therefore, 0 ∨ (0 ⊕ 1) = 0 ⊕ 1, for all cases. Similarly, we can prove
1 ∨ (0⊕ 1) = 0⊕ 1.

(ii) If 0 ⊕ 1 = {1} or 0 ⊕ 1 = {0, 1}, then by the similar way of (i) and
using Lemma 3.7(ii), we get (0 ⊕ 1) ∨ x = (0 ⊕ 1) ∪ {0, x}. Let there exists
s ∈M−{0, 1} such that s ∈ 0⊕1. Then by (P2), 0 ∈ 0⊕1. Now, if x /∈ 0⊕1,
then we get

(0⊕ 1) ∨ x =
⋃

t∈0⊕1

(t ∨ x) = (0 ∨ x) ∪ (1 ∨ x) ∪
⋃

x 6=t′∈(0⊕1)−{0,1}

(t′ ∨ x)

= (0⊕ 1) ∪ {0, x} ∪ (0⊕ 1) ∪ {x}, by Lemmas 3.7(ii), 3.8(ii)

= (0⊕ 1) ∪ {0, x} = 0 ∨ x = 1 ∨ x.

For the case x ∈ 0 ⊕ 1, the proof is similar. Therefore, (0 ⊕ 1) ∨ x =
(0⊕ 1) ∪ {0, x}, for all cases.
The proof of (iii) and (iv) is routine.

Theorem 3.10. Let M be finite. Then for all x, y, z ∈M ,

(x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z).

Proof. Case 1: Let x, y, z ∈ M such that x = z. Then by commutativity of
” ∨ ”, we get

x ∨ (y ∨ x) = (y ∨ x) ∨ x = (x ∨ y) ∨ x.
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Case 2: Let x, y, z ∈ M − {0, 1} be distinct elements and x /∈ 0 ⊕ 1 (for
x ∈ 0⊕ 1 the proof is similar). Then

x ∨ (y ∨ z) = x ∨ ((0⊕ 1) ∪ {0} ∪ (y ⊕ z)

= (x ∨ (0⊕ 1)) ∪ (x ∨ 0)︸ ︷︷ ︸∪(x ∨ (y ⊕ z)), by Lemma 3.7(i)

= (0⊕ 1) ∪ {0, x} ∪ (x ∨ (y ⊕ z)), by Lemmas3.9(ii), 3.7(ii)

= (0⊕ 1) ∪ {0} ∪ (x⊕ y ⊕ z), by Lemma 3.8(iii) and (P3).

By the similar way, we get (x∨y)∨z = (0⊕1)∪{0}∪((x⊕y)⊕z). Therefore,
x ∨ (y ∨ z) = (x ∨ y) ∨ z.

Case 3: Let x, y, z ∈M − {0, 1} such that x = y. Then
(i) if x, z ∈ 0 ⊕ 1, then by Lemma 3.8(i) and Lemma 3.9(ii), x ∨ (x ∨ z) =
x ∨ (0 ⊕ 1) = 0 ⊕ 1. Also, it is routine to see that (x ∨ x) ∨ z = 0 ⊕ 1.
Therefore, x ∨ (x ∨ z) = 0⊕ 1 = (x ∨ x) ∨ z.

(ii) If x ∈ 0⊕ 1 and z /∈ 0⊕ 1, then by Lemma 3.8(ii) and Lemma 3.9(ii),
x∨(x∨z) = x∨((0⊕1)∪{z}) = (x∨(0⊕1))∪(x∨z) = (0⊕1)∪(0⊕1)∪{z} =
(0⊕ 1) ∪ {z}. Since by Lemma 3.8(i), x ∨ x = (0⊕ 1) \ {1} or 0⊕ 1, we get
(x∨x)∨z = (0⊕1)∪{z} = x∨(x∨z) in both cases. Thus x∨(x∨z) = (x∨x)∨z.

(iii) If x, z 6∈ 0⊕ 1, then

x ∨ (x ∨ z)

= x ∨ ((0⊕ 1) ∪ {0} ∪ (x⊕ z))

= (x ∨ (0⊕ 1)) ∪ (x ∨ 0)︸ ︷︷ ︸∪(x ∨ (x⊕ z)), by Lemma 3.7(i)

= (0⊕ 1) ∪ {0, x} ∪ (x ∨ (x⊕ z)), by Lemma 3.9(ii), 3.7(ii)

= (0⊕ 1) ∪ {0, x} ∪ (0⊕ 1) ∪ {0} ∪ (x⊕ (x⊕ z), by Lemma 3.9(iii)

= (0⊕ 1) ∪ {0} ∪ (x⊕ (x⊕ z)

= (0⊕ 1) ∪ (x⊕ z) ∪ {0}, by (P3) and (P16).

Also, we have,

(x ∨ x) ∨ z

= ((0⊕ 1) ∪ {0, x}) ∨ z

= ((0⊕ 1) ∨ z) ∪ (0 ∨ z)︸ ︷︷ ︸∪(x ∨ z), by Lemma 3.8(ii)

= (0⊕ 1) ∪ {0, z} ∪ (0⊕ 1) ∪ {0} ∪ (x⊕ z), by Lemmas 3.9(ii), 3.7(ii)

= (0⊕ 1) ∪ {0} ∪ (x⊕ z), by P3.
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Thus x ∨ (x ∨ z) = (x ∨ x) ∨ z. For the case x, y, z ∈ M − {0, 1} such that
y = z, the proof is similar.

Case 4: Let x ∈ {0, 1} and y, z ∈ M − {0, 1} be distinct elements. We
suppose x = 0 (for x = 1 the proof is similar)

0 ∨ (y ∨ z) = 0 ∨ ((0⊕ 1) ∪ {0} ∪ (y ⊕ z)),Lemma 3.7(i)

= (0 ∨ (0⊕ 1)) ∪ (0 ∨ 0) ∪ (0 ∨ (y ⊕ z))

= (0⊕ 1) ∪ {0} ∪ (0 ∨ (y ⊕ z)), by Lemma 3.9(i)

= (0⊕ 1) ∪ {0} ∪ (y ⊕ z), by Lemma 3.9(iv).

On the other hand,
(i) If z /∈ 0⊕ 1, then

(0 ∨ y) ∨ z

= ((0⊕ 1) ∪ {0, y}) ∨ z

= ((0⊕ 1) ∨ z) ∪ (0 ∨ z)︸ ︷︷ ︸∪(y ∨ z), by Lemma 3.7(ii)

= (0⊕ 1) ∪ {0, z} ∪ (0⊕ 1) ∪ {0} ∪ (y ⊕ z), by Lemmas 3.9(ii), 3.7(ii),(i)

= (0⊕ 1) ∪ {0} ∪ (y ⊕ z), by Lemma 3.7(i), (ii) and (P3).

(ii) If z ∈ 0⊕ 1, then by Lemma 3.9(ii) and Lemma 3.8(i), this is routine to
see that (0∨y)∨z = (0⊕1)∪{0}∪(y⊕z). Hence, (0∨y)∨z = 0∨(y∨z) for any
cases. If y ∈ {0, 1} and x, z ∈M −{0, 1} or z ∈ {0, 1} and x, y ∈M −{0, 1},
then we can prove by the similar way.

Case 5: Let x ∈ {0, 1} and y, z ∈ M − {0, 1} such that y = z. Suppose
that x = 0 (for x = 1 the proof is similar).
(i) If y /∈ 0⊕ 1, then

(0 ∨ y) ∨ y = ((0⊕ 1) ∪ {0, y}) ∨ y

= ((0⊕ 1) ∨ y) ∪ (0 ∨ y)︸ ︷︷ ︸∪(y ∨ y), by Lemma 3.7(ii)

= (0⊕ 1) ∪ {0, y} ∪ (y ∨ y) by Lemmas 3.9(ii), 3.7(ii)

= (0⊕ 1) ∪ {0, y}, by Lemma 3.8(ii).

Moreover, by Lemma 3.9(i) and Lemma 3.8(ii),

0 ∨ (y ∨ y) = 0 ∨ ((0⊕ 1) ∪ {0, y} = (0 ∨ (0⊕ 1)) ∪ (0 ∨ 0) ∪ (0 ∨ y)

= (0⊕ 1) ∪ {0, y} = (0 ∨ y) ∨ y.

(ii) If y ∈ 0⊕ 1, then it is routine to see that 0∨ (y∨ y) = 0⊕ 1 = (0∨ y)∨ y.
Similarly, x = y ∈ M − {0, 1}, z ∈ {0, 1} or x = z ∈ M − {0, 1}, y ∈ {0, 1}
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can be proved.

Case 6: Let x, y ∈ {0, 1} and z ∈ M − {0, 1}. Suppose x = y = 0 (for
x = 1 or y = 1 the proof is similar).

0 ∨ (0 ∨ z) = 0 ∨ ((0⊕ 1) ∪ {0, z})
= (0 ∨ (0⊕ 1)) ∪ (0 ∨ 0) ∪ (0 ∨ z), by Lemma 3.7(ii)

= (0⊕ 1) ∪ {0} ∪ (0⊕ 1) ∪ {0, z}
= (0⊕ 1) ∪ {0, z}, by Lemma 3.9(i)

= 0 ∨ x = (0 ∨ 0) ∨ z.

Similarly, x, z ∈ {0, 1}, y ∈ M − {0, 1} or y, z ∈ {0, 1}, x ∈ M − {0, 1} can
be proved.

Case 7: Let x, y, z ∈ {0, 1}. Suppose x = y = 0, z = 1 and 0 ⊕ 1 = {1}.
Then by Lemas 3.7(v) and 3.9(i), we get 0 ∨ (0 ∨ 1) = 0 ∨ (0⊕ 1) = 0⊕ 1 =
0 ∨ 1 = (0 ∨ 0) ∨ 1. For other cases the proof is similar.

Finally, by definition of ∧, it can easily prove that x∧ (y ∧ z) = (x∧ y)∧
z.

Definition 3.2. [11] Let L be a nonempty set endowed with hyperoperations
∧ and ∨. Then (L,∧,∨) is called a hyperlattice if for any a, b, c ∈ L, the
following conditions are satisfied:

(i) a ∈ a ∧ a, a ∈ a ∨ a;
(ii) a ∧ b = b ∧ a, a ∨ b = b ∨ a;
(iii) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c);
(iv) a ∈ a ∧ (a ∨ b), a ∈ a ∨ (a ∧ b).

Corollary 3.11. If M is a finite hyper MV -algebra that satisfies the (SNP),
then M is a hyperlattice.

Proof. By Theorem 3.10 and Proposition 2.4, the proof is clear.

Corollary 3.12. Any finite hyper MV -algebra of the orders 2 and 3, satisfies
the (SNP), and so is a hyperlattice.

Computer Check: All hyper MV -algebras of orders 4, 5 and 6, are hyper-
lattices.
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Example 3.2. (i) Let M = {0, a, b, 1} and hyperoperation ⊕ and unary
operation ∗ on M are defined as follows;

⊕ 0 a b 1
0 {0} {0,a} {b} {b,1}
a {0,a} {0,a} {b,1} {b,1}
b {b} {b,1} {b,1} {b,1}
1 {b,1} {b,1} {b,1} {b,1}

∗ 0 a b 1
1 b a 0

Then by routine calculations (M,⊕, ∗, 0) is a hyper MV -algebra, which dose
not satisfies the (SNP.) But (M,∨,∧) is a hyperlattice.
(ii) Let M = [0, 1]. We define unary operetion ”∗” and hyperoperation ”⊕”
on M by x∗ = 1 − x and x ⊕ y = [0, min{1, x + y}]. Then (M,⊕, ∗, 0) is
a hyper MV -algebra. It is easy to see that x∗ 6= x for any x 6= 1

2
i.e. M is

not satisfied (SNP). But by routine calculation we get x ∨ y = [0, 1] and so
x ∨ (y ∨ z) = [0, 1] = (x ∨ y) ∨ z for all x, y, z ∈ M . By the similar way,
x∧ (y∧z) = (x∧y)∧z, for all x, y, z ∈M . Hence (M,∨,∧) is a hyperlattice.

Note: In Corollary 3.11, the condition ”finite with (SNP)” is sufficient but
it is not necessary. Indeed, we have not found any finite or infinite hyper
MV -algebra, which is not a hyperlattice.

Open problem: Any hyper MV -algebra is a hyperlattice.
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