
DOI: 10.1515/awutm -2016-0012 Analele Universităţii de Vest,
Timişoara

Seria Matematică – Informatică
LIV, 2, (2016), 13– 35

Gradual and Cumulative Improvements to

the Classical Differential Evolution Scheme

through Experiments

George Anescu

Abstract. The paper presents the experimental results of some
tests conducted with the purpose to gradually and cumulatively
improve the classical DE scheme in both efficiency and success
rate. The modifications consisted in the randomization of the
scaling factor (a simple jitter scheme), a more efficient Random
Greedy Selection scheme, an adaptive scheme for the crossover
probability and a resetting mechanism for the agents. After each
modification step, experiments have been conducted on a set
of 11 scalable, multimodal, continuous optimization functions
in order to analyze the improvements and decide the new
improvement direction. Finally, only the initial classical scheme
and the constructed Fast Self-Adaptive DE (FSA-DE) variant
were compared with the purpose of testing their performance
degradation with the increase of the search space dimension.
The experimental results demonstrated the superiority of the
proposed FSA-DE variant.

AMS Subject Classification (2000). 68T20, 68W10, 90C26,
90C56, 90C59
Keywords. Continuous Global Optimization Problem (CGOP),
Derivative-free Optimization, Differential Evolution (DE),
DE/rand/1/bin, Self-Adaptive DE variants, Fast Self-Adaptive
DE (FSA-DE)

14 George Anescu An. U.V.T.

1 Introduction

Since its original introduction by K. Price and R. Storn in 1995 (publicly
available in 1997, see [1]), DE has drawn the attention of many researchers all
over the world resulting in numerous variants with improved performance and
a significant number of engineering applications especially in optimization
problems where the gradient is difficult or even impossible to derive. DE
proved to be an advantageous method for optimizing real-valued multimodal
objective functions due to its innate properties of good convergence,
simplicity, ease of use, suitability for parallelization and small number of
control parameters. Even from the beginning it was obvious that the
performance of DE was greatly sensitive to the choice of the control
parameters scaling factor (F), crossover probability (Cr) and population size
(N), and the selection of good parameters was a challenging issue. Initial
efforts have been put into finding guidelines for choosing proper DE control
parameters for different kinds of optimization problems, see for example the
pioneering work of R. Storn et al. [2], [3], J. Liu and J. Lampinen [4],
or in the attempt to mathematically derive good DE parameters, see the
pioneering work of D. Zaharie [5]. Another research direction has been
devoted to eliminating the need for manual parameter tuning altogether,
by automatically perturbing or adapting the control parameters during
optimization based on feedback from the search, see the pioneering work
of J. Liu and J. Lampinen [6], A.K. Qin et al. [7] [8], and J. Brest et al.
[9]. Recently even more research has been done in the field for more complex
optimizers with adaptive control parameters, see the general survey articles
of Swagatam Das et al ([10], [11]), or a previous survey of F. Neri and V.
Tirronen ([12]), where special sections are dedicated to self-adaptive variants
of DE.

The purpose of the present paper is to build a Fast Self-Adaptive variant
of DE (FSA-DE) by starting from the classical scheme DE/rand/1/bin with
fixed parameters and testing various improvement ideas in a gradual and
cumulative manner through testing experiments.

The rest of this paper is organized as follows: Section 2 presents the
Continuous Global Optimization Problem (CGOP); Section 3 presents the
Deb’s Rules for Constraints Handling as they were adapted for the FSA-
DE method; Section 4 presents the principles of the original DE/rand/1/bin
scheme; Section 5 presents the testing methodology adopted for comparing
the effects of different modifications implemented in the FSA-DE method
and the set of test optimization problems used in the experiments; Section
6 presents the first improvement implemented in the FSA-DE method,

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 15

the randomization of parameter F , and the obtained experimental results;
Section 7 presents the second improvement implemented in the FSA-
DE method, the Random Greedy Selection (RGS), and the obtained
experimental results; Section 8 presents the third improvement implemented
in the FSA-DE method, the randomization of parameter Cr, and the
obtained experimental results; Section 9 presents the fourth improvement
implemented in the FSA-DE method, the improved adaptive randomization
of parameter Cr, and the obtained experimental results; Section 10 presents
the fifth and final improvement implemented in the FSA-DE method, the
resetting mechanism, and the obtained experimental results; Section 11
presents the comparison between the original DE/rand/1/bin scheme and
the FSA-DE method when the dimension of the search space increases; and
finally Section 12 summarizes and draws some conclusions.

2 Continuous Global Optimization Problem (CGOP)

The Continuous Global Optimization Problem (CGOP) is generally
formulated as ([13]):

minimize f(x) (2.1)

subject to x ∈ D
with

D = {x : l ≤ x ≤ u; and gi(x) ≤ 0, i = 1, . . . , G;

and hj(x) = 0, j = 1, . . . , H}
(2.2)

where x ∈ Rn is a real n-dimensional vector of decision variables,
f : Rn → R is the continuous objective function, D ⊂ Rn is the non-
empty set of feasible decisions (a proper subset of Rn), l and u are explicit,
finite (component-wise) lower and upper bounds on x, gi : Rn → R, i =
1, . . . , G is a finite collection of continuous inequality constraint functions,
and hj : Rn → R, j = 1, . . . , H is a finite collection of continuous equality
constraint functions. No other additional supposition is made on the CGOP
problem and it is assumed that no additional knowledge about the collections
of real continuous functions can be obtained, in this way treating the
CGOP problem as a black box, i.e. for any point x in the boxed domain
{x : l ≤ x ≤ u} it is assumed the ability to calculate the values of the
functions f(x), gi(x), i = 1, . . . , G, hj(x), j = 1, . . . , H, but nothing more.

16 George Anescu An. U.V.T.

3 Deb’s Rules for Constraints Handling

The Deb’s rules ([14]) offer a methodology to efficiently handle the constraints
in constrained optimization problems. The presentation in this section is
adapted from [15] with the notations from equations (2.1) and (2.2). The
inequality constraints that satisfy gi(x) = 0, i = 1, . . . , G at the global
optimum solution are called active constraints. All equality constraints are
active constraints. The equality constraints can be transformed into the
inequality form and can be combined with other inequality constraints as
the auxiliary functions g̃i(x):

g̃i(x) =

{
max[0, gi(x)], i = 1, . . . , G
max[0, |hi−G(x)| − δ], i = G+ 1, . . . , G+H.

(3.1)

where δ is a tolerance parameter for the equality constraints. Therefore,
the objective is to minimize the objective function f(x) such that the
obtained optimal solution satisfies all the inequality constraints g̃i(x) ≤ 0 as
active constraints. The overall constraint violation for an infeasible solution
is a weighted mean of all the constraints expressed as:

v(x) =

G+H∑
i=1

wig̃i(x)

G+H∑
i=1

wi

(3.2)

where wi = 1/g̃max,i is a weight parameter and g̃max,i is the maximum
violation of constraint g̃i(x) obtained so far (up to the current iteration).
g̃max,i varies during the optimization process in order to balance the
contribution of every constraint in the problem irrespective of their differing
numerical ranges. There are a number of constraint handling techniques
based on constraint violation, the one used here being the Superiority of
Feasible Solutions (SF) technique. In SF the Deb’s rules ([14]) are applied
when comparing two solutions xi1 and xi2 . According to Deb’s rules xi1 is
regarded superior to xi2 when:

- xi1 is feasible and xi2 is not feasible.
- xi1 and xi2 are both feasible and xi1 has a smaller objective value than

xi2 .
- xi1 and xi2 are both infeasible, but xi1 has a smaller overall constraint

violation than xi2 .

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 17

Therefore, in SF the feasible solutions are always considered better than
the infeasible ones. Two infeasible solutions are compared based on their
overall constraint violations only, while two feasible solutions are compared
based on their objective function values only. The comparison of infeasible
solutions based on the overall constraint violation aims to push the infeasible
solutions toward the feasible regions, while the comparison of two feasible
solutions based on the objective function value improves the overall solution.

In order to be able to correctly compare the infeasible solutions which are
near feasible regions the following modification to the constraint violation was
proposed:

v(x) =

G+H∑
i=1

wig̃i(x)

G+H∑
i=1

wi

+Gns +Hns (3.3)

where Gns (Gns ≤ G) is the number of not satisfied inequality constraints,
and Hns (Hns ≤ H) is the number of not satisfied equality constraints.

Another important proposed improvement for the handling of the equality
constraints is to make the δ tolerance parameter dependent on the current
iteration index k:

δ = k(δ2 − δ1)/itermax + δ1 (3.4)

where δ1 is the initial tolerance parameter (at k = 0), δ2 is the final
tolerance parameter (at k = itermax) with δ1 � δ2, and itermax is the
maximum iteration index.

4 Differential Evolution scheme DE/rand/1/bin

This study is starting from the classical Differential Evolution scheme,
DE/rand/1/bin (sometimes called scheme DE1), proposed by K. Price,
R. Storn in 1997 ([1]). In the scheme’s name DE comes from Differential
Evolution, rand comes from random selection, 1 is the number of vector
differences used in the mutation equation and bin comes from binomial
crossover (or recombination). Like other Evolutionary Strategy population-
based methods, DE generates new points that are perturbations of existing
points, but unlike other Evolutionary Strategy methods, DE perturbs
population vectors with the scaled difference of two randomly selected

18 George Anescu An. U.V.T.

population vectors to produce the trial vectors. The simplified pseudo-code
of the implemented DE algorithm is presented below:

Step 1 : Initialization;

while (true)

Step 2 : Check termination conditions;

Step 3 : Mutation;

Step 4 : Crossover;

Step 5 : Evaluation

Step 6 : Selection;

end while

The method’s parameters are: N the number of evolving agents (or
population size), F the scaling factor, Cr the crossover probability, ε the
required precision and itermax the maximum number of iterations. The N
agents are represented as vector positions, xi, i = 1, . . . , N , in the limiting
box (hyper-rectangle) defined by the lower limits lj, j = 1, . . . , n and higher
limits hj, j = 1, . . . , n (lj < hj). The agents’ vector positions are considered
possible solutions to the optimization problem. At initialization the agents
take random values in the limiting box:

xi,j(0) = lj + rndi,j(uj − lj), i = 1, . . . , N, j = 1, . . . , n (4.1)

where rndi,j are pseudo-random numbers uniformly generated in the
interval [0, 1). The iteration index is initialized to k = 0. The objective
function f(x) is evaluated in the current agent positions xi(0), i = 1, . . . , N :
fi(0) = f(xi(0)), i = 1, . . . , N .

A first termination condition is defined when the current iteration index
k attains the maximum number of iterations itermax. A second termination
condition is defined when the diameter of the current population of agents
becomes less than the required precision ε:

d(k) =

(
n∑
j=1

(dj(k))2

) 1
2

< ε (4.2)

where the overall population diameter d(k) is calculated according to the
Euclidian distance, and the diameters on each dimension are calculated as the
maximum absolute difference between two position values on that dimension
over all the agents in the population:

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 19

dj(k) = max
1≤i1,i2≤N,i1 6=i2

{|xi1,j(k)− xi2,j(k)|},

j = 1, . . . , n
(4.3)

A still further termination condition is defined when a flat region is
detected. It can appear when the objective function f(x) depends only on a
subset of its parameters, and it can be easily checked as:

fmax(k)− fmin(k) < εf (4.4)

with

fmax(k) = max
1≤i1≤N

{fi1(k)} (4.5)

fmin(k) = min
1≤i2≤N

{fi2(k)} (4.6)

where fi(k) = f(xi(k)), i = 1, . . . , N and εf is a very small value. If
any of the termination conditions is satisfied the iterative process is stopped
(the loop is broken) and the agent which gives fmin(k) positioned in xmin(k)
is taken as the solution to the global optimization problem. Otherwise the
iteration index is incremented to k+ 1 and the computation continues to the
next iteration.

The differential mutation adds a scaled, randomly sampled, vector
difference to a third randomly sampled vector to create a mutant vector:

vi(k + 1) = xr3(k) + F (xr1(k)− xr2(k)) i = 1, . . . , N (4.7)

The scale factor, F ∈ (0, 1+), is a positive real number that controls the
rate at which the population evolves. While there is no upper limit on F ,
effective values are seldom greater than 1. The base vector index, r3, can be
determined in a variety of ways, but for now it is assumed to be a randomly
chosen vector with an index that is different from the target vector’s index, i.
Except for being distinct from each other and from both the base and target
vector indexes (i 6= r1 6= r2 6= r3), the difference vector indexes, r1 and r2,
are also randomly selected once per mutation.

To complement the differential mutation search strategy, DE also
employs the binomial (or uniform) crossover. Sometimes referred to as
discrete recombination, the binomial crossover builds trial vectors out of
parameter values that have been copied from two different vectors. In
particular, DE crosses each vector with the mutant vector:

20 George Anescu An. U.V.T.

ui,j(k + 1) =

{
vi,j(k + 1) if rndi,j < Cr or j = jrand

xi,j(k) otherwise
(4.8)

i = 1, . . . , N, j = 1, . . . , n

The crossover probability, Cr ∈ [0, 1), is a user-defined value that controls
the fraction of parameter values that are copied from the mutant. In addition,
the trial vector component with randomly chosen index, jrand, is taken from
the mutant to ensure that the trial vector does not duplicate xi(k). Due to
this additional demand, Cr only approximates the true probability that a trial
parameter will be inherited from the mutant. The objective function f(x) is
evaluated in all the new proposed trial vectors ui(k + 1), i = 1, . . . , N . If
the trial vector, ui(k + 1), has an objective function value less than or equal
to that of its target vector, xi(k), it replaces its target vector in the next
iteration; otherwise, the target retains its place in the population for at least
one more iteration:

xi(k + 1) =

{
ui(k + 1) if f(ui(k + 1)) ≤ f(xi(k))

xi(k) otherwise
i = 1, . . . , N (4.9)

By comparing each trial vector with the target vector from which it
inherits components, DE more tightly integrates recombination and selection
than do other Evolutionary Algorithms.

5 Testing Methodology

The purpose of the testing experiments was to prove that some gradual
modifications applied to the classical scheme DE/rand/1/bin are producing
cumulative improvements in the performance of the modified algorithm. As
an initial reference for comparison, the classical scheme DE/rand/1/bin with
fixed balanced values for the control parameters, F = 0.5 and Cr = 0.5, was
chosen, and as execution mode the asynchronous mode was chosen.

The asynchronous mode is considered advantageous over the synchronous
mode because it permits the improved solutions to contribute to the evolution
immediately and in this way can speed up the convergence of the algorithm
(see [11]). Other advantages of the asynchronous mode are the reduced
memory requirements for the population (in opposition to the synchronous

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 21

mode, it does not need a buffer with the previous population) and its inherent
suitability for parallelization.

After each modification the results of the current modification were
compared side by side with the results of the previous algorithmic variant
(without the current modification).

In order to conduct the tests an appropriate testing methodology was
devised (see also [16], [17]). When the quality of an optimization method is
estimated, two often conflicting characteristics are of interest: a small number
of function evaluations, NFE, and a high success rate, SR. For test functions
with known solutions the success can be simply defined as the achievement
of an absolute or relative precision tolerance to the known solutions. By
fixing the tolerance and choosing itermax high enough so that it is never
attained before the tolerance is attained, it becomes easy to measure the SR
and average NFE to success (µ(NFE)). When SR is not expressed as a
percentage, it can also be interpreted as the probability of success for a single
run of the method for the considered test function in fixed run conditions.
There are other testing methodologies frequently applied in practice, like
for example based on fixing NFE and reporting the best, the worst and
the median results obtained after the fixed NFE is exhausted, but in our
opinion such methodologies are not recognizing the importance of success
rate and are concealing it from reporting. A very efficient method (with a
fast convergence), but with a low success rate, cannot be considered better
than a less efficient method, but with a high success rate, because the former
may need many repeated runs in order to obtain the correct result, while the
later may get the correct result in less runs, which can entail a larger overall
NFE (obtaining by summation) for the former compared to the later.

A test bed of 11 known scalable multimodal optimization functions (10
unconstrained and 1 constrained, see [18], [19], [20], [21], [22]) were used for
the tests run on the initial DE scheme and the gradually improved algorithm:

• Rastrigin’s Function - highly multimodal with the locations of the
minima regularly distributed, global minimum value of 0 at (0, 0, . . . , 0)

f1(x) = 10n+
n∑
j=1

[x2
j − 10 cos(2πxj)],

− 5.12 ≤ xj ≤ 5.12, j = 1, . . . , n

(5.1)

• Alpine 1 Function - highly multimodal, global minimum value of 0 at
(0, 0, . . . , 0)

22 George Anescu An. U.V.T.

f2(x) =
n∑
j=1

(|xj sin(xj)|+ 0.1|xj|),

− 10 ≤ xj ≤ 10, j = 1, . . . , n

(5.2)

• Alpine 2 Function - highly multimodal, global maximum value of 2.808n

at (7.917, 7.917, . . . , 7.917)

f3(x) =
n∏
j=1

√
xj sin(xj),

0 ≤ xj ≤ 10, j = 1, . . . , n

(5.3)

• Griewangk’s Function - many widespread local minima regularly
distributed with the global minimum of 0 at (0, 0, . . . , 0)

f4(x) =
1

4000

n∑
j=1

x2
j −

n∏
j=1

cos

(
xj√
j

)
+ 1,

− 100 ≤ xj ≤ 100, j = 1, . . . , n

(5.4)

• Schwefel’s Function - many widespread local minima distributed at
distance from the origin with the global minimum of −418.9829 at
(420.9687, 420.9687, . . . , 420.9687)

f5(x) = − 1

n

n∑
j=1

xj sin

(√
|xj|
)
,

− 500 ≤ xj ≤ 500, j = 1, . . . , n

(5.5)

• Paviani’s Function - many local minima with the global minimum of
−45.77847 at (9.351, 9.351, . . . , 9.351) for n = 10, −9549.89061 at
(9.9658, 9.9658, . . . , 9.9658) for n = 20, and respectively −99786.45525
at (9.9993, 9.9993, . . . , 9.9993) for n = 30:

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 23

f6(x) =
n−1∑
j=1

[
log(xj − 2)2 + log(10− xj)2

]
−

(
n−1∏
j=1

xj

)0.2

,

2.0001 ≤ xj ≤ 9.9999, j = 1, . . . , n

(5.6)

• Expanded Schaffer’s Function - many local minima with the global
minimum of 0 at (0, 0, . . . , 0)

f7(x) = g(x1, x2) + g(x2, x3) + . . .+ g(xn, x1),

− 10 ≤ xj ≤ 10, j = 1, . . . , n
(5.7)

where

g(x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

1 + 0.001(x2 + y2)2
(5.8)

• Michaelwitz’s Function - highly multimodal with global minimum of:
−0.966015 for n = 10, −0.9818507 for n = 20, and respectively
−0.9876481 for n = 30:

f8(x) = − 1

n

n∑
j=1

sin(xj) sin2m

(
jx2

j

π

)
,

m = 10, 0 ≤ xj ≤ π, j = 1, . . . , n

(5.9)

• Ackley’s Function - highly multimodal with global minimum of 0 at
(0, 0, . . . , 0):

f9(x) = 20 + e− 20e

−0.2

 1
n

n∑
j=1

x2
j


1/2

− e

1
n

n∑
j=1

cos(2πxj)

,

− 30 ≤ xj ≤ 30, j = 1, . . . , n

(5.10)

24 George Anescu An. U.V.T.

• Non-Linear Function - highly multimodal, many global minima of 0:

f10(x) = n− 1 +
n−1∑
j=1

cos

(
|xj+1 − xj|

|xj + xj+1|+ 10−10

)
,

− 10 ≤ xj ≤ 10, j = 1, . . . , n

(5.11)

• Keane’s Bump Function - highly multimodal open constrained
problem, best known global minima for different search space
dimensions were used during testing (−0.747310362 for n = 10,
−0.803619104 for n = 20, and respectively −0.821878040697 for
n = 30):

f11(x) = −

∣∣∣∣∣∣
{

n∑
j=1

cos(xj)
4 − 2

n∏
j=1

cos(xj)
2

}
/

(
n∑
j=1

jx2
j

)0.5
∣∣∣∣∣∣ ,

g1(x) = 0.75−
n∏
j=1

xj ≤ 0.0,

g2(x) =
n∑
j=1

xj − 7.5n ≤ 0.0,

0.0 ≤ xj ≤ 10.0, j = 1, . . . , n

(5.12)

Note that the global minimum −0.821878040697 for n = 30 was found
during testing and it is an improvement over −0.818056222 reported in
[22].

All the test functions with global optima in origin (f1, f2, f4, f7 and f9)
were shifted, considering that the origin is favored by DE type methods and
this peculiarity can interfere in the results. The origins for the dimensions
were shifted to the corresponding components of the position x0 with:

x0j = lj +
j(uj − lj)
n+ 1

, j = 1, . . . , n. (5.13)

The ultimate purpose of the improvements tested in this study was to
eliminate the dependence of the algorithm on fixed control parameters F
and Cr, but in the process care has to be taken in order to not introduce new
parameters that need tuning from the part of the practitioner, and in this

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 25

way only deferring the problem of parameter elimination. Related to the
third control parameter, the population size N , the recommendation from
K. Price and R. Storn was taken into consideration (see [1]) that N should
be reasonably chosen between 5 × n and 10 × n (n being the dimension of
the search space), but for the constrained test function even larger N than
recommended was considered. The tests on the gradual improvements were
conducted only for n = 10 and for the first 10 unconstrained test functions,
but for the final tests, where the purpose was to investigate how the final
FSA-DE algorithm compares to the initial DE/rand/1/bin scheme when n
increases (n = 20 and n = 30), the 11-th constrained test function was also
introduced in the testbed.

6 First Improvement, Randomizing the Scale Factor

In order to eliminate the F control parameter from equation (4.7), as the first
modification, was tested the randomization in the real interval [0, 1) of the F
control parameter for all the components of the vector difference. This type
of modification is a particular case of a more general modification known in
the DE literature as Jitter scheme (see [3], [23]), where F is pseudo-randomly
modified for all vector components around a midpoint and within a defined
range, for example, in our case the midpoint is 0.5 and the range is 0.5, but
in order to keep the explanation simple it can be better interpreted that
the vector difference in equation (4.7) is between a pseudo-randomly point
selected inside the hyper-rectangle defined by the two agent positions xr1
and xr2 (the agent positions being the end points of a main diagonal of the
hyper-rectangle), and position xr2 :

vi(k + 1) = xr3(k) + ri ⊗ (xr1(k)− xr2(k)) i = 1, . . . , N (6.1)

where ri is a vector of pseudo-random real numbers uniformly distributed
in the [0, 1) real interval and the symbol ⊗ has the meaning of component
by component vector product.

Table 1 presents the comparative testing results between the initial
scheme DE/rand/1/bin with fixed parameters, F = 0.5 and Cr = 0.5, and
FSA-DE with the first modification, for n = 10. From the success rate
perspective can be observed that FSA-DE performed better for f10, while for
the other test functions both methods produced excellent results. From the
efficiency perspective the results were mixed, FSA-DE surpassed the initial
scheme for f1, f3, f5, f7, f8 and f10, but not for the other test functions,

26 George Anescu An. U.V.T.

Table 1: FSA-DE first improvement versus DE/rand/1/bin with fixed
parameters F = 0.5 and Cr = 0.5, n = 10, runs = 100, tolerance = 0.1%,
N = 100

Fn SR% µ(NFE) SR% µ(NFE)
DE/rand/1/bin DE/rand/1/bin FSA-DE first FSA-DE first

f1 100% 78339 100% 51548
f2 100% 15527 100% 15868
f3 100% 22553 100% 18448
f4 100% 81007 100% 83592
f5 100% 13652 100% 12811
f6 100% 6553 100% 6780
f7 100% 419626 100% 239754
f8 98% 42323 98% 35352
f9 100% 19743 100% 21046
f10 65% 599369 87% 443683

although when FSA-DE was surpassed the differences were relatively small.
Overall, the improvements may seem small, but the important achievement
is that the parameter F was eliminated almost without any degradation in
performance. Also, as n increases the modification can provide a better
exploration of the search space, considering that for fixed F the number
of choices for new positions is limited, since the number of arrangements
(r1, r2, r3) is limited and each arrangement provides only one new possible
position, while with the randomization scheme can be explored continuous
portions of the search space.

7 Second Improvement, Random Greedy Selection

The index r3 in equation (6.1) was previously selected as a pseudo-random
index different from the target agent index i. In order to increase the
efficiency, at this step a different selection method, Random Greedy Selection
(RGS) (see [16]), was considered. In RGA the index r3 is pseudo-randomly
selected (according to the uniform discrete distribution) from the set li of
indexes of agents with better fitness than the target agent with index i:

li = {r3 : 1 ≤ r3 ≤ N ; r3 6= i; and f(xr3) < f(xi)} (7.1)

Table 2 presents the comparative testing results, obtained for n = 10,
between the first scheme of FSA-DE and the second scheme of FSA-DE.
From the success rate perspective the results were mixed, it can be observed
that the second scheme of FSA-DE was better than the first scheme of FSA-
DE for f10, but it lost in performance for f4 and f8, the loss for f8 being more
serious. For the other test functions both methods produced the maximum

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 27

Table 2: FSA-DE second improvement versus FSA-DE first improvement,
n = 10, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
FSA-DE first FSA-DE first FSA-DE second FSA-DE second

f1 100% 51548 100% 33803
f2 100% 15868 100% 11096
f3 100% 18448 100% 12643
f4 100% 83592 98% 51814
f5 100% 12811 100% 9118
f6 100% 6780 100% 5233
f7 100% 239754 100% 123739
f8 98% 35352 85% 24178
f9 100% 21046 100% 14299
f10 87% 443683 99% 192980

success rate percentage. From the efficiency perspective the results were
excellent with the efficiency increasing for all test functions, notably for f7

and f10.

8 Third Improvement, Randomizing the Crossover
Probability

The main problems identified in Table 2 consist in a still low efficiency for
test functions f7 and f10 and a relatively low success rate for test function f8

(when compared with the results obtained for the other test functions). In
order to fix these problems, without affecting the other test functions, here
was tested the randomization of the crossover probability Cr by selecting
it in an uniformly pseudo-random manner from the real interval [0, 1),
independently for each agent.

Table 3: FSA-DE third improvement versus FSA-DE second improvement,
n = 10, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
FSA-DE second FSA-DE second FSA-DE third FSA-DE third

f1 100% 33803 100% 28596
f2 100% 11096 100% 11904
f3 100% 12643 100% 13580
f4 98% 51814 99% 47395
f5 100% 9118 100% 9963
f6 100% 5233 100% 5512
f7 100% 123739 100% 85812
f8 85% 24178 93% 23886
f9 100% 14299 100% 15309
f10 99% 192980 98% 163478

Table 3 presents the comparative testing results, obtained for n = 10,

28 George Anescu An. U.V.T.

between the second scheme of FSA-DE and the third scheme of FSA-DE.
From the success rate perspective the results were mixed, with a small
increase for f4, a small decrease for f10 and a more important increase for
f8. The efficiency was further improved for f7 and f10 with small mixed
differences for the rest of test functions: relatively small increases for f1, f4

and f8, and relatively small decreases for f2, f3, f5, f6 and f9.

9 Fourth Improvement, Adaptive Gaussian
Distribution for Crossover Probability

The randomization of Cr implemented in the third FSA-DE step produced
overall only a small improvement. In the fourth improvement the idea to
use a probability distribution for sampling the crossover probability Cr was
kept, but the uniform probability distribution was replaced with a gaussian
probability distribution which is using the fitness improvement to guide its
evolution during the optimization process. Initially, at iteration k = 0, was
used the probability distribution Cr ∼ N(µ(0), σ(0)) with µ(0) = 0.5 and
σ(0) = 0.25, then it was recursively evolved at iteration k to N(µ(k), σ(k)).
At each iteration a specific crossover probability was associated to each agent
by sampling the probability distribution calculated at the previous step, for
example considering that the current iteration index is k + 1, the associated
crossover probabilities cri(k + 1) are sampled according to the probability
distribution at the previous iteration, Cr ∼ N(µ(k), σ(k)). After evolving all
the agents, a fitness improvement was associated to each agent:

∆fi(k + 1) = f(xi(k))− f(xi(k + 1)) (9.1)

Note that for the agents which are not improving at step k+1, the fitness
improvements are 0, but they are not affecting the computations that follow.
The updated µ(k + 1) and σ(k + 1) are computed according to:

µ(k + 1) =

N∑
i=1

cri(k + 1)∆fi(k + 1)

N∑
i=1

∆fi(k + 1)

(9.2)

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 29

σ(k + 1) =


N∑
i=1

∆fi(k + 1)(cri(k + 1)− µ(k + 1))2

N∑
i=1

∆fi(k + 1)


1
2

(9.3)

where each agent’s crossover probability is weighted proportionally to its
fitness improvement, in this way the agents with better fitness improvement
contributing more substantially to the shaping of the new probability
distribution, N(µ(k + 1), σ(k + 1)).

Other rules applied are that σ(k + 1) is limited to the real interval
[0.05, 0.25], from considerations that for σ > 0.25 the gaussian is becoming
too flat and for σ < 0.05 it is becoming to narrow, and both conditions
may impede the correct dynamic evolution of the probability distribution.
If the number of improved agents becomes less than 5% of the population
size N , then for the next step the probability distribution is switched to
the uniform probability distribution Cr ∼ U(0, 1), from considerations that
a stagnation state was attained and the data are insufficient to correctly
evolve the gaussian probability distribution.

Table 4: FSA-DE fourth improvement versus FSA-DE third improvement,
n = 10, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
FSA-DE third FSA-DE third FSA-DE fourth FSA-DE fourth

f1 100% 28596 100% 18628
f2 100% 11904 100% 11259
f3 100% 13580 100% 13848
f4 99% 47395 100% 33508
f5 100% 9963 100% 9108
f6 100% 5512 100% 5025
f7 100% 85812 100% 89892
f8 93% 23886 98% 16604
f9 100% 15309 100% 14069
f10 98% 163478 100% 191337

Table 4 presents the comparative testing results, obtained for n = 10,
between the third scheme of FSA-DE and the fourth scheme of FSA-DE.
From the success rate perspective the results were excellent, it produced
maximum success rate percentages for all test functions with the exception
of f8, but the increase for f8 was notable. For efficiency the results were
mixed with notable increases for f1, f2, f4, f5, f6, f8 and f9, a small decrease
for f3, but decreases for f7 and f10.

30 George Anescu An. U.V.T.

10 Fifth Improvement, the Resetting Mechanism

The main problem at this step was the relatively reduced efficiency of FSA-
DE for f7 and f10. It was assumed that it is due to a stagnation phenomenon
which occurs for these two test functions in the optimization process, and in
order to mitigate the problem, an idea inspired from the Scout Bees Phase
in Artificial Bee Colony (ABC) optimization method (see [24]) was used.
A limit parameter was introduced, similar to the one used in ABC, and a
stagnation count, associated to each agent, was updated at each iteration.
At each iteration at most one agent was reset, the one with the highest
stagnation count, but only if its stagnation count was higher than limit.
Some recommendations are made in the original ABC paper ([24]) for setting
the limit parameter, but here we preferred a more dynamic setting also
tested in [16], limit = 4 × n. Also, for further improvement in efficiency,
the reset position of the agent is determined in a uniformly pseudo-random
manner inside the current hyper-rectangle that is limiting the agents (also
recommended in [16]) with lower and upper limits l(k + 1) and respectively
u(k + 1) determined on each dimension:

lj(k + 1) = min
1≤i≤N

{xi,j(k + 1)} (10.1)

uj(k + 1) = max
1≤i≤N

{xi,j(k + 1)} (10.2)

Table 5: FSA-DE fifth improvement (final) versus FSA-DE fourth
improvement, n = 10, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
FSA-DE fourth FSA-DE fourth FSA-DE fifth FSA-DE fifth

f1 100% 18628 100% 18830
f2 100% 11259 100% 11239
f3 100% 13848 100% 14276
f4 100% 33508 100% 34603
f5 100% 9108 100% 9245
f6 100% 5025 100% 5125
f7 100% 89892 100% 66707
f8 98% 16604 98% 16897
f9 100% 14069 100% 14049
f10 100% 191337 100% 80964

Table 5 presents the comparative testing results, obtained for n =
10, between the fourth improvement scheme of FSA-DE and the fifth
improvement scheme of FSA-DE. It can be observed from the table that
the success rate was not affected by the modification, but the efficiency
was notably improved for the problematic functions f7 and f10, which is

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 31

a proof that the assumption related to the stagnation was correct. The
other test functions were very little affected with mixed results: the efficiency
somewhat increased for f2 and f9, but it somewhat decreased for the other
test functions.

11 Increasing the Search Space Dimension

In the last phase of the testing experiments the purpose was to investigate
how the performance of the novel FSA-DE method is affected by the increase
of the search space dimension n, and to compare it with the performance of
the reference scheme DE/rand/1/bin with fixed parameters, F = 0.5 and
Cr = 0.5. The constrained test function f11 was also introduced in the
testbed.

Table 6: FSA-DE versus DE/rand/1/bin with fixed parameters F = 0.5 and
Cr = 0.5, n = 10, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
DE/rand/1/bin DE/rand/1/bin FSA-DE FSA-DE

f1 100% 78339 100% 18830
f2 100% 15527 100% 11239
f3 100% 22553 100% 14276
f4 100% 81007 100% 34603
f5 100% 13652 100% 9245
f6 100% 6553 100% 5125
f7 100% 419626 100% 66707
f8 98% 42323 98% 16897
f9 100% 19743 100% 14049
f10 65% 599369 100% 80964
f∗11 100% 35656 100% 25316

Table 7: FSA-DE versus DE/rand/1/bin with fixed parameters F = 0.5 and
Cr = 0.5, n = 20, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
DE/rand/1/bin DE/rand/1/bin FSA-DE FSA-DE

f1 100% 392308 100% 39458
f2 100% 37684 100% 25500
f3 100% 55030 100% 33163
f4 99% 45719 99% 27546
f5 100% 34286 100% 18980
f6 100% 12867 100% 9283
f7 0% N/A 100% 307805
f∗7 1% 1347300 N/A N/A
f8 90% 1116672 98% 58203
f9 100% 45965 100% 30869
f10 12% 962341 54% 379477
f∗∗11 100% 95874 100% 95189

32 George Anescu An. U.V.T.

Table 8: FSA-DE versus DE/rand/1/bin with fixed parameters F = 0.5 and
Cr = 0.5, n = 30, runs = 100, tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE)
DE/rand/1/bin DE/rand/1/bin FSA-DE FSA-DE

f1 5% 1389280 100% 62816
f2 100% 67173 100% 40827
f3 100% 122259 100% 55105
f4 100% 57400 100% 35731
f5 100% 67695 100% 28784
f6 100% 21993 100% 14230
f7 0% N/A 100% 755490
f∗7 0% N/A N/A N/A
f8 0% N/A 100% 230411
f∗8 0% N/A N/A N/A
f9 100% 78754 100% 48521
f10 0% N/A 23% 896867
f∗10 1% 878400 N/A N/A
f∗∗11 100% 371211 100% 366342

In the tables the star sign (∗) in the first column signifies that the test
was repeated with increased tolerance (tolerance = 1%), while the double
star sign (∗∗) signifies that a different value for parameter N was used (it
applied only to f11 and it was set to N = 200 for n = 10, 20, and N = 400
for n = 30). The abbreviation “N/A” in Tables 6, 7 and 8 has the meaning of
“not applicable” and it is used for µ(NFE) when the optimization problem
cannot be solved (SR% is 0), and also for both µ(NFE) and SR% when a test
is repeated with an increased tolerance for the method which is not able to
solve the optimization problem with the usual tolerance (0.1%), but it is not
repeated for the method which provides good results with the usual tolerance,
because it is not considered of interest (Note: when SR% is “N/A” it does
not mean that the optimization problem cannot be solved, quite the opposite,
with a more relaxed tolerance the SR% would be expected to increase).

Table 6 presents the comparative testing results, obtained for n = 10,
between the final FSA-DE method and the initial scheme DE/rand/1/bin.
It can be observed that for FSA-DE the success rate was notably increased
for f10, while for the other test functions both methods produced excellent
results. The efficiency increased for all the test functions, notably for f1, f4,
f7, f8 and f10.

Table 7 presents the comparative testing results, obtained for n = 20,
between the final FSA-DE method and the initial scheme DE/rand/1/bin.
From the success rate perspective DE/rand/1/bin started having problems
for f8, had serious problems for f10, and was not able to solve f7, while
FSA-DE produced excellent results for all test functions with the exception
of f10. From the efficiency perspective FSA-DE was clearly better than
DE/rand/1/bin for all the test functions that the later was also able to solve,

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 33

with the exception of f11 where the difference was small.
Table 8 presents the comparative testing results, obtained for n = 30,

between the final FSA-DE method and the initial scheme DE/rand/1/bin.
From the success rate perspective DE/rand/1/bin had serious problems for
f1, was not able to solve f7, f8 and f10, but was able to solve the other
problems with maximum success rate percentages, while FSA-DE had serious
problems with f10, but for the other test functions produced the maximum
success rate percentages. From the efficiency perspective FSA-DE is clearly
better for all the test functions that DE/rand/1/bin was also able to solve
with the exception of f11, where the difference was small.

As a general conclusion, with the increase of the search space dimension,
FSA-DE was able to solve all the test functions, while DE/rand/1/bin was
not able to solve some of the test functions. Both methods were able to
produce excellent success rates for the test functions with a regular structure
of the modes (the modes arranged in a lattice structure parallel with the
coordinate system), while the improved FSA-DE method clearly provided
better success rates for test functions not presenting regularly structured
modes. The improved FSA-DE method was consistently more efficient than
DE/rand/1/bin for all test functions and in some cases the improvement was
notable.

12 Conclusions

In the paper was built an improved variant of the DE scheme, named Fast
Self-Adaptive DE (FSA-DE), by implementing and testing a set of gradual
and cumulative improvements to the initial DE/rand/1/bin scheme with
fixed control parameters, F = 0.5 and Cr = 0.5. The purpose was to finally
obtain an improved optimization method in both success rate and efficiency,
while eliminating the dependence on the control parameters F and Cr. For
testing purposes a set of 11 scalable, multimodal, continuous optimization
functions (10 unconstrained and 1 constrained) with known global solutions
was selected. The tested modifications consisted in the randomization of
the F control parameter (a simple jitter scheme), a more efficient Random
Greedy Selection scheme, an adaptive scheme for the Cr control parameter
and a resetting scheme for the agents’ positions. The testing was conducted
by employing a testing methodology which emphasizes the importance
of both success rate and efficiency. Finally there was investigated the
performance degradation of the compared optimization methods with the
increase of the search space dimension. The novel FSA-DE method was able

34 George Anescu An. U.V.T.

to solve all the test functions for all the considered search space dimensions
in the given test conditions. The main differences were observed for test
functions not presenting regularly structured modes, for which the initial
scheme presented serious difficulties with the increase of the search space
dimension, while the novel method was able to solve all of them with an
overall good performance.

References

[1] K. Price and R. Storn, Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces, Journal of Global
Optimization, 11 (4), (1997), 341–359

[2] R. Storn, On the usage of differential evolution for function optimization, Biennial
Conference of the North American Fuzzy Information Processing Society (NAFIPS),
(1996), 519–523

[3] K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical
Approach to Global Optimization, Springer-Verlag, Berlin, Heidelberg, 2005

[4] J. Liu and J. Lampinen, On setting the control parameter of the differential
evolution method, Proceedings of the 8th International Conference on Soft Computing
(MENDEL), (2002), 11–18

[5] D. Zaharie, Critical values for the control parameters of differential evolution
algorithms, Proceedings of the 8th International Conference on Soft Computing
(MENDEL), (2002), 62–67

[6] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft
Computing, 9 (6), (2005), 448–462

[7] A.K. Qin and P.N. Suganthan, Self-adaptive differential evolution algorithm
for numerical optimization, In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), 2005, 2, (2005), 1785–1791

[8] A.K. Qin, V.L. Huang, and P.N. Suganthan, Differential evolution algorithm
with strategy adaptation for global numerical optimization, IEEE Transactions on
Evolutionary Computation, 13 (2), (2008), 398–417

[9] J. Brest, S. Greiner, B. Bosković, M. Mernik, and V. Zumer,
Self-adapting control parameters in differential evolution: a comparative study on
numerical benchmark functions, IEEE Transactions on Evolutionary Computation,
10 (6), (2006), 646–657

[10] S. Das and P.N. Suganthan, Differential Evolution: A Survey of the State-of-
the-Art, IEEE Transactions on Evolutionary Computation, 15 (1), (2011), 4–31

[11] S. Das, P.N. Suganthan, and S.S. Mullick, Recent advances in differential
evolution - An updated survey, Swarm and Evolutionary Computation, 27 (1), (2016),
1–30

Vol. LIV (2016) Gradual and Cumulative Improvements to DE/rand/1/bin 35

[12] F. Neri and V. Tirronen, Recent advances in differential evolution: a survey and
experimental analysis, Artificial Intelligence Review, 33 (1-2), (2010), 61–106

[13] J.D. Pintér, Global Optimization: Software, Test Problems, and Applications, Ch.
15 in Handbook of Global Optimization, Volume 2, (Ed. P. M. Pardalos and H. F.
Romeijn), Kluwer Academic Publishers, Dordrecht, Boston, London, 2002

[14] K. Deb, An efficient constraint handling method for genetic algorithms, Computer
Methods in Applied Mechanics and Engineering, 186 (2-4), (2000), 311–338

[15] R. Mallipeddi and P.N. Suganthan, Differential Evolution with Ensemble
of Constraint Handling Techniques for solving CEC 2010 Benchmark Problems, In
Proceedings IEEE Congress on Evolutionary Computation (CEC), 2010, 1–8

[16] G. Anescu and I. Prisecaru, NSC-PSO, a novel PSO variant without speeds and
coefficients, Proceedings of 17th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2015, 460–467

[17] G. Anescu, An imperialistic strategy approach to continuous global optimization
problem, Proceedings of 16th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2014, 549–556

[18] Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs,
Springer-Verlag, New York, 1994

[19] J. Momin and Yang Xin-She, A literature survey of benchmark functions for
global optimization problems, Int. Journal of Mathematical Modelling and Numerical
Optimisation, 4 (2), (2013), 150–194

[20] M. Molga and C. Smutnicki, Test functions for optimization needs,
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf (last time
accessed in February, 2016), (2005), 1–43

[21] A.J. Keane, Experiences with optimizers in structural design, Proceedings of the
1st Conf. on Adaptive Computing in Engineering Design and Control, University of
Plymouth, UK, (1994), 14–27

[22] S.K. Mishra, Minimization of Keane’s Bump Function by the Repulsive
Particle Swarm and the Differential Evolution Methods, http://mpra.ub.uni-
muenchen.de/3098/ (last time accessed in February, 2016), (2007), 1–12

[23] R. Storn, Optimization of wireless communications applications using differential
evolution, In SDR Technical Conference, Denver, (2007)

[24] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, Journal of Global
Optimization, 39 (3), (2007), 459–471

George Anescu

Power Engineering Faculty, Polytechnic University of Bucharest
313 Splaiul Independentei, 060042, Bucharest, Romania

E-mail: george.anescu@gmail.com

Received: 23.09.2016

Accepted: 2.12.2016

