DOI: 10.1515/awutm -2016-0016

DE DE GRUYTER
OPEN

Analele Universității de Vest, Timișoara Seria Matematică – Informatică LIV, 2, (2016), 75–94

Relationship Between Hyper MV-algebras and Hyperlattices

R. A. Borzooei, Akefe Radfar, and Sogol Niazian

Abstract. Sh. Ghorbani, et al. [9], generalized the concept of MV-algebras and defined the notion of hyper MV-algebras. Now, in this paper, we try to prove that any hyper MV-algebra is a hyperlattice. First we prove that any hyper MV-algebra that satisfies the semi negation property is a hyperlattice. Then with a computer program, we show that any hyper MV-algebra of order less than 6, is a hyperlattice. Finally, we claim that this result is correct for any hyper MV-algebra.

AMS Subject Classification (2000). 03G10; 06B99; 06B75 **Keywords.** MV-algebra, hyper MV-algebra, hyperlattice.

1 Introduction

The first studies regarding multiple-valued logics were conducted by J. Luka-siewicz and E. Post when they introduced a three-valued logical system in 1920 [14]. The latter built a different n-valued logical system in 1921 [17]. Then Lukasiewicz and Tarski developed in 1930 [15] a logic for which the truth values are the rationales in [0, 1]. In 1940, Gr.C. Moisil introduced the three-valued Lukasiewicz algebras as algebraic models for the corresponding logic of Lukasiewicz. In 1941, Moisil also defined n-valued Lukasiewicz algebras. Then, in 1956, A. Rose showed that for a number of truth values greater than 5 the Lukasiewicz algebras are no longer the algebras of Lukasiewicz

logic. In fact, by defining the n-valued Lukasiewicz algebras, Moisil invented a distinct logical system. In 1958, C.C. Chang defined MV-algebras as models for the infinitely valued Lukasiewicz-Tarski logic [5]. In 1977, R. Grigolia introduced MV_n -algebras to model the n-valued Lukasiewicz logic [10].

The study of hyperstructures, started in 1934 by Marty's paper at the 8th Congress of Scandinavian Mathematicians [16] where hypergroups were introduced. Sh. Ghorbani et al. [9] applied the hyperstructure to MV-algebras and introduce the concept of hyper MV-algebras which is a generalization of MV-algebras and investigated some results. They also discussed quotient structure and category of hyper MV-algebras ([8], [7]). Specially, they clarified the relation between the class of hyper MV-algebras and hyper Kalgebras [2]. R. A. Borzooei et al. [1] proved that these relations are not true, which unfortunately is used to prove some important results of several hyper MV-algebras paper. L. Torkzadeh et al [18] discussed hyper MV-ideals and define some hyperoperations on it. Then they get some results and give a problem which want to prove or disprove the hyperoperations \vee and \wedge are associative. As another hyper algebraic structures the notions of (weak) hyper MV-deductive systems and (weak) implicative hyper MV-deductive systems are introduced in [12]. Then the relation among them are discussed. Also, as a continue, new types of hyper MV-deductive systems are introduced in [?newded]. Now, in this paper, we try to find a relationship between hyper MV-algebras and hyperlattices.

$\mathbf{2}$ Preliminary

In this section we give some definitions and properties of MV-algebras and hyper MV-algebras which we need in the next section.

Definition 2.1. [5] An MV-algebra is an algebra $(A, \oplus, *, 0)$ of type (2, 2, 0)that satisfying the following axioms:

```
(MV1) \ x \oplus (y \oplus z) = (x \oplus y) \oplus z,
(MV2) x \oplus y = y \oplus x,
(MV3) x \oplus 0 = x,
(MV4) x^{**} = x,
(MV5) x \oplus 0^* = 0^*,
(MV6) (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.
```

Let A be an MV-algebra. We define the operations \odot and \ominus on A by, $x \odot y =: (x^* \oplus y^*)^*$ and $x \ominus y =: x \odot y^*$, for any $x, y \in A$ and we consider $1 =: 0^*$. Moreover, the relation $x \leq y$ on A is defined by $x \leq y$ if and only if $x^* \oplus y = 1$, for any $x, y \in A$. The relation \leq is a partial order on A which is called the natural order of A. This natural order determines a lattice structure (A, \vee, \wedge) , where $x \vee y =: (x \odot y^*) \oplus y$ and $x \wedge y =: (x^* \vee y^*)^*$, for any $x, y \in A$. As a first example of nontrivial MV-algebra, consider the real unit interval [0, 1] with $x \oplus y = min\{x + y, 1\}$ and $x^* = 1 - x$. It is easy to see that $([0, 1], \oplus, *, 0)$ is an MV-algebra.

Proposition 2.1. [5] Let A be an MV-algebra and $x, y \in A$. Then the following is hold:

- (i) $1^* = 0$,
- (ii) $x \oplus y = (x^* \odot y^*)^*$,
- (iii) $x \oplus 1 = 1$,
- (iv) $(x \ominus y) \oplus y = (y \ominus x) \oplus x$,
- (v) $x \oplus x^* = 1$,
- (vi) $x \le y$ if and only if $y^* \le x^*$,
- (vii) if $x \leq y$, then for each $z \in A$, $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z$,
- (viii) $x \odot y < z$ if and only if $x < y^* \oplus z$,
 - $(ix) \ x \odot (y \lor z) = (x \odot y) \lor (x \odot z),$
 - $(x) \ x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z).$

Definition 2.2. [6] A hyperoperation on a nonempty set H is a map \circ : $H \times H \to P^*(H) = P(H) - \{\emptyset\}$. In this case, (H, \circ) is called a hypergroupoid. Let (H, \circ) be a hypergroupoid. Then an element $a \in H$ is called scalar if $|a \odot x| = 1$, for any $x \in H$. Moreover, if A and B are two non-empty subsets of H, then we define $A \circ B$, $a \circ B$ and $A \circ b$ as follows, for any $a \in A$ and $b \in B$:

$$A \circ B = \bigcup_{a \in A, b \in B} (a \circ b), \qquad a \circ B = \{a\} \circ B, \qquad A \circ b = A \circ \{b\}.$$

Definition 2.3. [9] A hyper MV-algebra is a nonempty set M endowed with a hyperoperation " \oplus ", a unary operation " \ast " and a constant "0" satisfying the following axioms, for all $x, y, z \in M$, :

$$(HMV1) \ x \oplus (y \oplus z) = (x \oplus y) \oplus z,$$

 $(HMV2) \ x \oplus y = y \oplus x,$

$$(HMV3) (x^*)^* = x,$$

 $(HMV4) (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x,$
 $(HMV5) 0^* \in x \oplus 0^*,$
 $(HMV6) 0^* \in x \oplus x^*,$
 $(HMV7) x \ll y, y \ll x \Rightarrow x = y$

where $x \ll y$ is defined by $0^* \in x^* \oplus y$. For any $A, B \subseteq M$, we define $A \ll B$ if and only if there exist $a \in A$ and $b \in B$ such that $a \ll b$. We define $0^* := 1$ and $A^* = \{a^* : a \in A\}$.

Proposition 2.2. [9] Let $(M, \oplus, *, 0)$ be a hyper MV-algebra. Then for all $x, y, z \in M$ and for all nonempty subsets A, B and C of M the following hold:

- (i) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$,
- (ii) $0 \ll x$, $x \ll 1$, $x \ll x$ and $A \ll A$,
- (iii) If $x \ll y$, then $y^* \ll x^*$ and $A \ll B$ implies $B^* \ll A^*$,
- (iv) $(A^*)^* = A$,
- (v) $0 \oplus 0 = \{0\} \text{ and } x \in x \oplus 0,$
- (vi) If $y \in x \oplus 0$, then $y \ll x$.

Theorem 2.3. [1] Let M be a finite hyper MV-algebra such that $0 \oplus x = \{x\}$, for all $x \in M$. Then M is an MV-algebra.

Proposition 2.4. [18] Let $(M, \oplus, *, 0)$ be a hyper MV-algebra. Define the following hyperopoerations on M as follows:

$$x \lor y = (x^* \oplus y)^* \oplus y, \quad x \land y = (x^* \lor y^*)^*$$

Then for all $x, y, z \in M$:

- (i) $x \in (x \land x) \cap (x \lor x),$
- (ii) $x \lor y = y \lor x \text{ and } x \land y = y \land x$,
- $(iii) \quad x \in (x \land (x \lor y)) \cap (x \lor (x \land y)),$
- (iv) if $x \ll y$, then $y \in x \vee y$ and $x \in x \wedge y$,
- (vi) $x, y \ll x \vee y$ and $x \wedge y \ll x, y$.

3 Relationship between hyper MV-algebras and hyperlattices

In this section, we try to show that any finite hyper MV-algebra is a hyperlattice.

Definition 3.1. If $x^* = x$, for any $x \in M - \{0, 1\}$, then we say that M satisfied the Semi Negation Property (or (SNP), for short).

Example 3.1. Let $M = \{0, a, b, 1\}$ and hyperoperation \oplus and unary operation * on M are defined as follows;

\oplus	0	a	b	1
0	{0}	$\{0,a\}$	$\{0,b\}$	A
a	$\{0,a\}$	A	$\{0,a,b\}$	A
b	$\{0,b\}$	$\{0,a,b\}$	A	A
1	Α	A	A	A

Then it is easy to see that $(M, \oplus, *, 0)$ is a hyper MV-algebra that satisfying the (SNP).

Note: Throughout this section, we let M be a hyper MV-algebra and satisfies the (SNP), unless otherwise stated.

Lemma 3.1. For all $x, y \in M - \{0, 1\}$:

- (i) $x \ll y$, implies x = y,
- (ii) if $0 \oplus x = \{x\}$, then $y \notin 1 \oplus x$.

Proof. (i) If $x \ll y$, then by Proposition 2.2(iii), $y^* \ll x^*$ and so $y \ll x$. Hence, by (HMV7), x = y.

(ii) On the contrary, let $y \in 1 \oplus x$, for $y \in M - \{0, 1\}$. By (HMV4), we get

$$y \oplus x = y^* \oplus x \subseteq (1 \oplus x)^* \oplus x = (x \oplus 0)^* \oplus 0 = x^* \oplus 0 = x \oplus 0 = \{x\}.$$

Thus $y \oplus x = \{x\} = y^* \oplus x$. Now, by (HMV4),

$$x \oplus x = x^* \oplus x = (y^* \oplus x)^* \oplus x = (x^* \oplus y)^* \oplus y$$
$$= (x \oplus y)^* \oplus y = x^* \oplus y = x \oplus y = \{x\}.$$

Hence, $x \oplus x = \{x\}$. Also, by (HMV6), $1 = 0^* \in x^* \oplus x = x \oplus x$ which is a contradiction. Therefore, $y \notin 1 \oplus x$.

Lemma 3.2. For any $x, y \in M$ and $A \subseteq M$,

- (i) if $1 \in x \oplus y$, then x = y or x = 1 or y = 1;
- (ii) if $x \notin 0 \oplus 1$, then $x \in 0 \oplus A$ implies $x \in A$;
- (iii) if $\{0,1\} \subseteq A \text{ or } 0,1 \notin A, \text{ then } A^* = A.$
- *Proof.* (i) Let $1=0^*\in x\oplus y$. If $x,y\in M-\{0,1\}$, then $x\ll y$ and so by Lemma 3.1(i), x=y. If $x\neq 0,1$ and y=0, then $0^*=1\in x\oplus 0=x^*\oplus 0$ and implies that $x\ll 0$. Hence x=0, which is a contradiction. Therefore, if $x\neq 0,1$, then y=1 and similarly, $y\neq 0,1$ implies that x=1. If $x,y\in\{0,1\}$ and x=y=0, then $1\in x\oplus y=0\oplus 0=\{0\}$, which is a contradiction. So, x=1 or y=1.
- (ii) If $x \in 0 \oplus A$, then there is $a \in A$ such that $x \in 0 \oplus a$. By Proposition 2.2(vi), $x \ll a$. By (i), a = 1, x = 1 or x = a. Since $1 \in 0 \oplus 1$, by Proposition 2.2(v), we get $x \neq 1$. Also, a = 1 means that $x \in 0 \oplus 1$ which against the assumption. Thus $x = a \in A$.
- (iii) We know $A^* = \{x^* : x \in A\}$. If $\{0,1\} \subseteq A$, then for any $x \in A$, x = 0 or x = 1 or $x \in M \{0,1\}$ and so $x^* = 1$ or $x^* = 0$ or $x^* = x$. Hence, $x^* \in A$ i.e. $A^* = A$. Now, let $0,1 \notin A$. Then $A \subseteq M \{0,1\}$ and since M satisfies the (SNP), we get $A^* = A$.
- **Theorem 3.3.** [1] Let M be a hyper MV-algebra and x be an element of M such that $0 \oplus x = \{x\}$ and $x^* = x$. Then $0, x \notin 1 \oplus x$.

Lemma 3.4. Let x be an element of $M - \{0, 1\}$ such that $0 \oplus x = \{x\}$. Then we get

- (i) $1 \oplus x = \{1\}, 0 \oplus 1 = \{1\};$
- (ii) $x \oplus x = \{1\};$
- (iii) $0 \oplus y = \{y\}$, for all $y \in M \{0, 1\}$.

Proof. (i) By Theorem 3.3, $0, x \notin 1 \oplus x$ and by Lemma 3.1(ii), $y \notin 1 \oplus x$, for all $y \in M - \{0, 1\}$. Thus $1 \oplus x = \{1\}$. Also, we get $0 \oplus 1 = 0 \oplus (1 \oplus x) = 1 \oplus (0 \oplus x) = 1 \oplus x = \{1\}$.

(ii) By part (i) and (HMV4), we get

$$x \oplus x = x^* \oplus x = (0 \oplus x)^* \oplus x = (x^* \oplus 1)^* \oplus 1$$

= $(x \oplus 1)^* \oplus 1 = 1^* \oplus 1 = 0 \oplus 1 = \{1\}.$

(iii) Let $y \in M - \{0, 1\}$ and $y \neq x$. By Proposition 2.2(v), $y \in 0 \oplus y$. Now, by the contrary, let $0 \oplus y \neq \{y\}$. Then there exists $z \in M$ such that $z \neq y$ and $z \in 0 \oplus y$.

If $z \neq 0, 1$, then by Proposition 2.2(vi), $z \ll y$ and so by Lemma 3.1(i) we get z = y, which is a contradiction.

If z = 1, then $1 \in 0 \oplus y$ and so by Proposition $2.2(vi), 1 \ll y$. Hence y = 1 which is a contradiction by $y \neq 0, 1$.

If z = 0, since $x \in 0 \oplus x \subseteq (0 \oplus y) \oplus x = (0 \oplus x) \oplus y = x \oplus y$, we get $x \in x \oplus y$. So, by (HMV4),

$$1 \in x^* \oplus x \subseteq (x \oplus y)^* \oplus x = (y^* \oplus x)^* \oplus x = (x^* \oplus y)^* \oplus y = (x \oplus y)^* \oplus y.$$

Hence there is $t \in x \oplus y$ such that $1 \in t^* \oplus y$. By Lemma 3.2(i), $t^* = 1$ or $t^* = y$ and so t = 0 or t = y. It means that $0 \in x \oplus y$ or $y \in x \oplus y$. If $0 \in x \oplus y$, then by (HMV1) and (ii),

$$x \in 0 \oplus x \subseteq (x \oplus y) \oplus x = (x \oplus x) \oplus y = 1 \oplus y.$$

Hence, by (HMV4), we get $x \in x \oplus y = x^* \oplus y \subseteq (1 \oplus y)^* \oplus y = (y \oplus 0)^* \oplus 0$. Since $x \notin 0 \oplus 1 = \{1\}$, by Lemma 3.2(ii), we get $x \in (y \oplus 0)^*$. So, $x = x^* \in ((y \oplus 0)^*)^* = y \oplus 0$. Thus $x \ll y$ and so by Lemma 3.1(i), x = y which is a contradiction. Similarly, for the case $y \in x \oplus y$, we get a contradiction. Therefore, $0 \oplus y = \{y\}$, for all $y \neq 0, 1$.

Theorem 3.5. If M is finite and x be an element of $M - \{0, 1\}$ such that $0 \oplus x = \{x\}$, then M is an MV-algebra.

Proof. Let M be finite and $x \in M - \{0, 1\}$ such that $0 \oplus x = \{x\}$. Then by Lemma 3.4(ii), $0 \oplus y = \{y\}$, for all $y \in M - \{0, 1\}$. Moreover, by Lemma 3.4(i), $0 \oplus 1 = \{1\}$ and by Proposition 2.2(v), $0 \oplus 0 = \{0\}$. Hence $0 \oplus y = \{y\}$ for all $y \in M$ and so by Theorem 2.3, M is an MV-algebra. \square

Proposition 3.6. Let M be finite and proper. Then for all distinct elements $x, y, z \in M - \{0, 1\}$,

- (P_1) $0 \oplus x = \{0, x\},\$
- (P_2) if $x \in 0 \oplus 1$, then $0 \in 0 \oplus 1$,
- (P_3) $x, y \in x \oplus y$,
- $(P_4) \quad x \in 1 \oplus x \ or \ 0 \in 1 \oplus x. \ Indeed, \ 1 \oplus x \neq \{1\},$
- (P_5) if $y \notin 0 \oplus 1$, then $y \notin 1 \oplus x$,
- (P_6) if $x \notin 0 \oplus 1$, then $x \in 1 \oplus x$,
- (P_7) $1 \oplus x \subseteq (0 \oplus 1) \cup \{0, x\},\$

- (P_8) $1 \oplus 1 \subseteq 0 \oplus 1$,
- (P_9) if $y \in x \oplus x$, then $y \in 0 \oplus 1$. Indeed, $x \oplus x \subseteq (0 \oplus 1) \cup \{0, x\}$,
- (P_{10}) $0 \oplus 1 \setminus \{0, x\} \subseteq x \oplus x$,
- (P_{11}) $0 \oplus 1 \subseteq (x \oplus x) \cup (1 \oplus x)$ and $\{0, x\} \subseteq (x \oplus x) \cup (1 \oplus x)$,
- (P_{12}) $(x \oplus x) \cup (1 \oplus x) = (0 \oplus 1) \cup \{0, x\},\$
- (P_{13}) $z \in x \oplus y \text{ implies } x \in y \oplus z,$
- (P_{14}) if $z \in x \oplus y$, then $x, y, z \in 0 \oplus 1$ or $x, y, z \notin 0 \oplus 1$,
- (P_{15}) $(0 \oplus 1) \cup (x \oplus y) \cup \{0\} \subseteq x \vee y$,
- (P_{16}) if $x, y \notin 0 \oplus 1$, then $x \oplus (x \oplus y) \cup \{0\} = x \oplus y \cup \{0\}$.
- *Proof.* (P_1) : Let there exists $x \in M \{0,1\}$ such that $0 \oplus x = \{x\}$, by the contrary. Then by Theorem 3.5, M is an MV-algebra and so it is not proper which is a contradiction. Hence $0 \oplus x \neq \{x\}$, for all $x \in M \{0,1\}$. Thus there is $y \in 0 \oplus x$ and $y \neq x$. By Lemma 3.1 (i), we imply that $y \in \{0,1\}$. Thus y = 0 or y = 1. If y = 1, then $1 \in 0 \oplus x$ and so $1 \ll x$. Hence, by Proposition 2.2 (vi), x = 1 which is a contradiction with $x \in M \{0,1\}$. Thus, $y = 0 \in 0 \oplus x$, for all $x \in M \{0,1\}$. Therefore, $0 \oplus x = \{0,x\}$, for all $x \in M \{0,1\}$.
- (P_2) : Let $x \in 0 \oplus 1$. Then by (P_1) , $0 \in 0 \oplus x \subseteq 0 \oplus (0 \oplus 1) = (0 \oplus 0) \oplus 1 = 0 \oplus 1$. Hence, $0 \in 0 \oplus 1$.
- (P_3) : Let $x, y \in M \{0, 1\}$ be two distinct elements. By (P_1) and (HMV1),

$$x \in 0 \oplus x \subseteq (0 \oplus y) \oplus x = 0 \oplus (x \oplus y),$$

Then there exists $t \in x \oplus y$ such that $x \in 0 \oplus t$. Thus $x \ll t$ and so $1 \in x \oplus t$. Now, by Lemma 3.2(i), we get $x \in x \oplus y$ or $1 \in x \oplus y$. But $1 \in x \oplus y = x^* \oplus y$ implies x = y, which is a contradiction. Therefore, $x \in x \oplus y$. By the similar way, $y \in x \oplus y$.

- (P_4) : Since $0 \ll 0$, $1 \in 0^* \oplus 0$. By (HMV_4) and (P_1) , $1 \in 0^* \oplus 0 \subseteq (0 \oplus x)^* \oplus 0 = (1 \oplus x)^* \oplus x$. By Lemma 3.2(i), $1 \in (1 \oplus x)^*$ or $x \in (1 \oplus x)^*$. Therefore, $0 \in 1 \oplus x$ or $x \in 1 \oplus x$. So $1 \oplus x \neq \{1\}$.
- (P_5) : Let $y \notin 0 \oplus 1$. On the contrary, if $y \in 1 \oplus x$, then by (P_1) , (P_3) and (HMV4), $y \in y \oplus x = y^* \oplus x \subseteq (1 \oplus x)^* \oplus x = (x \oplus 0)^* \oplus 0 = \{0, x\}^* \oplus 0 = \{0$

Vol. LIV (2016) Relationship Between Hyper MV-algebras and Hyperlattices 83

 $(1 \oplus 0) \cup (x \oplus 0) = (0 \oplus 1) \cup \{0, x\}$. Thus $y \in 0 \oplus 1$, which is a contradiction. Hence $y \notin 1 \oplus x$.

 (P_6) : Let $x \notin 0 \oplus 1$. If $0 \oplus 1 \neq \{1\}$, then by (P_2) , $0 \in 0 \oplus 1$ and so by (HMV1) and (P_1) ,

$$\{0, x\} = 0 \oplus x \subseteq (1 \oplus 0) \oplus x = 1 \oplus (0 \oplus x) = 1 \oplus \{0, x\} = (1 \oplus 0) \cup (1 \oplus x).$$

Now, since $x \notin 0 \oplus 1$, hence $x \in 1 \oplus x$. If $0 \oplus 1 = \{1\}$, then by routine calculations, we get $1 \oplus x = \{0, x, 1\} \ni x$.

- (P_7) : Let $y \in 1 \oplus x$ and $y \neq \{0, x\}$. Then y = 1 or $y \neq 0, 1$ and $y \neq x$. If y = 1, then by Proposition 2.2(v), $y = 1 \in 0 \oplus 1$. Now, let $x, y \in M \{0, 1\}$ be distinct and $y \notin 0 \oplus 1$, by the contrary. Then by (P_5) , $y \notin 1 \oplus x$, which is a contradiction. Hence $y \in 0 \oplus 1$ i.e. $(1 \oplus x) \setminus \{0, x\} \subseteq 0 \oplus 1$. So $1 \oplus x \subseteq (0 \oplus 1) \cup \{0, x\}$.
- (P_8) : Let $x \in 1 \oplus 1$. Then by (P_1) and (HMV1), $x \in 0 \oplus x \subseteq 0 \oplus (1 \oplus 1) = (0 \oplus 1) \oplus 1$. Thus there is $t \in 0 \oplus 1$ such that $x \in t \oplus 1$. By (P_7) , $x \in 1 \oplus t \subseteq (0 \oplus 1) \cup \{0, t\}$. Thus $x \in 0 \oplus 1$ or x = t. We note that x = t means $x = t \in 0 \oplus 1$. Hence $x \in 0 \oplus 1$ and so $1 \oplus 1 \subseteq 0 \oplus 1$.
- (P_9) : Let $y \in x \oplus x$ and $y \neq x$. Then by (HMV4) and (P_1) ,

$$y \in (x \oplus x) \cup (1 \oplus x) = \{x, 1\} \oplus x = \{0, x\}^* \oplus x = (0 \oplus x)^* \oplus x = (x \oplus 1)^* \oplus 1.$$

Hence there is $t \in 1 \oplus x$ such that $y \in 1 \oplus t^*$. We note that t = 1 or t = 0 or $t \in M - \{0, 1\}$.

If t = 1, then $y \in 1 \oplus 1^* = 1 \oplus 0$. If t = 0, then $y \in 1 \oplus 1$ and so by (P_8) , $y \in 1 \oplus 1 \subseteq 0 \oplus 1$.

If $t \in M - \{0, 1\}$, then by (P_7) , $y \in 1 \oplus t \subseteq (0 \oplus 1) \cup \{0, t\}$. Thus $y \in 0 \oplus 1$ or y = t. If y = t, then $y = t \in 1 \oplus x$. Again by (P_7) , $y \in 1 \oplus x \subseteq (0 \oplus 1) \cup \{0, x\}$. Since x and y are distinct and $y \neq 0$, we get $y \in 0 \oplus 1$ in all cases. Therefore, $x \oplus x \setminus \{0, x, 1\} \subseteq 0 \oplus 1$ and so, by $1 \in 0 \oplus 1$, $x \oplus x \subseteq (0 \oplus 1) \cup \{0, x\}$.

 (P_{10}) : Since $x \ll x$, we get $1 \in x \oplus x$. By (HMV1), we get

$$0 \oplus 1 \subseteq 0 \oplus (x \oplus x) = (0 \oplus x) \oplus x = \{0, x\} \cup (x \oplus x).$$

Hence $0 \oplus 1 \setminus \{0, x\} \subseteq x \oplus x$.

 (P_{11}) : Since $0 \ll x$, we conclude that $0^* \in 1 \oplus x$. By (HMV4),

$$0 \oplus 1 \subseteq (x \oplus 1)^* \oplus 1 = (0 \oplus x)^* \oplus x = \{0, x\}^* \oplus x = (x \oplus x) \cup (1 \oplus x)$$
 (1).

Also, if $x \in 0 \oplus 1$, then by (P_2) we get $0 \in 0 \oplus 1$. Thus $\{0, x\} \subseteq 0 \oplus 1 \subseteq (x \oplus x) \cup (1 \oplus x)$. If $x \notin 0 \oplus 1$, then by (P_6) , $x \in 1 \oplus x$. Hence, by (P_1) , (HMV1) and (1), $\{0, x\} = 0 \oplus x \subseteq 0 \oplus (1 \oplus x) = (0 \oplus x) \oplus 1 = \{0, x\} \oplus 1 = (0 \oplus 1) \cup (x \oplus 1) \subseteq (x \oplus x) \cup (x \oplus 1)$.

 (P_{12}) : By (P_7) , (P_9) and (P_{11}) , the proof is clear.

 (P_{13}) : Let $z \in x \oplus y$. Then $1 \in z \oplus z^* = z \oplus z \subseteq (x \oplus y) \oplus z = x \oplus (y \oplus z)$. By Lemma 3.2(i), $1 \in y \oplus z$ or $x \in y \oplus z$. If $1 \in y \oplus z$, then by Lemma 3.2(i), y = z, that is a contradiction. Therefore, $x \in y \oplus z$.

 $(P_{14}):$ Let $z \in x \oplus y$, $z \in 0 \oplus 1$ and $x \notin 0 \oplus 1$, by the contrary. By (P_{13}) , $z \in x \oplus y$, implies $x \in y \oplus z$. Since $z \in 0 \oplus 1$, we get $x \in z \oplus y \subseteq (0 \oplus 1) \oplus y = 0 \oplus (1 \oplus y)$. Since $x \notin 0 \oplus 1$, by Lemma 3.2(ii), $x \in 1 \oplus y$. Also, by (P_5) , $x \notin 1 \oplus y$ which is a contradiction. So, $x \in 0 \oplus 1$. Similarly, $y \in 0 \oplus 1$. Therefore, $x, y, z \in 0 \oplus 1$.

Now, let $z \notin 0 \oplus 1$ and $x \in 0 \oplus 1$, by the contrary. Then $z \in x \oplus y \subseteq (0 \oplus 1) \oplus y = 0 \oplus (1 \oplus y)$ and so by Lemma 3.2(ii), $z \in 1 \oplus y$. Also, by (P_5) , $z \notin 1 \oplus y$, which is a contradiction. So $x \notin 0 \oplus 1$. Similarly, $y \notin 0 \oplus 1$. Therefore, $x, y, z \notin 0 \oplus 1$.

 (P_{15}) : By (P_3) , $x, y \in x \oplus y$ and so $x \oplus y = x^* \oplus y \subseteq (x \oplus y)^* \oplus y = (x^* \oplus y)^* \oplus y = x \vee y$. Also by (P_{14})

$$(0 \oplus 1) \setminus \{0, y\} \subseteq y \oplus y = y^* \oplus y \subseteq (x \oplus y)^* \oplus y = (x^* \oplus y)^* \oplus y = x \vee y.$$

Since $y \in x \oplus y \subseteq x \vee y$, it is enough to show that $0 \in x \vee y$:

By (P_{12}) , $(x \oplus x) \cup (1 \oplus x) = (0 \oplus 1) \cup \{0, x\}$. Thus $0 \in x \oplus x$ or $0 \in 1 \oplus x$. If $0 \in x \oplus x$, then $0 \in x \oplus x = x^* \oplus x \subseteq (y \oplus x)^* \oplus x = (y^* \oplus x)^* \oplus x = x \vee y$. So $0 \in x \vee y$ and the proof is complete.

If $0 \in 1 \oplus x$, then by $1 \in y \oplus y$, $0 \in x \oplus 1 \subseteq x \oplus (y \oplus y) = (x \oplus y) \oplus y$. It means that there is $t \in x \oplus y$ such that $0 \in t \oplus y$. We note that by Lemma 3.1(i), $1 \not\in x \oplus y$ and so $t \neq 1$. If t = 0, then $0 \in x \oplus y \subseteq x \vee y$ and the proof is complete. Otherwise, $t \in M - \{0,1\}$ and $0 \in t \oplus y = t^* \oplus y \subseteq (x \oplus y)^* \oplus y = x \vee y$. So, $0 \in x \vee y$ in all cases. Now, we get

$$(x \oplus y) \cup (0 \oplus 1) \cup \{0\} \subseteq x \vee y.$$

 (P_{16}) : Let $x, y \notin 0 \oplus 1$. Since by $(P_3), y \in x \oplus y$, we conclude that $x \oplus y \subseteq x \oplus (x \oplus y)$. Now, let $t \in x \oplus (x \oplus y)$ be arbitrary. Then there is $u \in x \oplus y$ such that $t \in x \oplus u$. Since $x, y \notin 0 \oplus 1$ by (P_{14}) , we get $u \notin 0 \oplus 1$.

Again since $x, u \notin 0 \oplus 1$, we conclude that $t \notin 0 \oplus 1$. Also, we have

$$x \oplus (x \oplus y) = (x \oplus x) \oplus y \subseteq ((0 \oplus 1) \cup \{0, x\}) \oplus y \quad \text{by } (P_9)$$

$$= ((0 \oplus 1) \oplus y) \cup \{0, y\} \cup (x \oplus y) \quad \text{by } (P_1)$$

$$= (0 \oplus (1 \oplus y)) \cup \{0, y\} \cup (x \oplus y) \quad \text{by } (HMV1)$$

$$\subseteq (0 \oplus ((0 \oplus 1) \cup \{0, y\})) \cup \{0, y\} \cup (x \oplus y) \quad \text{by } (P_7)$$

$$= (0 \oplus 0 \oplus 1) \cup (0 \oplus 0) \cup (0 \oplus y) \cup \{0, y\} \cup (x \oplus y)$$

$$= (0 \oplus 1) \cup \{0, y\} \cup (x \oplus y) \quad \text{by Proposition } 2.2(v)$$

$$= (0 \oplus 1) \cup \{0\} \cup (x \oplus y) \quad \text{by } (P_3)$$

Since $t \notin 0 \oplus 1$, we get $t \in (x \oplus y) \cup \{0\}$ and so $x \oplus (x \oplus y) \subseteq (x \oplus y) \cup \{0\}$. Therefore, $x \oplus (x \oplus y) \cup \{0\} = (x \oplus y) \cup \{0\}$.

Lemma 3.7. For all distinct elements $x, y \in M - \{0, 1\}$,

$$(i) \quad x \vee y = (x \oplus y) \cup (0 \oplus 1) \cup \{0\},\$$

(ii)
$$0 \lor x = 1 \lor x = (0 \oplus 1) \cup \{0, x\},\$$

(iii)
$$1 \lor 1 = 0 \oplus 1 \text{ and } 0 \lor 0 = \begin{cases} \{0\} & \text{if } 0 \oplus 1 = \{1\}, \\ 0 \oplus 1 & \text{if } 0 \oplus 1 \neq \{1\}, \end{cases}$$

$$(iv) \quad x \vee x = \left\{ \begin{array}{ll} (0 \oplus 1 \setminus \{1\}) \cup \{0, x\} & if \ 0, x \not\in x \oplus x, \\ (0 \oplus 1) \cup \{0, x\} & otherwise, \end{array} \right.$$

$$(v) \quad 0 \lor 1 = 0 \oplus 1.$$

Proof. (i) By (P_{15}) , $(0 \oplus 1) \cup (x \oplus y) \cup \{0\} \subseteq x \vee y$. We note that by Lemma 3.1(i), $1 \notin x \oplus y$ and so $0 \in x \oplus y$ or $x \oplus y \subseteq M - \{0,1\}$. Thus $(x \oplus y)^* \subseteq (x \oplus y \setminus \{0\}) \cup \{1\}$. Now, we get

```
x \vee y
= (x \oplus y)^* \oplus y \subseteq ((x \oplus y \setminus \{0\}) \cup \{1\}) \oplus y
\subseteq ((x \oplus y) \oplus y) \cup (1 \oplus y) = (x \oplus (y \oplus y)) \cup (1 \oplus y) \text{, by (HMV1)}
\subseteq x \oplus ((0 \oplus 1) \cup \{0, y\}) \cup (1 \oplus y) \text{, by } (P_9)
= (x \oplus (0 \oplus 1)) \cup (x \oplus 0) \cup (x \oplus y) \cup (1 \oplus y)
\subseteq ((x \oplus 0) \oplus 1) \cup \{0, x\} \cup (x \oplus y) \cup (0 \oplus 1) \cup \{0, y\}, \text{ by } (P_1) \text{ and } (P_7)
= (0 \oplus 1) \cup (x \oplus 1) \cup \{0, x\} \cup (x \oplus y) \cup \{0, y\}
\subseteq (0 \oplus 1) \cup \{0, x, y\} \cup (x \oplus y) \text{ by } (P_7)
= (0 \oplus 1) \cup \{0\} \cup (x \oplus y) \text{ by } (P_3).
```

Therefore, $x \vee y = (0 \oplus 1) \cup (x \oplus y) \cup \{0\}.$

- (ii) By (P_1) , $0 \lor x = (x \oplus 0)^* \oplus 0 = \{0, x\}^* \oplus 0 = \{1, x\} \oplus 0 = (1 \oplus 0) \cup (x \oplus 0) = (0 \oplus 1) \cup \{0, x\}$. Also, by (P_{12}) , $1 \lor x = (0 \oplus x)^* \oplus x = \{1, x\} \oplus x = (1 \oplus x) \cup (x \oplus x) = (0 \oplus 1) \cup \{0, x\} = 0 \lor x$.
- (iii) If $0 \oplus 1 = \{1\}$, then $0 \vee 0 = (1 \oplus 0)^* \oplus 0 = 1^* \oplus 0 = 0 \oplus 0 = \{0\}$ and $1 \vee 1 = (0 \oplus 1)^* \oplus 1 = 0 \oplus 1$. If $0 \oplus 1 \neq \{1\}$, then by (P_2) , $0 \in 0 \oplus 1$ and so by Lemma 3.2(iii), $(0 \oplus 1)^* = 0 \oplus 1$. Thus

$$0 \lor 0 = (1 \oplus 0)^* \oplus 0 = (1 \oplus 0) \oplus 0 = (0 \oplus 0) \oplus 1 = 0 \oplus 1.$$

Also, by (P_8) , we get

$$1 \lor 1 = (0 \oplus 1)^* \oplus 1 = (0 \oplus 1) \oplus 1 = 0 \oplus (1 \oplus 1) \subseteq 0 \oplus (0 \oplus 1) = (0 \oplus 0) \oplus 1 = 0 \oplus 1.$$

Since $0^* = 1 \in 0 \oplus 1$, we have $0 \in (0 \oplus 1)^*$ and so $0 \oplus 1 \subseteq (0 \oplus 1)^* \oplus 1 = 1 \vee 1$. Therefore, in the two cases, $1 \vee 1 = 0 \oplus 1$.

(iv) At the first, we prove that $1 \in x \vee x$ if and only if $0 \in x \oplus x$ or $x \in x \oplus x$. If $1 \in x \vee x = (x \oplus x)^* \oplus x$, then there is $z \in x \oplus x$, such that $1 \in z^* \oplus x$. By Lemma 3.2(i), $z^* = 1$ or $z^* = x$. Thus $z = 0 \in x \oplus x$ or $z = x \in x \oplus x$. Conversely, if $0 \in x \oplus x$ or $x \in x \oplus x$, then since $x \ll 1$ and $x \ll x$, we conclude that $1 \in x \oplus 1$ and $1 \in x \oplus x$. So

$$1 \in x \oplus 1 = x \oplus 0^* \subseteq x \oplus (x \oplus x)^* = x \vee x,$$

$$1 \in x \oplus x = x^* \oplus x \subseteq (x \oplus x)^* \oplus x = x \vee x.$$

Thus $1 \in x \vee x$, for two cases.

Now, let $t \in x \vee x = (x \oplus x)^* \oplus x$. Then there is $u \in x \oplus x$ such that $t \in u^* \oplus x$. If u = 0, then by (P_7) , $t \in 1 \oplus x \subseteq (0 \oplus 1) \cup \{0, x\}$. If u = 1, then by (P_1) , $t \in 0 \oplus x = \{0, x\} \subseteq (0 \oplus 1) \cup \{0, x\}$. If $u \in M - \{0, 1\}$, then we get

$$t \in u \oplus x \subseteq (x \oplus x) \oplus x \subseteq ((0 \oplus 1) \cup \{0, x\}) \oplus x \quad \text{by } (P_9)$$

$$= ((0 \oplus 1) \oplus x) \cup (0 \oplus x) \cup (x \oplus x)$$

$$= ((0 \oplus x) \oplus 1) \cup \{0, x\} \cup (x \oplus x) \quad \text{by (HMV1) and } (P_1)$$

$$\subseteq (0 \oplus 1) \cup (x \oplus 1) \cup \{0, x\} \quad \text{by } (P_9)$$

$$\subseteq (0 \oplus 1) \cup \{0, x\} \quad \text{by } (P_7).$$

Hence $t \in (0 \oplus 1) \cup \{0, x\}$ in all cases. Therefore, $x \vee x \subseteq (0 \oplus 1) \cup \{0, x\}$. Conversely, let $t \in (0 \oplus 1) \setminus \{0, x, 1\}$. Then by (P_{10}) , $t \in x \oplus x$. By (P_3) , $t \in t \oplus x = t^* \oplus x \subseteq (x \oplus x)^* \oplus x = x \vee x$. Thus $(0 \oplus 1) \setminus \{0, x, 1\} \subseteq x \vee x$. On the other hand, $\{0, x\} = 0 \oplus x = 1^* \oplus x \subseteq (x \oplus x)^* \oplus x = x \vee x$. Hence,

Vol. LIV (2016) Relationship Between Hyper MV-algebras and Hyperlattices87

 $(0 \oplus 1 \setminus \{1\}) \cup \{0, x\} \subseteq x \vee x$.

(v)
$$0 \lor 1 = (1^* \oplus 0)^* \oplus 0 = (0 \oplus 0)^* \oplus 0 = 0^* \oplus 0 = 1 \oplus 0.$$

Lemma 3.8. For all distinct element $x, y, z \in M - \{0, 1\}$,

- (i) if $x, y \in 0 \oplus 1$, then $0 \lor x = 1 \lor x = x \lor y = 0 \oplus 1$ and $x \lor x = 0 \oplus 1 \setminus \{1\}$ or $0 \oplus 1$,
- (ii) if $x \in 0 \oplus 1$ and $y \notin 0 \oplus 1$, then $x \vee y = (0 \oplus 1) \cup \{y\}$ and $y \vee y = (0 \oplus 1) \cup \{0, y\}$,
- (iii) $(x \oplus y) \lor z = x \lor (y \oplus z) = (0 \oplus 1) \cup \{0\} \cup ((x \oplus y) \oplus z).$
- *Proof.* (i) Let $x, y \in 0 \oplus 1$. Since, by $(P_2), 0 \in 0 \oplus 1$, by Lemma 3.7, $0 \lor x = 1 \lor x = 0 \oplus 1$ and $x \lor x = 0 \oplus 1 \setminus \{1\}$ or $0 \oplus 1$. Moreover, since, by $(P_{14}), x \oplus y \subseteq 0 \oplus 1$, by Lemma 3.7, $x \lor y = (x \oplus y) \cup (0 \oplus 1) \cup \{0\} = 0 \oplus 1$.
- (ii) Let $x \in 0 \oplus 1$ and $y \notin 0 \oplus 1$. Then by (P_2) , $0 \in 0 \oplus 1$. Also, by Lemma 3.2(i) and assumption we get $1 \notin x \oplus y$. By (P_{14}) , we imply that $z \notin x \oplus y$ for all distinct elements $x, y, z \in M \{0, 1\}$. Hence, by (P_3) , $x \oplus y = \{x, y\}$ or $x \oplus y = \{0, x, y\}$. So, by Lemma 3.7(i), $x \vee y = (x \oplus y) \cup (0 \oplus 1) \cup \{0\} = (0 \oplus 1) \cup \{y\}$.
 - (iii) By Lemma 3.7(i) and (HMV1) we get

$$(x \oplus y) \lor z = \bigcup_{t \in x \oplus y} t \lor z = \bigcup_{t \in x \oplus y} (0 \oplus 1) \cup \{0\} \cup (t \oplus z)$$

$$= (0 \oplus 1) \cup \{0\} \cup ((x \oplus y) \oplus z)$$

$$= (0 \oplus 1) \cup \{0\} \cup (x \oplus (y \oplus z))$$

$$= \bigcup_{u \in y \oplus z} (0 \oplus 1) \cup \{0\} \cup (x \oplus u)$$

$$= \bigcup_{u \in y \oplus z} x \lor u = x \lor (y \oplus z).$$

We note that, since by (P_3) , $x, y \in x \oplus y$ and by Lemma 3.7, $z \lor z \subseteq 0 \lor z = 1 \lor z \subseteq x \lor z$, we can suppose that $z \neq t \in M - \{0, 1\}$, without loss of generality (similarly, $x \neq u \in M - \{0, 1\}$).

Lemma 3.9. For all distinct elements $x, y, z \in M - \{0, 1\}$ we have

(i)
$$0 \lor (0 \oplus 1) = 0 \oplus 1 = 1 \lor (0 \oplus 1)$$
;

(ii)
$$(0 \oplus 1) \lor x = 0 \lor x = 1 \lor x = \begin{cases} (0 \oplus 1), & \text{if } x \in 0 \oplus 1, \\ (0 \oplus 1) \cup \{0, x\}, & \text{otherwise.} \end{cases}$$

(iii)
$$x \lor (x \lor z) = (0 \oplus 1) \cup \{0\} \cup (x \oplus (x \oplus z));$$

$$(iv) \ 0 \lor (y \oplus z) = (0 \oplus 1) \cup \{0\} \cup (y \oplus z).$$

Proof. (i) If $0 \oplus 1 = \{1\}$, then by Lemma 3.7(v), $0 \lor (0 \oplus 1) = 0 \lor 1 = 0 \oplus 1$. If $0 \oplus 1 = \{0, 1\}$, then by Lemma 3.7(iii), $0 \lor (0 \oplus 1) = (0 \lor 0) \cup (0 \lor 1) = (0 \oplus 1) \cup (0 \oplus 1) = 0 \oplus 1$. Otherwise, there exists $x \in M - \{0, 1\}$ such that $x \in 0 \oplus 1$ and so by (P_2) , $0 \in 0 \oplus 1$. Thus

$$\begin{array}{lll} 0 \vee (0 \oplus 1) & = & \bigcup_{t \in 0 \oplus 1} (0 \vee t) = (0 \vee 0) \cup (0 \vee 1) \cup \bigcup_{t \in (0 \oplus 1) - \{0, 1\}} (0 \vee t) \\ & = & (0 \oplus 1) \cup (0 \oplus 1) \cup (0 \oplus 1) \cup \{0, t\}, \, \text{by Lemma 3.7(ii),(iii)} \\ & = & 0 \oplus 1 & \text{Since } 0, t \in 0 \oplus 1. \end{array}$$

Therefore, $0 \lor (0 \oplus 1) = 0 \oplus 1$, for all cases. Similarly, we can prove $1 \lor (0 \oplus 1) = 0 \oplus 1$.

(ii) If $0 \oplus 1 = \{1\}$ or $0 \oplus 1 = \{0,1\}$, then by the similar way of (i) and using Lemma 3.7(ii), we get $(0 \oplus 1) \vee x = (0 \oplus 1) \cup \{0,x\}$. Let there exists $s \in M - \{0,1\}$ such that $s \in 0 \oplus 1$. Then by (P_2) , $0 \in 0 \oplus 1$. Now, if $x \notin 0 \oplus 1$, then we get

$$\begin{array}{lcl} (0 \oplus 1) \vee x & = & \bigcup_{t \in 0 \oplus 1} (t \vee x) = (0 \vee x) \cup (1 \vee x) \cup \bigcup_{x \neq t' \in (0 \oplus 1) - \{0, 1\}} (t' \vee x) \\ \\ & = & (0 \oplus 1) \cup \{0, x\} \cup (0 \oplus 1) \cup \{x\}, \, \text{by Lemmas } 3.7(\text{ii}), \, 3.8(\text{ii}) \\ \\ & = & (0 \oplus 1) \cup \{0, x\} = 0 \vee x = 1 \vee x. \end{array}$$

For the case $x \in 0 \oplus 1$, the proof is similar. Therefore, $(0 \oplus 1) \vee x = (0 \oplus 1) \cup \{0, x\}$, for all cases. The proof of (iii) and (iv) is routine.

Theorem 3.10. Let M be finite. Then for all $x, y, z \in M$,

$$(x \lor y) \lor z = x \lor (y \lor z)$$
 and $(x \land y) \land z = x \land (y \land z)$.

Proof. Case 1: Let $x, y, z \in M$ such that x = z. Then by commutativity of " \vee ", we get

$$x \lor (y \lor x) = (y \lor x) \lor x = (x \lor y) \lor x.$$

Case 2: Let $x, y, z \in M - \{0, 1\}$ be distinct elements and $x \notin 0 \oplus 1$ (for $x \in 0 \oplus 1$ the proof is similar). Then

$$x \vee (y \vee z) = x \vee ((0 \oplus 1) \cup \{0\} \cup (y \oplus z)$$

$$= \underbrace{(x \vee (0 \oplus 1)) \cup (x \vee 0)}_{} \cup (x \vee (y \oplus z)), \text{ by Lemma 3.7(i)}$$

$$= (0 \oplus 1) \cup \{0, x\} \cup (x \vee (y \oplus z)), \text{ by Lemma 3.8(ii)}, 3.7(ii)$$

$$= (0 \oplus 1) \cup \{0\} \cup (x \oplus y \oplus z), \text{ by Lemma 3.8(iii) and } (P_3).$$

By the similar way, we get $(x \lor y) \lor z = (0 \oplus 1) \cup \{0\} \cup ((x \oplus y) \oplus z)$. Therefore, $x \lor (y \lor z) = (x \lor y) \lor z$.

Case 3: Let $x, y, z \in M - \{0, 1\}$ such that x = y. Then (i) if $x, z \in 0 \oplus 1$, then by Lemma 3.8(i) and Lemma 3.9(ii), $x \vee (x \vee z) = x \vee (0 \oplus 1) = 0 \oplus 1$. Also, it is routine to see that $(x \vee x) \vee z = 0 \oplus 1$. Therefore, $x \vee (x \vee z) = 0 \oplus 1 = (x \vee x) \vee z$.

- (ii) If $x \in 0 \oplus 1$ and $z \notin 0 \oplus 1$, then by Lemma 3.8(ii) and Lemma 3.9(ii), $x \vee (x \vee z) = x \vee ((0 \oplus 1) \cup \{z\}) = (x \vee (0 \oplus 1)) \cup (x \vee z) = (0 \oplus 1) \cup (0 \oplus 1) \cup \{z\} = (0 \oplus 1) \cup \{z\}$. Since by Lemma 3.8(i), $x \vee x = (0 \oplus 1) \setminus \{1\}$ or $0 \oplus 1$, we get $(x \vee x) \vee z = (0 \oplus 1) \cup \{z\} = x \vee (x \vee z)$ in both cases. Thus $x \vee (x \vee z) = (x \vee x) \vee z$.
 - (iii) If $x, z \notin 0 \oplus 1$, then

$$x \lor (x \lor z)$$

- $= x \lor ((0 \oplus 1) \cup \{0\} \cup (x \oplus z))$
- = $(x \lor (0 \oplus 1)) \cup (x \lor 0) \cup (x \lor (x \oplus z))$, by Lemma 3.7(i)
- $= (0 \oplus 1) \cup \{0, x\} \cup (x \vee (x \oplus z)), \text{ by Lemma 3.9(ii)}, 3.7(ii)$
- $= (0 \oplus 1) \cup \{0, x\} \cup (0 \oplus 1) \cup \{0\} \cup (x \oplus (x \oplus z), \text{ by Lemma 3.9(iii)})$
- $= (0 \oplus 1) \cup \{0\} \cup (x \oplus (x \oplus z))$
- $= (0 \oplus 1) \cup (x \oplus z) \cup \{0\}, \text{ by } (P_3) \text{ and } (P_{16}).$

Also, we have,

$$(x \lor x) \lor z$$

- $= ((0 \oplus 1) \cup \{0, x\}) \vee z$
- = $((0 \oplus 1) \lor z) \cup (0 \lor z) \cup (x \lor z)$, by Lemma 3.8(ii)
- $= (0 \oplus 1) \cup \{0, z\} \cup (0 \oplus 1) \cup \{0\} \cup (x \oplus z), \text{ by Lemmas } 3.9(ii), 3.7(ii)$
- $= (0 \oplus 1) \cup \{0\} \cup (x \oplus z), \text{ by } P_3.$

Thus $x \vee (x \vee z) = (x \vee x) \vee z$. For the case $x, y, z \in M - \{0, 1\}$ such that y = z, the proof is similar.

Case 4: Let $x \in \{0,1\}$ and $y, z \in M - \{0,1\}$ be distinct elements. We suppose x = 0 (for x = 1 the proof is similar)

$$\begin{array}{lll} 0 \vee (y \vee z) & = & 0 \vee ((0 \oplus 1) \cup \{0\} \cup (y \oplus z)), \text{Lemma 3.7(i)} \\ & = & (0 \vee (0 \oplus 1)) \cup (0 \vee 0) \cup (0 \vee (y \oplus z)) \\ & = & (0 \oplus 1) \cup \{0\} \cup (0 \vee (y \oplus z)), \text{by Lemma 3.9(i)} \\ & = & (0 \oplus 1) \cup \{0\} \cup (y \oplus z), \text{by Lemma 3.9(iv)}. \end{array}$$

On the other hand,

(i) If $z \notin 0 \oplus 1$, then

$$\begin{array}{ll} (0 \vee y) \vee z \\ = & ((0 \oplus 1) \cup \{0, y\}) \vee z \\ = & \underbrace{((0 \oplus 1) \vee z) \cup (0 \vee z)} \cup (y \vee z), \text{ by Lemma 3.7(ii)} \\ = & (0 \oplus 1) \cup \{0, z\} \cup (0 \oplus 1) \cup \{0\} \cup (y \oplus z), \text{ by Lemmas 3.9(ii), 3.7(ii),(i)} \\ = & (0 \oplus 1) \cup \{0\} \cup (y \oplus z), \text{ by Lemma 3.7(i), (ii) and } (P_3). \end{array}$$

(ii) If $z \in 0 \oplus 1$, then by Lemma 3.9(ii) and Lemma 3.8(i), this is routine to see that $(0 \lor y) \lor z = (0 \oplus 1) \cup \{0\} \cup (y \oplus z)$. Hence, $(0 \lor y) \lor z = 0 \lor (y \lor z)$ for any cases. If $y \in \{0,1\}$ and $x,z \in M-\{0,1\}$ or $z \in \{0,1\}$ and $x,y \in M-\{0,1\}$, then we can prove by the similar way.

Case 5: Let $x \in \{0,1\}$ and $y, z \in M - \{0,1\}$ such that y = z. Suppose that x = 0 (for x = 1 the proof is similar).

(i) If $y \notin 0 \oplus 1$, then

$$(0 \lor y) \lor y = ((0 \oplus 1) \cup \{0, y\}) \lor y$$

$$= (0 \oplus 1) \lor y) \cup (0 \lor y) \cup (y \lor y), \text{ by Lemma 3.7(ii)}$$

$$= (0 \oplus 1) \cup \{0, y\} \cup (y \lor y) \text{ by Lemma 3.9(ii), 3.7(ii)}$$

$$= (0 \oplus 1) \cup \{0, y\}, \text{ by Lemma 3.8(ii).}$$

Moreover, by Lemma 3.9(i) and Lemma 3.8(ii),

$$0 \lor (y \lor y) = 0 \lor ((0 \oplus 1) \cup \{0, y\} = (0 \lor (0 \oplus 1)) \cup (0 \lor 0) \cup (0 \lor y)$$

= $(0 \oplus 1) \cup \{0, y\} = (0 \lor y) \lor y$.

(ii) If $y \in 0 \oplus 1$, then it is routine to see that $0 \lor (y \lor y) = 0 \oplus 1 = (0 \lor y) \lor y$. Similarly, $x = y \in M - \{0, 1\}, \ z \in \{0, 1\} \text{ or } x = z \in M - \{0, 1\}, \ y \in \{0, 1\}$

Vol. LIV (2016) Relationship Between Hyper MV-algebras and Hyperlattices 91

can be proved.

Case 6: Let $x, y \in \{0, 1\}$ and $z \in M - \{0, 1\}$. Suppose x = y = 0 (for x = 1 or y = 1 the proof is similar).

$$\begin{array}{lll} 0 \lor (0 \lor z) & = & 0 \lor ((0 \oplus 1) \cup \{0, z\}) \\ & = & (0 \lor (0 \oplus 1)) \cup (0 \lor 0) \cup (0 \lor z), \text{ by Lemma 3.7(ii)} \\ & = & (0 \oplus 1) \cup \{0\} \cup (0 \oplus 1) \cup \{0, z\} \\ & = & (0 \oplus 1) \cup \{0, z\}, \text{ by Lemma 3.9(i)} \\ & = & 0 \lor x = (0 \lor 0) \lor z. \end{array}$$

Similarly, $x, z \in \{0, 1\}$, $y \in M - \{0, 1\}$ or $y, z \in \{0, 1\}$, $x \in M - \{0, 1\}$ can be proved.

Case 7: Let $x, y, z \in \{0, 1\}$. Suppose x = y = 0, z = 1 and $0 \oplus 1 = \{1\}$. Then by Lemas 3.7(v) and 3.9(i), we get $0 \lor (0 \lor 1) = 0 \lor (0 \oplus 1) = 0 \oplus 1 = 0 \lor 1 = (0 \lor 0) \lor 1$. For other cases the proof is similar.

Finally, by definition of
$$\wedge$$
, it can easily prove that $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

Definition 3.2. [11] Let L be a nonempty set endowed with hyperoperations \land and \lor . Then (L, \land, \lor) is called a hyperlattice if for any $a, b, c \in L$, the following conditions are satisfied:

- (i) $a \in a \land a, a \in a \lor a;$ (ii) $a \land b = b \land a, a \lor b = b \lor a;$
- (iii) $(a \wedge b) \wedge c = a \wedge (b \wedge c), (a \vee b) \vee c = a \vee (b \vee c);$
- (iv) $a \in a \land (a \lor b), a \in a \lor (a \land b).$

Corollary 3.11. If M is a finite hyper MV-algebra that satisfies the (SNP), then M is a hyperlattice.

Proof. By Theorem 3.10 and Proposition 2.4, the proof is clear. \Box

Corollary 3.12. Any finite hyper MV-algebra of the orders 2 and 3, satisfies the (SNP), and so is a hyperlattice.

Computer Check: All hyper MV-algebras of orders 4, 5 and 6, are hyper-lattices.

Example 3.2. (i) Let $M = \{0, a, b, 1\}$ and hyperoperation \oplus and unary operation * on M are defined as follows;

\oplus	0	a	b	1	•					
0	{0}	$\{0,a\}$	{b}	{b,1}			Ω	9	b	1
a	$\{0,a\}$	$\{0,a\}$	$\{b,1\}$	$\{b,1\}$		<u></u>			a	
b	{b}	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$			1	D	а	U
1	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$						

Then by routine calculations $(M, \oplus, *, 0)$ is a hyper MV-algebra, which dose not satisfies the (SNP.) But (M, \vee, \wedge) is a hyperlattice.

(ii) Let M = [0, 1]. We define unary operation " *" and hyperoperation " \oplus " on M by $x^* = 1 - x$ and $x \oplus y = [0, \min\{1, x + y\}]$. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. It is easy to see that $x^* \neq x$ for any $x \neq \frac{1}{2}$ i.e. M is not satisfied (SNP). But by routine calculation we get $x \vee y = [0, 1]$ and so $x \vee (y \vee z) = [0, 1] = (x \vee y) \vee z$ for all $x, y, z \in M$. By the similar way, $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, for all $x, y, z \in M$. Hence (M, \vee, \wedge) is a hyperlattice.

Note: In Corollary 3.11, the condition "finite with (SNP)" is sufficient but it is not necessary. Indeed, we have not found any finite or infinite hyper MV-algebra, which is not a hyperlattice.

Open problem: Any hyper MV-algebra is a hyperlattice.

References

- [1] R. A. Borzooei W. A. Dudek, A. Radfar and O. Zahiri, Some remarks on hyper MV-algebras, Journal of Intelligent and Fuzzy Systems, 27, (2014), 2997–3005
- [2] R. A. Borzooei , A. Hasankhani, M. M. Zahedi and Y. B. Jun, On hyper K-algebra, J. Math. Japonica, 1, (2000), 113–121
- [3] R. A. Borzooei and S. Niazian, Weak hyper residuated lattices, Quasigroups and Related Systems, 21, (2013), 29–42
- [4] R. A. Borzooei and A. Radfar, Classification of hyper MV-algebras of order 3, Ratio Mathematica, 22, (2012), 3–12
- [5] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, (1958), 467–490
- [6] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht, 2003
- [7] **Sh. Ghorbani E. Eslami and A. Hasankhani**, On the category of hyper MV-algebras, Math. Log. Quart., **55**, (2009), 21–30

- [8] Sh. Ghorbani E. Eslami and A. Hasankhani, Quotient hyper MV-algebras, Sci. Math. Japonica, 3, (2007), 371–386
- [9] Sh. Ghorbani A. Hasankhani and E. Eslami, Hyper MV-algebras, Set-Valued Mathematics and Applications, 1, (2008), 205–222
- [10] R. S. Grigolia, Algebraic analysis of Lukasiewicz-Tarski logical systems, In Wojocicki, R., Malinkowski, G.(eds) Selected papers on Lukasiewicz Sentential Calkuli, Osolineum, 1, (1977), 81–92
- [11] X. Z. Guo and X. L. Xin, Hyperlattice, Pure and Applied Mayhematics, 20, (2004), 40–43
- [12] Y. B. Jun M. S. Kang and H. S. Kim, Hyper MV-deductive systems of hyper MV-algebras, Commun. Korean Math. Soc., 20, (2010), 537–545
- [13] Y. B. Jun M. S. Kang and H. S. Kim, New types of hyper MV-deductive systems in hyper MV-algebras, Math. Log. Quart, 56, (2010), 400–405
- [14] J. Lukasiewicz, On three-valued logic (Polish), Ruch Filozoficzny, 5, (1920), 160–171
- [15] J. Lukasiewicz and A. Tarski, Unte suchungen uber den Assagenkalkul, C. R. Seances Soc. Sci. Letters Varsovie, 23, (1930), 30–50
- [16] F. Marty, Sur une generalization de la notion de groups, 8th Congress Math. Scandinaves, Stockholm, (1934), 45–49
- [17] **E. Post**, Introduction to a general theory of elementary propositions, Am. J. Math., **43**, (1921), 163–185
- [18] L. Torkzadeh and A. Ahadpanah, Hyper MV-ideals in hyper MV-algebras, Math. Log. Quart., 56(1), (2010), 51–62
- [19] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45, (1939), 335–354
- [20] O. Zahiri R. A. Borzooei and M. Bakhshi, (Quotient) Hyper Residuated Lattices, Quasigroups and Related Systems, 20, (2012), 125–138

R. A. Borzooei

Department of Mathematics, Shahid Beheshti University Tehran, Iran

E-mail: borzooei@sbu.ac.ir

Akefe Radfar

Department of Mathematics, Payame Noor University p.o.box 19395-3697 Tehran, Iran

E-mail: Radfar@pnu.ac.ir

Sogol Niazian

Tehran Medical Sciences Branch,

Islamic Azad University

Tehran, Iran

E-mail: s.niazian@iautmu.ac.ir

Received: 11.04.2015 Accepted: 26.04.2016