Analele Universității de Vest, Timisoara Seria Matematică – Informatică LIV, 2, (2016), 117-130

Characterization of Dini Lipschitz Functions in Terms of Their Helgason Transform

Salah El Ouadih and Radouan Daher

Abstract. In this paper, using a generalized translation operator, we obtain an analog of Younis Theorem 5.2 in [6] for the Helgason Fourier transform of a set of functions satisfying the Dini Lipschitz condition in the space L^2 for functions on noncompact rank one Riemannian symmetric spaces.

AMS Subject Classification (2000). 42B37 **Keywords.** Symmetric space; Helgason Fourier transform; Dini Lipschitz condition; Generalized translation operator.

Introduction 1

Younis Theorem 5.2 [6] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have:

(i)
$$||f(x+t) - f(x)|| = O\left(\frac{t^{\delta}}{(\log \frac{1}{t})^{\gamma}}\right)$$
, as $t \to 0, 0 < \delta < 1, \gamma \ge 0$,

$$\begin{array}{ll} \textbf{Theorem 1.1.} \ \ ([6]) \ Let \ f \in L^2(\mathbb{R}). \ \ Then \ the \ following \ are \ equivalents \\ (i) \quad \|f(x+t) - f(x)\| = O\left(\frac{t^\delta}{(\log \frac{1}{t})^\gamma}\right), \quad as \quad t \to 0, 0 < \delta < 1, \gamma \ge 0, \\ (ii) \quad \int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O\left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty, \\ \end{array}$$

where \hat{f} stands for the Fourier transform of f.

In this paper, for rank one symmetric spaces, we prove the generalization of Theorem 1.1 for the Helgason Fourier transform of a class of functions satisfying the Dini Lipschitz condition in the space L^2 . For this purpose, we use the generalized translation operator. We point out that similar results have been established in the context of non compact rank one Riemannian symetric spaces [9].

2 Helgason Fourier Transformation on Symmetric Spaces

Here we collect the necessary facts about the Fourier transformation on symmetric spaces and the spherical Fourier transformation (see [1,2]). For the required properties of semisimple Lie groups and symmetric spaces, we refer the reader, e.g., to [3,4]. An arbitrary Riemannian symmetric space X of noncompact type can be represented as the factor space G/K, where G is a connected noncompact semisimple Lie group with finite center, and K is a maximal Compact subgroup of G. ON X = G/K the group G acts transitively by left shifts, and K coincides with the stabilizer of the point o = eK(e is the unity of G). Let G = NAK be an Iwasawa decomposition for G, and let $\mathfrak{g}, \mathfrak{k}, \mathfrak{a}, \mathfrak{n}$ be the Lie algebras of the groups G, K, A, N, respectively. We denote by M we mean the centralizer of the subgroup A in K and put B = K/M. Let dx be a G-invariant measure on X; the symbols db and dk will denote the normalized K-invariant measures on B and K, respectively. We denote by \mathfrak{a}^* the real space dual to \mathfrak{a} , and by W the finite Weyl group acting on \mathfrak{a}^* . Let \sum be the set of restricted roots ($\sum \subset \mathfrak{a}^*$), Let \sum^+ be the set of restricted positive roots, and let

$$\mathfrak{a}^+ = \left\{ h \in \mathfrak{a} : \alpha(h) > 0, \alpha \in \sum_{h=1}^+ \right\},$$

be the positive Weyl chamber. If ρ is the half-sum of the positive roots (with multiplicity), then $\rho \in \mathfrak{a}^*$. Let \langle , \rangle be the Killing form on the Lie algebra \mathfrak{g} . This form is positive definite on \mathfrak{a} . For $\lambda \in \mathfrak{a}^*$, let H_{λ} denote a vector in \mathfrak{a} such that $\lambda(H) = \langle H_{\lambda}, H \rangle$ for all $H \in \mathfrak{a}$. For $\lambda, \mu \in \mathfrak{a}^*$ we put $\langle \lambda, \mu \rangle := \langle H_{\lambda}, H_{\mu} \rangle$. The correspondence $\lambda \mapsto H_{\lambda}$ enables us to identify \mathfrak{a}^* and \mathfrak{a} . Via this identification, the action of the Weyl group W can be transferred to \mathfrak{a} . Let

$$\mathfrak{a}_{+}^{*} = \left\{ \lambda \in \mathfrak{a}^{*} : H_{\lambda} \in \mathfrak{a}^{+} \right\}.$$

If X is a symmetric space of rank 1, then dim $\mathfrak{a}^* = 1$, and the set \sum^+ consists of the roots α and 2α with some multiplicities a and b depending on

X (see [1]). In this case we identify the set \mathfrak{a}^* with \mathbb{R} via the correspondence $\lambda \leftrightarrow \lambda \alpha$, $\lambda \in \mathbb{R}$. Upon this identification positive numbers correspond to the set \mathfrak{a}_+^* . The numbers m_{α} and $m_{2\alpha}$ are frequent in various formulas for rank 1 symmetric spaces. For example, the area of a sphere of radius t on X is equal to

$$S(t) = c(\sinh t)^{m_{\alpha}} (\sinh 2t)^{m_{2\alpha}},$$

where c is some constant; the dimension of X is equal to

$$\dim X = m_{\alpha} + m_{2\alpha} + 1.$$

We return to the case in which X = G/K is an arbitrary symmetric space. Given $g \in G$, denote by $A(g) \in \mathfrak{a}$ the unique element satisfying

$$q = n \cdot \exp A(q) \cdot u$$

where $u \in K$ and $n \in N$. For $x = gK \in X$ and $b = kM \in B = K/M$, we put

$$A(x,b) := A(k^{-1}q).$$

We denote by $\mathcal{D}(X)$ and $\mathcal{D}(G)$ the sets of infinitely differentiable compactly-supported functions on X and G. Let dg be the element of the Haar measure on G. We assume that the Haar measure on G is normed so that

$$\int_X f(x)dx = \int_G f(go)dg, \quad f \in \mathcal{D}(X).$$

For a function $f(x) \in \mathcal{D}(X)$, the Helgason Fourier transform on X was introduced by S. Helgason (see [2] or [5]) and is defined by the formula

$$\widehat{f}(\lambda, b) := \int_X f(x)e^{(i\lambda + \rho)(A(x,b))} dx, \lambda \in \mathfrak{a}^*, b \in B = K/M.$$

We can norm the measure on X so that the inverse Fourier transform on X would have the form

$$f(x) = \frac{1}{|W|} \int_{\mathfrak{a}^* \times B} \widehat{f}(\lambda, b) e^{(i\lambda + \rho)(A(x,b))} |c(\lambda)|^{-2} d\lambda db,$$

where |W| is the order of the Weyl group, $d\lambda$ is the element of the Euclidean measure on \mathfrak{a}^* , and $c(\lambda)$ is the Harish-Chandra function. Henceforth, for brevity, we use the notation

$$d\mu(\lambda) := |c(\lambda)|^{-2} d\lambda.$$

Also, the Plancherel formula is valid:

$$||f||_2^2 := \int_X |f(x)|^2 dx = \frac{1}{|W|} \int_{\mathfrak{a}^* \times B} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db = \int_{\mathfrak{a}_{\perp}^* \times B} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db.$$

By continuity, the mapping $f(x) \mapsto \widehat{f}(\lambda, b)$ extends from $\mathcal{D}(X)$ to an isomorphism of the Hilbert space $L^2(X) = L^2(X, dx)$ onto the Hilbert space $L^2(\mathfrak{a}_+^* \times B, d\mu(\lambda)db)$.

Introduce the translation operator on X. Let $n = \dim X$. Denote by d(x, y) the distance between points $x, y \in X$ and let

$$\sigma(x;t) = \{ y \in X : d(x,y) = t \},$$

be the sphere of radius t > 0 on X centered at x. Let $d\sigma_x(y)$ be the (n-1)-dimensional area element of the sphere $\sigma(x;t)$ and let $|\sigma(t)|$ be the area of the whole sphere $\sigma(x;t)$ (it is independent of the point x). We denote by $C_0(X)$ the set of all continuous compactly-supported functions on X. Given $f(x) \in C_0(X)$, define the generalized translation operator S^h by the formula

$$(S^t f)(x) = \frac{1}{|\sigma(t)|} \int_{\sigma(x;t)} f(y) d\sigma_x(y), t > 0;$$

i.e., $(S^t f)(x)$ is the average of f over $\sigma(x;t)$.

Lemma 2.1. ([8]) The following inequality is valid for every function $f \in L^2(X)$ and every $t \in \mathbb{R}_+ = [0; +\infty)$:

$$||S^t f||_2 \le ||f||_2.$$

The polar decomposition of G takes the form $G = KA^+K$, where $A^+ = \{a_t = \exp(A(g)) : t \geq 0\}$. Following standard practice, functions f on X are identified with right K-invariant functions on G and write f(x) = f(g), where x = gK. In terms of this decomposition, the invariant measure dx on X has the form

$$dx = \Delta(t)dtdk$$
,

where $\Delta(t) = \Delta_{(\alpha,\beta)}(t) = (2\sinh t)^{2\alpha+1}(2\cosh t)^{2\beta+1}$, $\alpha = (m_{\alpha} + m_{2\alpha} - 1)/2$ and $\beta = (m_{2\alpha} - 1)/2$, and dk is normalized Haar measure on K. The Laplacian on X is denoted Λ and its radial part is given by

$$\Lambda_r = \frac{d^2}{dt^2} + \frac{\Delta'(t)}{\Delta(t)} \frac{d}{dt}.$$

The spherical function on X is the unique radial solution to the equation

$$\Lambda u = -(\lambda^2 + \rho^2)u$$

which is one at the origin of X.

An important role in harmonic analysis on symmetric spaces is played by spherical functions (see [1]). The Harish-Chandra formula for the spherical function is

$$\varphi_{\lambda}(x) = \int_{B} e^{(i\lambda + \rho)A(x,b)} db,$$

where db is normalized measure on B. If we write $x = ka_t K$, then it is well known that $\varphi_{\lambda}(x) = \varphi_{\lambda}^{(\alpha,\beta)}(t)$, where $\varphi_{\lambda}^{(\alpha,\beta)}(t)$ is Jacobi function of the first kind (see [10]).

Lemma 2.2. ([8]) If $f \in L^2(X)$, then

$$\widehat{S^t f}(\lambda, b) = \varphi_{\lambda}(t) \widehat{f}(\lambda, b), \quad \lambda, t \in \mathbb{R}_+ = [0; +\infty).$$

Lemma 2.3. ([7]) The following inequalities are valid for a spherical function $\varphi_{\lambda}(t)$ ($\lambda, t \in \mathbb{R}_{+}$)

- $(i) \quad |\varphi_{\lambda}(t)| \leq 1,$
- (ii) $1 \varphi_{\lambda}(t) \le t^2(\lambda^2 + \rho^2),$
- (iii) there is a constant c > 0 such that

$$1 - \varphi_{\lambda}(t) \ge c$$

for $\lambda t > 1$.

Lemma 2.4. ([8]) Suppose that f(x) and $\Lambda f(x)$ belong to $L^2(X)$. Then

$$\widehat{\Lambda f}(\lambda, b) = -(\lambda^2 + \rho^2)\widehat{f}(\lambda, b).$$

For $\alpha > \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind j_{α} defined by

$$j_{\alpha}(x) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(n+\alpha+1)}, \quad x \in \mathbb{R}.$$

Moreover, we see that

$$\lim_{x \to 0} \frac{j_{\alpha}(x) - 1}{x^2} \neq 0. \tag{2.1}$$

Lemma 2.5. ([9, Lemma 9]) Let $\alpha \geq \beta \geq \frac{-1}{2}$, $\alpha \neq \frac{-1}{2}$ and let $t_0 > 0$. Then for $|\nu| \leq \rho$, there exists a positive constant c_0 such that

$$|1 - \varphi_{\lambda + i\nu}^{(\alpha,\beta)}(t)| \ge c_0 |1 - j_\alpha(\lambda t)|,$$

for all $0 < t < t_0$.

For $f \in L^2(X)$, we define the finite differences of first and higher order as follows:

$$\Delta_t^1 f = \Delta_t f = (I - S^t) f,
\Delta_t^k f = \Delta_t (\Delta_t^{k-1} f) = (I - S^t)^k f, \quad k = 2, 3, ...,$$

where I is the unit operator in the space $L^2(X)$.

We denote by $W^{2,k}$, $k \in \mathbb{N}^*$, the Sobolev space constructed by the operator Λ , i.e.,

$$W^{2,k} = \{ f \in L^2(X); \Lambda^j f \in L^2(X), j = 0, 1, 2, ..., k \},$$

where $\Lambda^0 f = f$, $\Lambda^1 f = \Lambda f$, $\Lambda^m f = \Lambda(\Lambda^{m-1} f)$, m = 2, 3, ...

3 Dini Lipschitz Condition

Definition 3.1. Let $f \in W^{2,k}$, and define

$$\|\Delta_t^k \Lambda^m f\|_2 \le C \frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}, \quad \eta > 0, \gamma \ge 0,$$

i.e.,

$$\|\Delta_t^k \Lambda^m f\|_2 = O\left(\frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}\right),$$

for all m = 0, 1, ..., k, and for all sufficiently small t, C being a positive constant. Then we say that f satisfies a Dini Lipschitz of order η , or f belongs to $Lip(\eta, \gamma, 2)$.

Definition 3.2. If however

$$\frac{\|\Delta_t^k \Lambda^m f\|_2}{\frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}} \to 0, \quad as \quad t \to 0,$$

i.e.,

$$\|\Delta_t^k \Lambda^m f\|_2 = O\left(\frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}\right),$$

then f is said to be belong to the little Dini Lipschitz class $lip(\eta, \gamma, 2)$.

Remark 3.1. It follows immediately from these definitions that

$$lip(\eta, \gamma, 2) \subset Lip(\eta, \gamma, 2).$$

Theorem 3.1. Let $\eta > 1$. If $f \in Lip(\eta, \gamma, 2)$, then $f \in lip(1, \gamma, 2)$.

Proof. For $x \in X$, t small and $f \in Lip(\eta, \gamma, 2)$ we have

$$\|\Delta_t^k \Lambda^m f\|_2 \le C \frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}.$$

Then

$$(\log \frac{1}{t})^{\gamma} \|\Delta_t^k \Lambda^m f\|_2 \le Ct^{\eta}.$$

Therefore

$$\frac{(\log \frac{1}{t})^{\gamma}}{t} \|\Delta_t^k \Lambda^m f\|_2 \le Ct^{\eta - 1},$$

which tends to zero with $t \to 0$. Thus

$$\frac{(\log \frac{1}{t})^{\gamma}}{t} \|\Delta_t^k \Lambda^m f\|_2 \to 0, \quad t \to 0.$$

Then $f \in lip(1, \gamma, 2)$.

Theorem 3.2. If $\eta < \nu$, then $Lip(\eta, 0, 2) \supset Lip(\nu, 0, 2)$ and $lip(\eta, 0, 2) \supset lip(\nu, 0, 2)$.

Proof. We have $0 \le t \le 1$ and $\eta < \nu$, then $t^{\nu} \le t^{\eta}$. Then the proof of theorem is immediate.

4 New Results On Dini Lipschitz Class

Lemma 4.1. For $f \in W^{2,k}$, then

$$\|\Delta_t^k \Lambda^m f\|_2^2 = \int_0^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |1 - \varphi_{\lambda}(t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db,$$

where m = 0, 1, ..., k.

Proof. Using Lemma 2.2 we get

$$\widehat{\Delta_t^1 f}(\lambda, b)) = \widehat{f}(\lambda, b) - \widehat{S^t f}(\lambda, b)
= (1 - \varphi_{\lambda}(t)) \widehat{f}(\lambda, b),$$

and

$$\widehat{\Delta_t^k f}(\lambda, b) = (1 - \varphi_\lambda(t))^k \widehat{f}(\lambda, b). \tag{4.1}$$

Furthermore, we obtain by the Lemma 2.4

$$\widehat{\Lambda^m f}(\lambda, b) = (-1)^m (\lambda^2 + \rho^2)^m \widehat{f}(\lambda, b). \tag{4.2}$$

Using the formulas (4.1) and (4.2) we get

$$\widehat{\Delta_t^k \Lambda^m} f(\lambda, b) = (-1)^m (\lambda^2 + \rho^2)^m (1 - \varphi_\lambda(t))^k \widehat{f}(\lambda, b).$$

Now by Plancherel formula, we have the result.

Theorem 4.2. Let $\eta > 2k$. If f belong to the Dini Lipschitz class, i.e.,

$$f \in Lip(\eta, \gamma, 2), \quad \eta > 2k, \gamma \ge 0.$$

Then f is the null function.

Proof. Assume that $f \in Lip(\eta, \gamma, 2)$. Then

$$\|\Delta_t^k \Lambda^m f\|_2 \le C \frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}, \quad \gamma \ge 0.$$

From Lemma 4.1, we have

$$\int_0^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |1 - \varphi_\lambda(t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db \le C^2 \frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}.$$

In view of Lemma 2.5, we conclude that

$$\int_0^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |1 - j_\alpha(\lambda t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db \le \left(\frac{C}{c_0}\right)^2 \frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}.$$

Then

$$\frac{\int_0^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |1 - j_\alpha(\lambda t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db}{t^{4k}} \le \left(\frac{C}{c_0}\right)^2 \frac{t^{2\eta - 4k}}{(\log \frac{1}{t})^{2\gamma}},$$

Since $\eta > 2k$ we have

$$\lim_{t \to 0} \frac{t^{2\eta - 4k}}{(\log \frac{1}{t})^{2\gamma}} = 0.$$

Then

$$\lim_{t\to 0} \int_0^{+\infty} \int_B \left(\frac{|1-j_\alpha(\lambda t)|}{\lambda^2 t^2} \right)^{2k} \lambda^{4k} (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db = 0.$$

and also from the formula (2.1) and Fatou Theorem, we obtain

$$\int_0^{+\infty} \int_B \lambda^{4k} (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db = 0.$$

and so f is the null function.

Analog of the Theorem 4.2, we obtain this Theorem.

Theorem 4.3. Let $f \in L^2(X)$. If f belong to lip(2,0,2). i.e.,

$$\|\Delta_t^k \Lambda^m f\|_2 = O(t^2), \quad as \quad t \to 0.$$

Then f is the null function.

Now, we give another main result of this paper analog of Theorem 1.1.

Theorem 4.4. Let $f \in W^{2,k}$. Then the following are equivalents

$$\begin{array}{l} (a) \ f \in Lip(\eta,\gamma,2), \ \eta \in (0,1), \\ (b) \ \int_r^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda,b)|^2 d\lambda db = O\left(\frac{r^{-2\eta-n+1}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty, \\ where \ m = 0,1,\ldots,k. \end{array}$$

Proof. (a) \Rightarrow (b) Let $f \in Lip(\eta, \gamma, 2)$. Then we have

$$\|\Delta_t^k \Lambda^m f\|_2^2 = O\left(\frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}\right) \quad \text{as} \quad t \to 0.$$

From Lemma 3.2, we have

$$\|\Delta_t^k \Lambda^m f\|_2^2 = \int_0^{+\infty} \int_{\mathbb{R}} (\lambda^2 + \rho^2)^{2m} |1 - \varphi_\lambda(t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db.$$

If $\lambda \in [\frac{1}{t}, \frac{2}{t}]$, then $\lambda t \geq 1$ and (iii) of Lemma 2.3 implies that

$$1 \le \frac{1}{c^{2k}} |1 - \varphi_{\lambda}(t)|^{2k}.$$

Then

$$\int_{\frac{1}{t}}^{\frac{2}{t}} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db$$

$$\leq \frac{1}{c^{2k}} \int_{\frac{1}{t}}^{\frac{2}{t}} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |1 - \varphi_{\lambda}(t)|^{2k} |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db$$

$$\leq \frac{1}{c^{2k}} \int_{0}^{+\infty} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |1 - \varphi_{\lambda}(t)|^{2k} |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db$$

$$\leq \frac{1}{c^{2k}} \|\Delta_{t}^{k} \Lambda^{m} f\|_{2}^{2}$$

$$= O\left(\frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}\right).$$

From [8], we have

$$|c(\lambda)|^{-2} \simeq \lambda^{n-1}, \quad n = \dim X,$$

then

$$\int_{\frac{1}{t}}^{\frac{2}{h}} \int_{B} (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 \lambda^{n-1} d\lambda db = O\left(\frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}\right),$$

or, equivalently.

$$\int_{r}^{2r} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db \le C \frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}}, \quad r \to \infty,$$

where C is a positive constant. Now,

$$\int_{r}^{+\infty} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db$$

$$= \sum_{i=0}^{\infty} \int_{2^{i}r}^{2^{i+1}r} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db$$

$$\leq C \left(\frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}} + \frac{(2r)^{-2\eta - n + 1}}{(\log 2r)^{2\gamma}} + \frac{(4r)^{-2\eta - n + 1}}{(\log 4r)^{2\gamma}} + \cdots \right)$$

$$\leq C \frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}} \left(1 + 2^{-2\eta - n + 1} + (2^{-2\eta - n + 1})^{2} + (2^{-2\eta - n + 1})^{3} + \cdots \right)$$

$$\leq K_{\eta, n} \frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}},$$

where $K_{\eta,n} = C(1 - 2^{-2\eta - n + 1})^{-1}$ since $2^{-2\eta - n + 1} < 1$. Consequently

$$\int_{r}^{+\infty} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db = O\left(\frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

 $(b) \Rightarrow (a)$. Suppose now that

$$\int_{r}^{+\infty} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db = O\left(\frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty,$$

then

$$\int_{r}^{2r} \int_{B} (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 d\lambda db = O\left(\frac{r^{-2\eta - n + 1}}{(\log r)^{2\gamma}}\right),$$

whence

$$\int_{r}^{2r} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} \lambda^{n-1} d\lambda db \leq 2^{n-1} r^{n-1} \int_{r}^{2r} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\lambda db \\
\leq C' \frac{r^{-2\eta}}{(\log r)^{2\gamma}}.$$

Now,

$$\int_{r}^{+\infty} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} \lambda^{n-1} d\lambda db \leq \sum_{k=0}^{\infty} \int_{2^{k}r}^{2^{k+1}r} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} \lambda^{n-1} d\lambda db \leq C' \sum_{k=0}^{\infty} 2^{-2k\eta} \frac{r^{-2\eta}}{(\log r)^{2\gamma}}.$$

Consequently,

$$\int_r^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 \lambda^{n-1} d\lambda db = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right),$$

and, by $|c(\lambda)|^{-2} \simeq \lambda^{n-1}$.

$$\int_r^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right).$$

Write

$$\|\Delta_t^k \Lambda^m f\|_2^2 = I_1 + I_2,$$

where

$$I_1 = \int_0^{\frac{1}{t}} \int_{\mathbb{R}} (\lambda^2 + \rho^2)^{2m} |1 - \varphi_{\lambda}(t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db,$$

and

$$I_2 = \int_{\frac{1}{2}}^{+\infty} \int_{B} (\lambda^2 + \rho^2)^{2m} |1 - \varphi_{\lambda}(t)|^{2k} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db.$$

Firstly, it follows from the inequality $|\varphi_{\lambda}(t)| \leq 1$ that

$$I_2 \le 2^{2k} \int_{\frac{1}{t}}^{+\infty} \int_B (\lambda^2 + \rho^2)^{2m} |\widehat{f}(\lambda, b)|^2 d\mu(\lambda) db = O\left(\frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}\right), \quad as \quad t \to 0.$$

To estimate I_1 , we use the inequalities (i) and (ii) of Lemma 2.3

$$I_{1} = \int_{0}^{\frac{1}{t}} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |1 - \varphi_{\lambda}(t)|^{2k-1} |1 - \varphi_{\lambda}(t)| |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db$$

$$\leq 2^{2k-1} \int_{0}^{\frac{1}{t}} \int_{B} (\lambda^{2} + \rho^{2})^{2m} |1 - \varphi_{\lambda}(t)| |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db$$

$$\leq 2^{2k-1} t^{2} \int_{0}^{\frac{1}{t}} \int_{B} (\lambda^{2} + \rho^{2})^{2m+1} |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db.$$

Now, we apply integration by parts for a function

$$\phi(r) = \int_{r}^{+\infty} \int_{R} (\lambda^{2} + \rho^{2})^{2m} |\widehat{f}(\lambda, b)|^{2} d\mu(\lambda) db,$$

to get

$$I_{1} \leq 2^{2k-1}t^{2} \int_{0}^{1/t} -(r^{2} + \rho^{2})\phi'(r)dr$$

$$\leq 2^{2k-1}t^{2} \int_{0}^{1/t} -r^{2}\phi'(r)dr$$

$$\leq 2^{2k-1}t^{2} \left(-\frac{1}{t^{2}}\phi(\frac{1}{t}) + 2\int_{0}^{1/t} r\phi(r)dr\right)$$

$$\leq -2^{2k-1}\phi(\frac{1}{t}) + 2^{2k}t^{2} \int_{0}^{1/t} r\phi(r)dr$$

$$\leq 2^{2k}t^{2} \int_{0}^{1/t} r\phi(r)dr.$$

Since $\phi(r) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right)$, we have $r\phi(r) = O\left(\frac{r^{1-2\eta}}{(\log r)^{2\gamma}}\right)$ and

$$\int_0^{1/t} r\phi(r)dr = O\left(\int_0^{1/t} \frac{r^{1-2\eta}}{(\log r)^{2\gamma}} dr\right)$$
$$= O\left(\frac{t^{2\eta-1}}{(\log \frac{1}{t})^{2\gamma}} \int_0^{1/t} dr\right)$$
$$= O\left(\frac{t^{2\eta-2}}{(\log \frac{1}{t})^{2\gamma}}\right),$$

so that

$$I_1 = O\left(\frac{t^{2\eta}}{(\log \frac{1}{t})^{2\gamma}}\right).$$

Combining the estimates for I_1 and I_2 gives

$$\|\Delta_t^k \Lambda^m f\|_2 = O\left(\frac{t^{\eta}}{(\log \frac{1}{t})^{\gamma}}\right) \quad \text{as} \quad t \to 0,$$

and this ends the proof of the theorem.

Acknowledgement

The authors would like to thank the referee for his valuable comments and suggestions.

References

- [1] S. Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and Spherical Functions [Russian translation], Mir, Moscow, 1987
- [2] **S. Helgason**, A duality for symmetric spaces with applications to group representations, *Adv. Math.*, **5** (1), (1970), 1-154
- [3] S. Helgason, Differential geometry and symmetric spaces [Russian translation], Mir, Moscow, 1964
- [4] S. Helgason, Differential geometry, lie groups and symmetric spaces, Academic Press, New York, 1978
- [5] S. Helgason, Geometric analysis on symmetric spaces, Providence, RI, 1994
- [6] M. S. Younis, Fourier transforms of Dini-Lipschitz functions, Int. J. Math. Math. Sci., 9 (2), (1986), 301-312, doi:10.1155/S0161171286000376
- [7] S. S. Platonov, Approximation of functions in L_2 -metric on noncompact rank 1 symmetric space, Algebra Analiz., 11 (1), (1999), 244-270
- [8] S. S. Platonov, The Fourier transform of function satisfying the Lipshitz condition on rank 1 symetric spaces, *Siberian Math.J.*, **46** (2), (2005), 1108-1118
- [9] W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via module of continuity, *Journal of Functional Analysis*, **255** (288), 2256-2285
- [10] **T. H. Koornwinder**, Jacobi functions and analysis on non-compact semisimple Lie groups, "Special Functions: Group Theoretical Aspects and Applications" (R. Askey, T.H. Koornwinder, and W. Schempp, Eds.), Reeidel, Dordrecht, 1984

Salah El Ouadih

Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II Casablanca, Morocco

E-mail: salahwadih@gmail.com

Radouan Daher

Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II Casablanca, Morocco

E-mail: rjdaher024@gmail.com

Received: 29.02.2016

Accepted: 31.07.2016 Revised: 1.06.2016