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1 Introduction

The Lyapunov matrix differential equations occur in many branches of control
theory such as optimal control and stability analysis.

Recent works for Ψ− boundedness, Ψ− stability, Ψ− instability, control-
lability, dichotomy and conditioning for Lyapunov matrix differential equa-
tions have been given in many papers. See, for example, [6 - 13, 15 - 17] and
the references cited therein.

The purpose of present paper is to prove (necessary and) sufficient condi-
tions for Ψ− conditional exponential asymptotic stability of trivial solution
of the nonlinear Lyapunov matrix differential equation

Z ′ = A(t)Z + ZB(t) + F (t, Z) (1)
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and the linear Lyapunov matrix differential equation

Z ′ = [A(t) + A1(t)]Z + Z[B(t) +B1(t)], (2)

which can be seen as a perturbed equations of the linear equation

Z ′ = A(t)Z + ZB(t). (3)

We investigate conditions on the fundamental matrices of the equations

Z ′ = A(t)Z, (4)

Z ′ = ZB(t) (5)

and on the functions A1, B1 and F under which the trivial solutions of the
equations (1) – (5) are Ψ− conditionally exponentially asymptotically stable
on R+. Here, Ψ is a matrix function whose introduction permits us obtaining
a mixed asymptotic behavior for the components of solutions.

The main tool used in this paper is the technique of Kronecker product
of matrices, which has been successfully applied in various fields of matrix
theory, group theory and particle physics. See, for example, the above cited
papers and the references cited therein.

2 Preliminaries

In this section we present some basic notations, definitions, hypotheses and
results which are useful later on.

Let Rd be the Euclidean d− dimensional space. For x = (x1, x2, ..., xd)
T ∈

Rd, let ‖ x ‖= max{| x1|, | x2|, | x3|, ..., | xd|} be the norm of x (here, T denotes
transpose).

Let Md×d be the linear space of all d× d real valued matrices.
For A = (aij) ∈ Md×d, we define the norm | A | by formula | A | = sup

‖x‖≤1

‖ Ax ‖ . It is well-known that | A | = max
1≤i≤d

{
d∑
j=1

| aij|}.

By a solution of the equation (1) we mean a continuous differentiable
d× d matrix function satisfying the equation (1) for all t ∈ R+.

In equation (3), we assume that A and B are continuous d×d matrices on
R+ = [0,∞). It is well-known that continuity of A and B ensure the existence
and uniqueness on R+ of a solution of (3) passing through any given point
(t0, Z0) ∈ R+ ×Md×d.
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In addition, in equation (1), we assume that F : R+ ×Md×d −→Md×d is
continuous such that F (t, Od) = Od (null matrix of order d× d).

It is well-known that these conditions ensure the local existence of a
solution passing through any given point (t0, Z0) ∈ R+ ×Md×d, but it not
guarantee that the solution is unique or that it can be continued for large
values of t.

Let Ψi : R+ −→ (0,∞), i = 1, 2, ..., d, be continuous functions and

Ψ = diag [Ψ1,Ψ2, · · ·Ψd].

Def inition 2.1. ([7], [12], [13]). The solution z(t) of the differential
equation z ′ = f(t,z) (where z ∈ Rd and f is a continuous d vector function)
is said to be Ψ− stable on R+ if for every ε > 0 and every t0 ∈ R+, there
exists a δ = δ(ε, t0) > 0 such that, any solution z̃(t) of the equation which
satisfies the inequality ‖ Ψ(t0)(z̃(t0) − z(t0)) ‖ < δ, exists and satisfies the
inequality ‖ Ψ(t)(z̃(t)− z(t)) ‖ < ε for all t ≥ t0.

Otherwise, is said that the solution z(t) is Ψ− unstable on R+.

Def inition 2.2. ([3]). A function ϕ : R+ −→ Rd is said to be Ψ−
bounded on R+ if Ψ(t)ϕ(t) is bounded on R+.

Otherwise, is said that the function ϕ is Ψ− unbounded on R+.

Def inition 2.3. ([3], [5], [12], [13]). The solution z(t) of the differential
equation z ′ = f(t,z) is said to be Ψ− conditionally stable on R+ if it is not Ψ−
stable on R+ but there exists a sequence (zn(t)) of solutions of the equation
defined for all t ∈ R+ such that

lim
n→∞

Ψ(t)zn(t) = Ψ(t)z(t), uniformly on R+.

In addition:
If the sequence (zn(t)) can be chosen so that

lim
t→∞

Ψ(t)(zn(t)− z(t)) = 0, for n = 1,2,...

then z(t) is said to be Ψ− conditionally asymptotically stable on R+.
If there exist the constants N, λ > 0 such that

‖ Ψ(t)(zn(t)− z(t)) ‖≤ Ne−λt, for all t ∈ R+ and n ∈ N,

then z(t) is said to be Ψ− conditionally exponentially asymptotically stable
on R+.
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Remark 2.1. These definitions generalize the classical definitions of
various types of stability or conditional stability (see [2]).

Remark 2.2. 1. It is easy to see that if the solution z(t) is Ψ− condition-
ally exponentially asymptotically stable on R+, then it is Ψ− conditionally
asymptotically stable on R+.

2. It is easy to see that if a solution z(t) of the linear equation z′ = A(t)z
is Ψ− conditionally exponentially asymptotically stable on R+, then so are all
solutions of this equation. In this case, we can speak about Ψ− conditional
exponential asymptotic stability on R+ of this linear differential equation.

Now, we extend these definitions for a matrix differential equation Z ′ =
F (t, Z), where Z ∈ Md×d and F : R+ × Md×d −→ Md×d is a continuous
function.

Def inition 2.4. ([7], [11]). The solution Z(t) of the matrix differential
equation Z ′ = F (t, Z) is said to be Ψ− stable on R+ if for every ε > 0 and

every t0 ∈ R+, there exists a δ = δ(ε, t0) > 0 such that, any solution Z̃(t)

of the equation which satisfies the inequality | Ψ(t0)(Z̃(t0) − Z(t0)) | < δ,

exists and satisfies the inequality | Ψ(t)(Z̃(t)− Z(t)) | < ε for all t ≥ t0.
Otherwise, is said that the solution Z(t) is Ψ− unstable on R+.

Def inition 2.5. ([11], [12]) A matrix function M : R+ −→Md×d is said
to be Ψ− bounded on R+ if the matrix function Ψ(t)M(t) is bounded on R+

(i.e. there exists m > 0 such that | Ψ(t)M(t) | ≤ m, for all t ∈ R+).
Otherwise, is said that the matrix function M is Ψ− unbounded on R+.

Def inition 2.6. ([11], [12]). The solution Z(t) of the matrix differential
equation Z ′ = F (t, Z) is said to be Ψ− conditionally stable on R+ if it is
not Ψ− stable on R+ but there exists a sequence (Zn(t)) of solutions of the
equation defined on R+ such that

lim
n→∞

Ψ(t)Zn(t) = Ψ(t)Z(t), uniformly on R+.

In addition:
If the sequence (Zn(t)) can be chosen so that

lim
t→∞

Ψ(t)(Zn(t)− Z(t)) = 0, for n = 1,2,...

then Z(t) is said to be Ψ− conditionally asymptotically stable on R+.
If there exist the constants N, λ > 0 such that

| Ψ(t)(Zn(t)− Z(t)) |≤ Ne−λt, for all t ∈ R+ and n ∈ N,
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then Z(t) is said to be Ψ− conditionally exponentially asymptotically stable
on R+.

Remark 2.3. 1. It is easy to see that if Ψ(t) and Ψ−1(t) are bounded on
R+, then the Ψ− stability and Ψ− conditional (exponential) (asymptotic)
stability are equivalent with the classical stability and conditional (exponen-
tial) (asymptotic) stability respectively.

2. In the same manner as in classical conditional asymptotic stability, we
can speak about Ψ− conditional exponential asymptotic stability of a linear
matrix differential equation (3), (4) or (5).

Indeed, let X(t), Y (t) be two solutions of the equation (4). Suppose that
the solution X(t) is Ψ− conditionally exponentialliy asymptotically stable
on R+. From Definition 2.6, X(t) is not Ψ− stable on R+ and there exists
a sequence (Xn(t)) of solutions of the equation defined on R+ such that
limn→∞Ψ(t)Xn(t) = Ψ(t)X(t), uniformly on R+ and there exist the constants
N, λ > 0 such that | Ψ(t)(Xn(t)−X(t)) |≤ Ne−λt, for all t ∈ R+ and n ∈ N.

Now, we consider the solutions of (4),

Yn(t) = Xn(t)−X(t) + Y (t), t ∈ R+, n ∈ N.

From Theorem 1, [6], we have that Y (t) is not Ψ− stable on R+ and
limn→∞Ψ(t)Yn(t) = Ψ(t)Y (t), uniformly on R+. In addition, | Ψ(t)(Yn(t)−
Y (t)) |≤ Ne−λt, for all t ∈ R+ and n ∈ N.

Thus, all solutions of (4) are Ψ− conditionally exponentially asymptoti-
cally stable on R+.

The last cases are similar.

Def inition 2.7. ([1]). Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q.
The Kronecker product of A and B, written A ⊗ B, is defined to be the
partitioned matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

Obviously, A⊗B ∈Mmp×nq.

The important rules of calculation of the Kronecker product there are in
next Lemma.
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Lemma 2.1. ([1]). The Kronecker product has the following proper-
ties and rules, provided that the dimension of the matrices are such that the
various expressions exist:

1). A⊗ (B ⊗ C) = (A⊗B)⊗ C;
2). (A⊗B)T = AT ⊗BT ;
3). (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D);
4). (A⊗B)−1 = A−1 ⊗B−1;
5). A⊗ (B + C) = A⊗B + A⊗ C;
6). (A+B)⊗ C = A⊗ C +B ⊗ C;

7). Ip ⊗ A =


A O · · · O
O A · · · O
...

...
...

...
O O · · · A

 ;

8). (A(t)⊗B(t))′ = A′(t)⊗B(t)+A(t)⊗B′(t); ( ′ denotes the derivative
d
dt

).
Proof. See in [1].

Def inition 2.8. The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

Lemma 2.2. ([6]). The vectorization operator

Vec : Mm×n −→ Rmn, A −→ Vec(A),

is a linear and one-to-one operator. In addition, Vec and Vec−1 are contin-
uous operators.

Proof. See Lemma 2, [6].

Lemma 2.3. ([11]). A function F : R+ −→ Mn×n is a continuous
(differentiable) matrix function on R+ if and only if f : R+ −→ Rn2

, defined
by f(t) = Vec(F (t)), is a continuous (differentiable) vector function on R+.

Proof. It is a simple exercise.

We recall that the vectorization operator Vec has the following properties
as concerns the calculations.

Lemma 2.4. If A,B,M ∈Mn×n, then
1). Vec(AMB) = (BT ⊗ A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
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3). Vec(AM) = (In ⊗ A) · Vec(M);
4). Vec(AM) = (MT ⊗ A) · Vec(In).
Proof. It is a simple exercise.

The following lemmas play a vital role in the proofs of main results of
present paper.

Lemma 2.5. ([6]). The matrix function Z(t) is a solution on R+ of
(1) if and only if the vector function z(t) = Vec(Z(t)) is a solution of the
differential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z + f(t, z) (6)

where f(t, z) = Vec (F (t, Z)) , on the same interval R+.
Proof. See Lemma 5, [6].

Def inition 2.9. The above system (6) is called ”corresponding Kro-
necker product system associated with (1)”.

Lemma 2.6. ([6]). For every matrix function M : R+ −→Md×d,

1

d
| Ψ(t)M(t) |≤‖ (Id ⊗Ψ(t))Vec (M(t)) ‖Rd2≤| Ψ(t)M(t) |,∀t ≥ 0. (7)

Proof. See Lemma 6, [6].

Lemma 2.7. The trivial solution of the equation (1) is Ψ− conditionally
exponentially asymptotically stable on R+ if and only if the trivial solution
of the corresponding Kronecker product system (6) is Id ⊗Ψ− conditionally
exponentially asymptotically stable on R+.

Proof. First, suppose that the trivial solution of the equation (1) is Ψ−
conditionally exponentially asymptotically stable on R+. According to Defi-
nition 2.6, this solution is not Ψ− stable on R+ but there exists a sequence
(Zn(t)) of solutions of the equation defined on R+ such that

lim
n→∞

Ψ(t)Zn(t) = Od, uniformly on R+

and, in addition, there exist the constants N, λ > 0 such that

| Ψ(t)Zn(t) |≤ Ne−λt, for all t ∈ R+ and n ∈ N.

From Lemma 2.5 and Lemma 7, [7], the trivial solution of (6) is not
Id ⊗ Ψ− stable on R+. In addition, from the inequality (7), the solutions
zn = Vec (Zn(t)) , n = 1,2,...., of the system (6) satisfy

‖ (Id ⊗Ψ(t))Vec (Zn(t)) ‖Rd2 ≤ | Ψ(t)Zn(t) |, ∀t ≥ 0.
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It follows that

lim
n→∞

(Id ⊗Ψ(t))zn(t) = 0, uniformly on R+

and, in addition,

‖ (Id ⊗Ψ(t))zn(t) ‖Rd2≤ Ne−λt, for all t ∈ R+ and n ∈ N.

From these results, Lemma 2.5 and Definition 2.3, it follows that the
trivial solution of (6) is Id ⊗ Ψ− conditionally exponentially asymptotically
stable on R+.

Suppose, conversely, that the trivial solution of (6) is Id⊗Ψ− condition-
ally exponentially asymptotically stable on R+. According to Definition 2.3,
this solution is not Id⊗Ψ− stable on R+ but there exists a sequence (zn(t))
of solutions of the system (6) defined on R+ such that

lim
n→∞

(Id ⊗Ψ(t)) zn(t) = 0, uniformly on R+

and, in addition, there exist the constants N, λ > 0 such that

‖ (Id ⊗Ψ(t))zn(t) ‖Rd2≤ Ne−λt, for all t ∈ R+ and n ∈ N.

From Lemma 2.5 and Lemma 7, [7], the trivial solution of (1) is not Ψ−
stable on R+. In addition, from the inequality (7), we have that

1

d
| Ψ(t)Zn(t) | ≤ ‖ (Id ⊗Ψ(t)) zn(t) ‖Rd2 , t ∈ R+, n ∈ N,

where Zn(t) = Vec−1(zn(t)), n = 1, 2, ... are solutions of the equation (1).
It follows that

lim
n→∞

Ψ(t)Zn(t) = Od, uniformly on R+

and
| Ψ(t)Zn(t) | ≤ dNe−λt, for all t ∈ R+ and n ∈ N.

From these results, Lemma 2.5 and Definition 2.6, it follows that the
trivial solution of (1) is Ψ− conditionally exponentially asymptotically stable
on R+.

The proof is now complete.

Lemma 2.8. ([6]). Let X(t) and Y(t) be a fundamental matrices for the
equations (4) and (5) respectively.

Then, the matrix Z(t) = Y T(t)⊗X(t) is a fundamental matrix for the
corresponding Kronecker product system associated with (3), i.e. for the dif-
ferential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z (8)

Proof. See Lemma 9, [6].
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3 Ψ− conditional exponential asymptotic stability of
linear matrix differential equations (4) and (9)

The purpose of this section is to study the Ψ− conditional exponential asymp-
totic stability of the linear matrix differential equations

Z ′ = A(t)Z

and
Z ′ = (A(t) + A1(t))Z. (9)

The conditions for Ψ− conditional exponential asymptotic stability of the
linear matrix differential equation (4) can be expressed in terms of solutions
or in terms of a fundamental matrix for (4).

Theorem 3.1. The linear matrix differential equation (4) is Ψ− condi-
tionally exponentially asymptotically stable on R+ if and only if it has a Ψ−
unbounded solution on R+ and a nontrivial solution Z0(t) such that

| Ψ(t)Z0(t) | ≤ Ne−λt, for all t ∈ R+,

where N and λ are positive constants.
Proof. First, we shall prove the ”only if” part.
Suppose that the linear matrix differential equation (4) is Ψ− condition-

ally exponentially asymptotically stable on R+. Let X(t) be a fundamental
matrix for (4). From the above Definition 2.6, Remark 2.2 and Theorem 1,
[7], it follows that | Ψ(t)X(t) | is unbounded on R+. Thus, the linear equa-
tion (4) has at least one Ψ− unbounded solution on R+. In addition, there
exists a sequence (Zn(t)) of nontrivial solutions of (4) such that

lim
n→∞

Ψ(t)Zn(t) = Od, uniformly on R+

and there exist positive constants N and λ such that

| Ψ(t)Zn(t) | ≤ Ne−λt, for all t ∈ R+ and n ∈ N.

The proof of ”only if” part is complete.
Now, we shall prove the ”if” part.
Suppose that the linear matrix differential equation (4) has a Ψ− un-

bounded solution on R+ and a nontrivial solution Z0(t) such that

| Ψ(t)Z0(t) | ≤ Ne−λt, for all t ∈ R+

where N and λ are positive constants.
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It follows that the fundamental matrixX(t) for (4) is such that | Ψ(t)X(t) |
is unbounded on R+. Consequently, the linear matrix differential equation
(4) is not Ψ− stable on R+ (see Theorem 1, [7]). On the other hand, ( 1

n
Z0(t))

is a sequence of nontrivial solutions of (4) such that

lim
n→∞

Ψ(t)

(
1

n
Z0(t)

)
= Od, uniformly on R+

and

| Ψ(t)

(
1

n
Z0(t)

)
| ≤ Ne−λt, for all t ∈ R+ and n ∈ N.

Thus, the linear matrix differential equation (4) is Ψ− conditionally ex-
ponentially asymptotically stable on R+.

The proof is now complete.

Remark 3.1. There exists a similar results for the differential systems
z′ = A(t)z (see Theorem 1, [13]).

Theorem 3.2. Let X(t) be a fundamental matrix for the linear matrix
differential equation (4).

Then, the linear matrix differential equation (4) is Ψ− conditionally ex-
ponentially asymptotically stable on R+ if and only if the following conditions
are true:

a). there exists a projection P1 : Rd −→ Rd such that Ψ(t)X(t)P1 is
unbounded on R+;

b). there exists a projection P2 : Rd −→ Rd, P2 6= 0, and two positive

constants Ñ and λ such that

| Ψ(t)X(t)P2 | ≤ Ñe−λt, for all t ∈ R+.

Proof. First, we shall prove the ”only if” part.
From Ψ− conditional exponential asymptotic stability on R+ of (4) and

Theorem 1, [7], it follows that the matrix Ψ(t)X(t) is unbounded on R+. In
addition, there exists a nontrivial solution Z0(t) of (4) such that

| Ψ(t)Z0(t) | ≤ Ne−λt, for all t ∈ R+,

where N and λ are positive constants.
Thus, there exists a constant matrix C 6= Od such that X(t)C is nontrivial

solution of (4) on R+ and

| Ψ(t)X(t)C | ≤ Ne−λt, for all t ∈ R+.
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Let the column ci = (c1i, c2i, ..., cdi)
T 6= θ of C. Let cji =‖ ci ‖ . Let P2 be

the nul matrix Od in which the j column is replaced with the column c−1ji ci. It
is easy to see that P2 6= 0 is a projection and there exists a positive constant
Ñ such that

| Ψ(t)X(t)P2 | ≤ Ñe−λt, for all t ∈ R+.

Now, we shall prove the ”if” part.
From the hypothesis a) and Theorem 1, [6], it follows that the linear

matrix differential equation (4) is not Ψ− stable on R+.
Let Z0(t) be a nontrivial solution on R+ of the linear matrix differential

equation (4). Let (λn) be such that λn ∈ R r {1}, limn→∞ λn = 1 and let
(Zn(t)) be defined by

Zn(t) = X(t)P2X
−1(0)(λnZ0(0)) +X(t)(I − P2)X

−1(0)Z0(0), t ≥ 0.

It is easy to see that Zn(t) are solutions of the linear matrix differential
equation (4). For n ∈ N and t ≥ 0, we have

| Ψ(t)Zn(t)−Ψ(t)Z0(t) | =

= | Ψ(t)X(t)P2X
−1(0)(λnZ0(0)) +

+ Ψ(t)X(t)(I − P2)X
−1(0)Z0(0)−Ψ(t)X(t)X−1(0)Z0(0) | =

= | Ψ(t)X(t)P2X
−1(0) ((λn − 1)Z0(0)) | ≤

≤ | λn − 1 || Ψ(t)X(t)P2 || X−1(0)Z0(0) | ≤
≤ Ñ | λn − 1 | e−λt | X−1(0)Z0(0) |.

Thus,
lim
n→∞

Ψ(t)Zn(t) = Ψ(t)Z0(t), uniformly on R+

and
| Ψ(t) (Zn(t)− Z0(t)) |≤ Ne−λt, for all t ∈ R+ and n ∈ N.

Thus, the linear matrix differential equation (4) is Ψ− conditionally ex-
ponentially asymptotically stable on R+.

The proof is now complete.

Theorem 3.3. Let X(t) be a fundamental matrix for the linear matrix
differential equation (4).

Then, the linear matrix differential equation (4) is Ψ− conditionally ex-
ponentially asymptotically stable on R+ if and only if there exist a projection
P : Rd −→ Rd, P 6= Od and two positive constants Ñ and λ such that

a). Ψ(t)X(t)(I − P ) is unbounded on R+;

b). | Ψ(t)X(t)P | ≤ Ñe−λt, for all t ∈ R+.
Proof. It results from the above Theorem.
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Remark 3.2. 1. There exists a similar results for the differential systems
z′ = A(t)z (see Theorem 2 and Theorem 3, [13]).

2. The above Theorems generalize a similar results in connection with
the classical conditional exponential asymptotic stability and Ψ− conditional
exponential asymptotic stability of vectorial differential equations z′ = A(t)z
to matrix differential equations (4).

Indeed, consider in (4)

Z =


z1 z1 · · · z1
z2 z2 · · · z2
· · · · · · · · · · · ·
zd zd · · · zd


Now, the definitions and conditions for Ψ− boundedness or Ψ− con-

ditional exponential asymptotic stability on R+ of z are the same for Ψ−
boundedness or Ψ− conditional exponential asymptotic stability on R+ of
Z.

Sufficient conditions for Ψ− conditional exponential asymptotic stability
of equation (4) are given in the following theorems.

Theorem 3.4. Suppose that there exist two supplementary projections
Pi : Rd −→ Rd, P1 6= 0, P2 6= 0 and a constant K > 0 such that the fun-
damental matrix X(t) for the linear matrix differential equation (4) satisfies
the condition∫ t

0

| Ψ(t)X(t)P1X
−1(s)Ψ−1(s) | ds+

∫ ∞
t

| Ψ(t)X(t)P2X
−1(s)Ψ−1(s) | ds ≤ K

for all t ∈ R+.
Then, the linear matrix differential equation (4) is Ψ− conditionally ex-

ponentially asymptotically stable on R+.
Proof. From Lemmas 10 and 11, [6], results that there exists a positive

constant N such that | Ψ(t)X(t)P1 | ≤ Ne−K
−1t, for all t ∈ R+ and the

matrix Ψ(t)X(t)P2 is unbounded on R+.
Now, the Theorem results from the above Theorem 3.2.

Example 3.1. Consider the linear matrix differential equation (4) in
which A(t) = A is a d × d real constant matrix which has characteristic
roots with diferent real parts. In this case there exists, e.g., an interval
(α, β) ⊂ R such that for λ ∈ (α, β), Ψ(t) = e−λtId and X(t) = etA, there
exist supplementary projections P1 6= 0, P2 6= 0 and a positive constant K
such that
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{
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ≤ Ke(α−λ)(t−s), for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ Ke(λ−β)(s−t), for 0 ≤ t ≤ s
.

Then, for t ∈ R+,∫ t
0
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ds+
∫∞
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ds ≤

≤
∫ t
0
Ke(α−λ)(t−s)ds+

∫∞
t
Ke(λ−β)(s−t)ds < K

(
1

λ−α + 1
β−λ

)
.

Thus, from the above Theorem, the linear matrix differential equation (4)
is Ψ− conditionally exponentially asymptotically stable on R+.

A similar situation is if A(t) in (4) is a d × d real continuous periodic
matrix (see [2], Chapter III – Stability).

In general case, we have the following:

Theorem 3.5. If there exist supplementary projections Pi : Rd −→
Rd, P1 6= 0, P2 6= 0 and positive constants K1, K2, λ1, λ2 such that the
fundamental matrix X(t) of (4) satisfies the conditions{

| Ψ(t)X(t)P1X
−1(s)Ψ−1(s) | ≤ K1e

−λ1(t−s), for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ K2e
−λ2(s−t), for 0 ≤ t ≤ s

,

then, the linear matrix differential equation (4) is Ψ− conditionally exponen-
tially asymptotically stable on R+.

Proof. It follows from the above Theorem 3.4.

Sufficient conditions for Ψ− conditional exponential asymptotic stability
on R+ of the linear matrix differential equation (9) are given in the following
theorem.

Theorem 3.6. Suppose that:
(1). There exist supplementary projections Pi : Rd −→ Rd, P1 6= 0, P2 6=

0 and positive constants K1, K2, λ1, λ2 such that the fundamental matrix
X(t) of (4) satisfies the conditions{

| Ψ(t)X(t)P1X
−1(s)Ψ−1(s) | ≤ K1e

−λ1(t−s), for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ K2e
−λ2(s−t), for 0 ≤ t ≤ s

;

(2). A1(t) is a d× d continuous matrix function on R+ and satisfies one
of following conditions

(i). sup
t≥0
| Ψ(t)A1(t)Ψ

−1(t) | <
(
K1

λ1
+ K2

λ2

)−1
,

(ii). lim
t→∞
| Ψ(t)A1(t)Ψ

−1(t) | = 0,
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(iii).
∫∞
0
| Ψ(t)A1(t)Ψ

−1(t) | dt is convergent.
Then, the linear matrix differential equation (9) is Ψ− conditionally ex-

ponentially asymptotically stable on R+.
Proof. It is similar with the proofs of Theorems 6, 7, [13].

Remark 3.3. These Theorems are variants of Theorems 4, 5, 6, 7, [13],
for linear matrix differential equations.

Thus, the above results can be considered as a generalization of a well-
known results in connection with the classical conditional exponential asymp-
totic stability for differential systems (see e.g. [2])

Remark 3.4. If the linear equation (4) is only Ψ− conditionally ex-
ponentially asymptotically stable on R+, then the perturbed equation (9)
can’t be Ψ− conditionally exponentially asymptotically stable on R+. This
is shown by the Example from [13], in variant for a linear matrix differential
equation (4) and (9).

4 Ψ− conditional exponential asymptotic stability of
linear Lyapunov matrix differential equations

The purpose of this section is to study the Ψ− conditional exponential asymp-
totic stability of the linear Lyapunov matrix differential equations (2) and
(3).

Theorem 4.1. The linear Lyapunov matrix differential equation (3) is
Ψ− conditionally exponentially asymptotically stable on R+ if and only if
the corresponding Kronecker product system (8) is Id ⊗ Ψ− conditionally
exponentially asymptotically stable on R+ .

Proof. It results from Lemma 2.7 and Remark 2.3.

The conditions for Ψ− conditional exponential asymptotic stability of the
linear Lyapunov matrix differential equation (3) can be expressed in terms
of solutions or in terms of a fundamental matrices for (4) and (5).

Theorem 4.2. The linear Lyapunov matrix differential equation (3) is
Ψ− conditionally exponentially asymptotically stable on R+ if and only if it
has a Ψ− unbounded solution on R+ and there exist two positive constants
N, λ and a nontrivial solution Z0(t) on R+ such that

| Ψ(t)Z0(t) |≤ Ne−λt, for all t ∈ R+.
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Proof. It results from Theorem 4.1, Theorem 3.1 (variant for systems),
Lemmas 2.5 and 2.6.

Theorem 4.3. Suppose that the fundamental matrices X(t) and Y(t) for
the equations (4) and (5) respectively satisfy the following conditions:

a). there exists a projection Q1 : Rd2 −→ Rd2 such that(
Y T (t)⊗Ψ(t)X(t)

)
Q1

is unbounded on R+;
b). there exist two positive constants N, λ and a projection Q2 : Rd2 −→

Rd2 , Q2 6= 0, such that

|
[
Y T (t)⊗ (Ψ(t)X(t))

]
Q2 |≤ Ne−λt, for all t ∈ R+.

Then, the equation (3) is Ψ− conditionally exponentially asymptotically
stable on R+.

Proof. It results from Theorem 4.1, Theorem 3.2 (variant for systems)
and Lemmas 2.5, 2.6, 2.8.

Remark 4.1. It is easy to prove that the projection Q1 have the form
Q1 = Id ⊗ P1, where P1 : Rd −→ Rd is a projection (see Theorem 1, [6]).

Sufficient conditions for Ψ− conditional exponential asymptotic stability
of equation (3) are given in the following theorems.

Theorem 4.4. Let X(t) and Y (t) be fundamental matrices for the equa-
tions (4) and (5) respectively. Suppose that there exist two supplementary
projections Pi : Rd −→ Rd, P1 6= 0, P2 6= 0 and a constant K > 0 such that,
for t ≥ 0,∫ t

0

| (Y T (t)
(
Y T
)−1

(s))⊗
(
Ψ(t)X(t)P1X

−1(s)Ψ−1(s)
)
| ds+

+

∫ ∞
t

| (Y T (t)
(
Y T
)−1

(s))⊗
(
Ψ(t)X(t)P2X

−1(s)Ψ−1(s)
)
| ds ≤ K.

Then, the equation (3) is Ψ− conditionally exponentially asymptotically
stable on R+.

Proof. From Theorem 4.1, we know that the equation (3) is Ψ− condi-
tionally exponentially asymptotically stable on R+ if and only if the corre-
sponding Kronecker product system (8) is Id⊗Ψ− conditionally exponentially
asymptotically stable on R+ .
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From Lemma 2.8, we know that Z(t) = Y T (t) ⊗ X(t) is a fundamental
matrix for the system (8). The hypotheses ensure, via Theorem 3.4 (vari-
ant for systems) that the system (8) is Id ⊗ Ψ− conditionally exponentially
asymptotically stable on R+.

From Theorem 4.1, the equation (3) is Ψ− conditionally exponentially
asymptotically stable on R+.

The proof is now complete.

Theorem 4.5. Let X(t) and Y (t) be fundamental matrices for the equa-
tions (4) and (5) respectively. Suppose that there exist supplementary pro-
jections Pi : Rd −→ Rd, Pi 6= 0 and positive constants K1, K2, λ1, λ2 such
that

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) |≤ K1e

−λ1(t−s),
0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) |≤ K2e

−λ2(s−t),
0 ≤ t ≤ s

.

Then, the linear Lyapunov matrix differential equation (3) is Ψ− condi-
tionally exponentially asymptotically stable on R+.

Proof. It results from the above Theorem.

Theorem 4.6. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0 and

positive constants K1, K2, λ1, λ2 such that the fundamental matrix X(t) for
the equation (4) satisfies the conditions:{

| Ψ(t)X(t)P1X
−1(s)Ψ−1(s) | ≤ K1e

−λ1(t−s) for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ K2e
−λ2(s−t) for 0 ≤ t ≤ s

;

2). The matrix B(t) satisfies one of the following conditions:

a). sup
t≥0
| BT (t) | <

(
K1

λ1
+ K2

λ2

)−1
b). lim

t→∞
| B(t) | = 0.

c).
∫∞
0
| B(t) | dt is convergent.

Then, the linear Lyapunov matrix differential equation (3) is Ψ− condi-
tionally exponentially asymptotically stable on R+.

Proof. We will use Theorem 4.1. We write the corresponding Kronecker
product system (8) for the equation (3) in the form

z′ = (Id ⊗ A(t)) z +
(
BT (t)⊗ Id

)
z.

Now, using Lemma 2.8 and Theorem 3.6, it results that this system is
Id ⊗Ψ− conditionally exponentially asymptotically stable on R+ .
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From Theorem 4.1, it follows that the equation (3) is Ψ− conditionally
exponentially asymptotically stable on R+.

The proof is now complete.

Theorem 4.7. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0 and

positive constants K1, K2, λ1, λ2 such that the fundamental matrix Y (t) for
the equation (5) satisfies the conditions:

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P1Ψ
−1(s)) | ≤ K1e

−λ1(t−s) for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s)) | ≤ K2e

−λ2(s−t) for 0 ≤ t ≤ s
;

2). The matrix A(t) satisfies one of the following conditions:

a). sup
t≥0
| Ψ(t)A(t)Ψ−1(t) | <

(
K1

λ1
+ K2

λ2

)−1
;

b). lim
t→∞
| Ψ(t)A(t)Ψ−1(t) | = 0;

c).
∫∞
0
| Ψ(t)A(t)Ψ−1(t) | dt is convergent.

Then, the linear Lyapunov matrix differential equation (3) is Ψ− condi-
tionally exponentially asymptotically stable on R+.

Proof. We will use Theorem 4.1. We write the corresponding Kronecker
product system (8) for the equation (3) in the form

z′ =
(
BT (t)⊗ Id

)
z + (Id ⊗ A(t)) z

Now, using Lemma 2.8 and Theorem 3.6, it results that this system is
Id ⊗Ψ− conditionally exponentially asymptotically stable on R+ .

From Theorem 4.1, it follows that the equation (3) is Ψ− conditionally
exponentially asymptotically stable on R+.

The proof is now complete.

Theorem 4.8. Suppose that are satisfied the following hypotheses:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0 and

the positive constants K1, K2, λ1, λ2 such that the fundamental matrices
X(t) and Y (t) for the equations (4) and (5) respectively satisfy the following
conditions:

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) |≤ K1e

−λ1(t−s),
0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) |≤ K2e

−λ2(s−t),
0 ≤ t ≤ s

;
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2). A1(t) and B1(t) are continuous d× d matrices functions on R+ and
satisfy one of the following conditions:

i). M = sup
t≥0
| Id ⊗ (Ψ(t)A1(t)Ψ

−1(t)) +BT
1 (t)⊗ Id | <

(
K1

λ1
+ K2

λ2

)−1
;

ii). lim
t→∞
| Id ⊗ (Ψ(t)A1(t)Ψ

−1(t)) +BT
1 (t)⊗ Id | = 0;

iii).
∫∞
0
| Id ⊗ (Ψ(t)A1(t)Ψ

−1(t)) +BT
1 (t)⊗ Id | dt is convergent.

Then, the linear Lyapunov matrix differential equation (2) is Ψ− condi-
tionally exponentially asymptotically stable on R+.

Proof. From Theorem 4.1, we know that the equation (2) is Ψ− condi-
tionally exponentially asymptotically stable on R+ if and only if the corre-
sponding Kronecker product system associated with (2), i.e.

z′ =
[
Id ⊗ (A(t) + A1(t)) + (B(t) +B1(t))

T ⊗ Id
]
z

or

z′ =
[
Id ⊗ A(t) +BT (t)⊗ Id

]
z +

[
Id ⊗ A1(t) +BT

1 (t)⊗ Id
]
z (10)

is Id ⊗Ψ− conditionally exponentially asymptotically stable on R+.
From Lemma 2.8, we know that U(t) = Y T (t) ⊗ X(t) is a fundamental

matrix for the system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z.

The hypotheses ensure, via Theorem 3.6, that the system (10) is Id⊗Ψ−
conditionally exponentially asymptotically stable on R+.

From Theorem 4.1, the equation (2) is Ψ− conditionally exponentially
asymptotically stable on R+.

The proof is now complete.

Remark 4.2. These Theorems generalize similar results in connection
with the classical conditional exponential asymptotic stability and Ψ− con-
ditional exponential asymptotic stability for differential systems in [2] and
[13].

Remark 4.3. If the linear Lyapunov matrix differential equation (3) is
only Ψ− conditionally exponentially asymptotically stable on R+, then the
perturbed equation (2) can’t be Ψ− conditionally exponentially asymptoti-
cally stable on R+.

This is shown by the next Example, transformed after an equation due
to O. Perron [18].
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Example 4.1. Consider the equation (3) with

A(t) =

(
sin ln(t+ 1) + cos ln(t+ 1)− 1

2
0

0 −1
4

)
and B(t) =

(
−1

4
0

0 1

)
.

Then, a fundamental matrices for the homogeneous equations (4) and (5)
are

X(t) =

(
e(t+1)(sin ln(t+1)− 1

2
) 0

0 e−
1
4
(t+1)

)
and Y (t) =

(
e−

1
4
(t+1) 0
0 et+1

)
respectively.

Let Ψ be the matrix

Ψ(t) =

(
e

1
2
(t+1) 0

0 e−
1
2
(t+1)

)
.

From Lemma 2.8, the matrix

Y T (t)⊗X(t) =


u(t) 0 0 0

0 e−
1
2
(t+1) 0 0

0 0 v(t) 0

0 0 0 e
3
4
(t+1)

 ,

where u(t) = e(t+1)(sin ln(t+1)− 3
4
), v(t) = e(t+1)(sin ln(t+1)+ 1

2
), is a fundamental

matrix for the system (8), i.e. the corresponding Kronecker product system
associated with equation (3).

We have

(I2 ⊗Ψ(t))
(
Y T (t)⊗X(t)

)
=


u(t) 0 0 0

0 e−(t+1) 0 0
0 0 v(t) 0

0 0 0 e
1
4
(t+1)

 ,

where u(t) = e(t+1)(sin ln(t+1)− 1
4
), v(t) = e(t+1)(sin ln(t+1)+1).

If we take Q1(t) = diag [1,0,0,0], it is easy to see that the matrix[
Y T (t)⊗ (Ψ(t)X(t))

]
Q1(t)

is unbounded on R+ (because lim
n→∞

u(−1 + e
π
2
+2nπ) = +∞).

If we take Q2(t) = diag [0,1,0,0], it is easy to see that

|
[
Y T (t)⊗ (Ψ(t)X(t))

]
Q2(t) |= e−(t+1), for all t ≥ 0.
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From Theorem 4.3 it results that the equation (3) is Ψ− conditionally
exponentially asymptotically stable on R+.

Now, if we take

A1(t) =

(
0 be−

1
4
(t+1)

0 0

)
,

where b ∈ R, b 6= 0, then, a fundamental matrix for the perturbed corre-
sponding Kronecker product system associated with equation (2) is

Z0(t) =


bu(t)

∫ t+1

1
e−s sin ln sds u(t) 0 0

e−
1
2
(t+1) 0 0 0

0 0 bv(t)
∫ t+1

1
e−s sin ln sds v(t)

0 0 e
3
4
(t+1) 0

 .

As in Example 4.1, [12], we have that the all columns of (I2 ⊗Ψ)Z0(t)
are unbounded on R+. From this and Theorem 3.1 (variant for systems), the
corresponding Kronecker product system associated with equation (2) is not
I2 ⊗Ψ− conditionally exponentially asymptotically stable on R+.

From Theorem 4.1, it follows that the perturbed equation (2) is not Ψ−
conditionally exponentially asymptotically stable on R+.

Finally, we have

Ψ(t)A1(t)Ψ
−1(t) =

(
0 be−

1
2
(t+1)

0 0

)
.

Thus, A1(t) and B1(t) = O2 satisfy the condition 2) of Theorem 4.8.

5 Ψ− conditional exponential asymptotic stability of
non–linear Lyapunov matrix differential equations

The purpose of this section is to study the Ψ− conditional exponential
asymptotic stability of the nonlinear matrix differential equations (1) and
(11).

Theorem 5.1. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0, i = 1, 2

and positive constants K1, K2, λ1, λ2 such that the fundamental matrix U(t)
for the equation (4), U(0) = Id, satisfies the conditions:{

| Ψ(t)U(t)P1U
−1(s)Ψ−1(s) | ≤ K1e

−λ1(t−s) for 0 ≤ s ≤ t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) | ≤ K2e
−λ2(s−t) for 0 ≤ t ≤ s

;
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2). The continuous function F : R+ × Md×d −→ Md×d is such that
F (t, Od) = Od and satisfies the Lypschitz condition

| Ψ(t) (F (t,X1)− F (t,X2)) |≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that

γ0 = sup
t≥0

γ(t) <

(
K1

λ1
+
K2

λ2

)−1
.

Then, all Ψ− bounded solutions of the equation

X ′ = A(t)X + F (t,X) (11)

are Ψ− conditionally exponentially asymptotically stable on R+.
If, in addition, the continuous matrix function B(t) is such that

sup
t≥0

(γ(t)+ | B(t) |) <
(
K1

λ1
+
K2

λ2

)−1
,

then, all Ψ− bounded solutions of the the nonlinear Lyapunov matrix differ-
ential equation (1) are Ψ− conditionally exponentially asymptotically stable
on R+.

Proof. We put

S = {X : R+ −→Md×d | X is continuous and Ψ− bounded on R+}.

Define on the set S a norm by

|| X || = sup
t≥0
| Ψ(t)X(t) | .

It is well-known that (S, || · ||) is a Banach real space.
For X ∈ S, we define

(TX) (t) =

∫ t

0

U(t)P1U
−1(s)F (s,X(s))ds−

∫ ∞
t

U(t)P2U
−1(s)F (s,X(s))ds,

for all t ≥ 0.
For v ≥ t ≥ 0,

|
∫ v
t
U(t)P2U

−1(s)F (s,X(s))ds | =

=| Ψ−1(t)
∫ v
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds | ≤

≤ | Ψ−1(t) |
∫ v
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s)) | ds ≤
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≤| Ψ−1(t) |
∫ v
t
K2e

−λ2(s−t)γ(s) | Ψ(s)X(s) | ds ≤
≤| Ψ−1(t) ||| X || K2γ0

∫ v
t
e−λ2(s−t)ds.

From the first assumption, it follows that the integral∫ ∞
t

U(t)P2U
−1(s)F (s,X(s))ds

is convergent for all X ∈ S and t ≥ 0.
From hypotheses, (TX)(t) exists and is continuous differentiable on R+.
For X ∈ S and t ≥ 0,
| Ψ(t)(TX)(t) | =

=|
∫ t
0

Ψ(t)U(t)P1U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds−

−
∫∞
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds | ≤

≤
∫ t
0
| Ψ(t)U(t)P1U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s)) | ds +

+
∫∞
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s))ds | ds ≤
≤
∫ t
0
K1e

−λ1(t−s)γ(s) | Ψ(s)X(s) | ds+
∫∞
t
K2e

−λ2(s−t)γ(s) | Ψ(s)X(s) | ds ≤

≤ γ0

(
K1

λ1
+ K2

λ2

)
|| X ||

This shows that TS ⊂ S.
Moreover, for any two Ψ− bounded continuous functions X1(t), X2(t),
| Ψ(t) ((TX1)(t)− (TX2)(t)) | =

= |
∫ t
0

Ψ(t)U(t)P1U
−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) ds−

−
∫∞
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) ds | ≤

≤
∫ t
0
| Ψ(t)U(t)P1U

−1(s)Ψ−1(s) || Ψ(s) (F (s,X1(s))− F (s,X2(s))) | ds+
+
∫∞
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s) (F (s,X1(s))− F (s,X2(s))) | ds ≤
≤
∫ t
0
K1e

−λ1(t−s)γ(s) | Ψ(s) (X1(s)−X2(s)) | ds+
+
∫∞
t
K2e

−λ2(s−t)γ(s) | Ψ(s) (X1(s)−X2(s)) | ds ≤

≤ γ0

(
K1

λ1
+ K2

λ2

)
|| X1 −X2 || .

It follows that

|| TX1 − TX2 || ≤ γ0

(
K1

λ1
+
K2

λ2

)
|| X1 −X2 ||, for all X1, X2 ∈ S.

Since M = γ0

(
K1

λ1
+ K2

λ2

)
< 1, it follows that the operator T is a contrac-

tion of the Banach space (S, || · ||) .
It follows by the contraction principle that for any Ψ− bounded contin-

uous function Y (t) on R+, the integral equation

X = Y + TX (12)
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has a unique solution X ∈ S.
Furthermore, by the definition of T, X(t) − Y (t) is continuous differen-

tiable and

(X(t)− Y (t))′ = A(t) (X(t)− Y (t)) + F (t,X(t)), t ≥ 0.

Hence, if Y (t) is a Ψ− bounded solution of (4), then the corresponding
solution X(t) of (12) is a Ψ− bounded solution of (11). Conversely, if X(t)
is a Ψ− bounded solution of (11), the function Y (t) defined by (12) is a Ψ−
bounded solution of (4).

Thus, the equation (12) establishes a 1–1 correspondence C between the
Ψ− bounded solutions of (4) and (11): X = CY.

If we subtract from (12) the analogous equation X0 = Y0 + TX0, we get

|| X −X0 || ≤ || Y − Y0 || + || TX − TX0 || ≤

≤ || Y − Y0 || + M || X −X0 ||,

i.e.

(1−M) || X −X0 || ≤ || Y − Y0 ||

and

|| Y − Y0 || ≤ || X −X0 || + || TX − TX0 || ≤ (1 +M) || X −X0 || .

Thus,

(1 +M)−1 || Y − Y0 || ≤ || X −X0 || ≤ (1−M)−1 || Y − Y0 || . (13)

This shows that the correspondence C is bicontinuous on the interval R+.
Now, we prove that all Ψ− bounded solutions of (11) tend to zero Ψ−

exponentially as t→∞.
Let X(t) be a Ψ− bounded solution of (11). Let Y (t) be defined by (12);

this function is a Ψ− bounded solution of (4). Let Z(t) = Y (t)−U(t)P1X(0),
for t ≥ 0. It is easy to see that Z(t) is a Ψ− bounded solution of (4). Since

P1Z(0) = P1 (Y (0)− P1X(0)) = P1 (X(0)− (TX)(0))− P 2
1X(0) =

= P1X(0)− P1

(
−
∫∞
0
P2U

−1(s)F (s,X(s))ds
)
− P1X(0) = O,

it follows that
Z(t) = U(t)Z(0) = U(t)(P1 + P2)Z(0) = U(t)P2Z(0).
If P2Z(0) 6= 0, from Lemma 11, [6], it follows that lim sup

t→∞
| Ψ(t)Z(t) |=

+∞, which is a contradiction.
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Thus, P2Z(0) = 0 and then, Z(t) = 0. Hence,
X(t) = U(t)P1X(0)+
+
∫ t
0
U(t)P1U

−1(s)F (s,X(s))ds−
∫∞
t
U(t)P2U

−1(s)F (s,X(s))ds, t ≥ 0.
Then, for t ≥ 0,
| Ψ(t)X(t) |≤| Ψ(t)U(t)P1Ψ

−1(0) || Ψ(0)X(0) | +
+
∫ t
0
| Ψ(t)U(t)P1U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s)) | ds+
+
∫∞
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s))ds | ds ≤
≤ K1e

−λ1t | Ψ(0)X(0) | +
+K1

∫ t
0
e−λ1(t−s)γ(s) | Ψ(s)X(s) | ds+

K2

∫∞
t
e−λ2(s−t) | Ψ(s)F (s,X(s))ds | ds.

Now, we choose b = K1
1
γ0
−K2
λ2

∈ (0, λ1) and c = λ1 − b ∈ (0, λ1).

Thus, by putting m(t) = sup
0≤s≤t

ecs | Ψ(s)X(s) |, we obtain

ect | Ψ(t)X(t) |≤ K1e
cte−λ1t | Ψ(0)X(0) | +

+K1

∫ t
0
ecte−λ1(t−s)e−csγ(s)ecs | Ψ(s)X(s) | ds+

+K2

∫∞
t
ecte−λ2(s−t)e−csγ(s)ecs | Ψ(s)X(s) | ds

or
ect | Ψ(t)X(t) |≤ K1e

−bt | Ψ(0)X(0) | +
+K1γ0m(t)b−1

(
1− e−bt

)
+K2γ0

∫∞
t
e(c+λ2)(t−s)m(s)ds, for t ≥ 0.

For a fixed t ≥ 0, there are two cases to consider:
Case 1: for any u ∈ [0, t], ecu | Ψ(u)X(u) |≤ ect | Ψ(t)X(t) | .
In this case, m(t) = ect | Ψ(t)X(t) | . It follows that

m(t) ≤ K1e
−bt | Ψ(0)X(0) | +m(t)

(
1− e−bt

)
+

K2γ0
∫∞
t
e(c+λ2)(t−s)m(s)ds.

Thus,
m(t) ≤ K1 | Ψ(0)X(0) | + K2γ0e

(λ1+λ2)t
∫∞
t
e−(c+λ2)sm(s)ds.

Case 2: there exists u0 ∈ [0, t), such that
ecu0 | Ψ(u0)X(u0) | > ect | Ψ(t)X(t) | .

In this case, there exists u1 ∈ [0, t), such that
m(t) = ecu1 | Ψ(u1)X(u1) |= m(u1)

and, in addition, m(s) = m(t) for all s ∈ [u1, t].
It follows that

m(t) = ecu1 | Ψ(u1)X(u1) | ≤ K1e
−bu1 | Ψ(0)X(0) | +

+K1γ0m(u1)b
−1 (1− e−bu1)+K2γ0

∫∞
u1
e(c+λ2)(u1−s)m(s)ds.

Because∫∞
u1
e(c+λ2)(u1−s)m(s)ds =

∫ t
u1
e(c+λ2)(u1−s)m(t)ds+

∫∞
t
e(c+λ2)(u1−s)m(s)ds =
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= m(t)
(
e(c+λ2)(u1−t)

−(c+λ2) + 1
(c+λ2)

)
+
∫∞
t
e(c+λ2)(u1−s)m(s)ds,

we have
m(t) ≤ b

γ0
| Ψ(0)X(0) | + bK2

K1
e(λ1+λ2)t

∫∞
t
e−(c+λ2)sm(s)ds.

In any case, the function m(t) satisfies the inequality

m(t) ≤ b

γ0
| Ψ(0)X(0) | +bK2

K1

eαt
∫ ∞
t

e−βsm(s)ds, t ≥ 0,

where α = λ1 + λ2 > 0 and β = c+ λ2 > 0.
From Theorem I. 19,[14], (page 114), it follows that m(t) ≤ u(t), for

t ≥ 0, where u(t) is the solution of Volterra integral equation

u(t) =
b

γ0
| Ψ(0)X(0) | +bK2

K1

eαt
∫ ∞
t

e−βsu(s)ds

or the linear differential equation

u′ =

(
α− bK2

K1

e(α−β)t
)
u− αb

γ0
| Ψ(0)X(0) |

with the condition lim
t→∞

u(t) = 0.

From a result of O. Perron [18], it follows that

u(t) =
αb

γ0
| Ψ(0)X(0) |

∫ ∞
t

eα(t−s)−bK2K
−1
1 (α−β)−1(e(α−β)t−e(α−β)s)ds, t ≥ 0.

Since lim
t→∞

u(t) = 0, it follows that there exists a constant N > 0 such

that
| Ψ(t)X(t) |≤ N | Ψ(0)X(0) | e−ct, t ≥ 0. (14)

We specify that the constants N and c do not depend on the solution
X(t).

Now, we finish the proof.
Let X(t) be a Ψ− bounded solution of (11). This solution is Ψ− unstable

on R+.
Indeed, if not, it is Ψ− stable on R+. Thus, for every ε > 0 and any

t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such that, any solution X̃(t) of the

equation (11) which satisfies the inequality | Ψ(t0)(X̃(t0) − X(t0)) | < δ,

exists and satisfies the inequality | Ψ(t)(X̃(t)−X(t)) | < ε for all t ≥ t0.
Let Z0 ∈ Md×d be such that P1Z0 = Od and 0 <| Ψ(0)Z0 | < δ(ε, 0) and

let X̃(t) be the solution of (11) with the initial condition X̃(0) = X(0) +Z0.

Then, | Ψ(t)(X̃(t)−X(t)) | < ε for all t ≥ 0.
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Let Y (t) be the function Y (t) = X̃(t)−X(t)− T (X̃(t)−X(t)), t ≥ 0.
Clearly, Y (t) is a Ψ− bounded solution on R+ of (4). It is easy to see

that P1Y (0) = Od. If P2Y (0) 6= Od, from Lemma 11, [6], it follows that
lim supt→∞ | Ψ(t)Y (t) |= ∞, which is a contradiction. Thus, P2Y (0) = Od

and then

X̃(t)−X(t) = T (X̃(t)−X(t)), t ≥ 0.

It follows that X̃(t) = X(t), t ≥ 0, which is a contradiction.
This shows that the solution X(t) is Ψ− unstable on R+.
Let Y = X − TX be. From Theorem 3.5, it follows that there exists a

sequence (Yn) of solutions of (4) defined on R+ such that

lim
n→∞

Ψ(t)Yn(t) = Ψ(t)Y (t), uniformly on R+

and there exist the positive constants N and λ such that

| Ψ(t) (Yn(t)− Y (t)) | ≤ Ne−λt, for all t ≥ 0 and n ∈ N.

Let Xn = CYn be. From (13), it follows that the sequence (Xn) of
solutions of (11) defined on R+ is such that

lim
n→∞

Ψ(t)Xn(t) = Ψ(t)X(t), uniformly on R+.

Let R > 0 such that

| Ψ(0)Xn(0) | < R, for all n ∈ N.

From (14),

| Ψ(t) (Xn(t)−X(t)) | ≤ | Ψ(t)Xn(t) | + | Ψ(t)X(t) |≤

≤ Ne−ct (| Ψ(0)Xn(0) | + | Ψ(0)X(0) |) ≤ 2RNe−ct,

for all t ≥ 0 and n ∈ N.
Thus, the solution X(t) is Ψ− conditionally exponentially asymptotically

stable on R+.
The proof of the first part is complete.
The last part results from the above, if we put XB(t) + F (t,X) instead

of F (t,X).
The proof is complete.
Remark 5.1. The Theorem contains as a particular case a result con-

cerning Ψ− conditional exponential asymptotic stability of all Ψ− bounded
solutions of the differential system

x′ = A(t)x+ f(t, x).
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Indeed, consider in (11)

X =


x1 x1 · · · x1
x2 x2 · · · x2
· · · · · · · · · · · ·
xd xd · · · xd


and

F (t,X) =


f1(t, x) f1(t, x) · · · f1(t, x)
f2(t, x) f2(t, x) · · · f2(t, x)
· · · · · · · · · · · ·

fd(t, x) fd(t, x) · · · fd(t, x)

 ,

where x = (x1, x2, · · · , xd)T and f(t, x) = (f1(t, x), f2(t, x), · · · , fd(t, x))T .
Now, the definitions and conditions for Ψ− boundedness or Ψ− con-

ditional exponential asymptotic stability on R+ of x are the same for Ψ−
boundedness or Ψ− conditional exponential asymptotic stability on R+ of
X.

We mention that in Theorem 8, [13], there exist a result concerning Ψ−
conditional exponential asymptotic stability of all Ψ− bounded solutions of
the nonlinear Volterra integro-differential system

x′ = A(t)x+

∫ t

0

F (t, s, x(s))ds.

Corollary 5.1. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0, i = 1, 2

and positive constants K1, K2, λ1, λ2 such that the fundamental matrix U(t)
for the equation (4), U(0) = Id, satisfies the conditions:{

| Ψ(t)U(t)P1U
−1(s)Ψ−1(s) | ≤ K1e

−λ1(t−s) for 0 ≤ s ≤ t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) | ≤ K2e
−λ2(s−t) for 0 ≤ t ≤ s

;

2). The continuous matrix B(t) satisfies the condition

sup
t≥0
| B(t) |<

(
K1

λ1
+
K2

λ2

)−1
.

Then, the linear Lyapunov matrix differential equation (3) is Ψ− condi-
tionally exponentially asymptotically stable on R+.

Proof. It results from the above Theorem, if we take F (t,X) = Od.

Corollary 5.2. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0, i = 1, 2

and positive constants K1, K2, λ1, λ2 such that:
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{
| Ψ(t)P1Ψ

−1(s) | ≤ K1e
−λ1(t−s) for 0 ≤ s ≤ t

| Ψ(t)P2Ψ
−1(s) | ≤ K2e

−λ2(s−t) for 0 ≤ t ≤ s
;

2). The continuous function F : R+ × Md×d −→ Md×d is such that
F (t, Od) = Od and satisfies the Lipschitz condition

| Ψ(t) (F (t,X1)− F (t,X2)) |≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function.

3). The continuous matrix function A(t) satisfies the condition

sup
t≥0

(
| Ψ(t)A(t)Ψ−1(t) | + γ(t)

)
<

(
K1

λ1
+
K2

λ2

)−1
.

Then, all Ψ− bounded solutions of the equation (11) are Ψ− conditionally
exponentially exponentially asymptotically stable on R+.

Proof. It results from the above Theorem, if we take Od instead of A(t)
and A(t)X + F (t,X) instead of F (t,X).

Corollary 5.3. If in the above Corollary, the hypothesis 3) is replaced
with

3’). the continuous matrices A(t) and B(t) satisfy the condition

sup
t≥0

(
| Ψ(t)A(t)Ψ−1(t) | + | B(t) | + γ(t)

)
<

(
K1

λ1
+
K2

λ2

)−1
,

then, all Ψ− bounded solutions of the the nonlinear Lyapunov matrix
differential equation (1) are Ψ− conditionally exponentially asymptotically
stable on R+.

Proof. It results from the above Corollary, if we take Od instead of A(t)
and A(t)X +XB(t) + F (t,X) instead of F (t,X).

Theorem 5.2. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0 and

positive constants K1, K2, λ1, λ2 such that the fundamental matrices X(t)
and Y (t) (with X(0) = Y (0) = Id) for the equations (4) and (5) respectively
satisfy the condition
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K1e

−λ1(t−s),
for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K2e

−λ2(s−t),
for 0 ≤ t ≤ s

;
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2). The continuous function F : R+ × Md×d −→ Md×d is such that
F (t, Od) = Od and satisfies the Lipschitz condition

| Ψ(t) (F (t,X1)− F (t,X2)) | ≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that

sup
t≥0

γ(t) < d−1
(
K1

λ1
+
K2

λ2

)−1
.

Then, the trivial solution of the equation (1) is Ψ− conditionally expo-
nentially asymptotically stable on R+.

Proof. From Lemma 2.7, we know that the trivial solution of the equa-
tion (1) is Ψ− conditionally exponentially asymptotically stable on R+ if and
only if the trivial solution of the corresponding Kronecker product system (6)
is Id ⊗Ψ− conditionally exponentially asymptotically stable on R+.

In system (6), we will apply the Theorem 5.1, variant for a differential
system (see Remark 5.1).

From Lemma 2.8, we know that the matrix U(t) = Y T (t) ⊗ X(t) is a
fundamental matrix for the linear homogeneous system associated with (6),
i.e. for the differential system (8).

The hypothesis 1 ensures the hypothesis 1 of Theorem 5.1 (with Id ⊗ Ψ
instead of Ψ).

Now, let

f(t, x) = Vec (F (t,X)) , x = Vec(X),

for t ∈ R+ and X ∈Md×d.
From hypothesis 2 and Lemma 2.6, it follows that
‖ (Id ⊗Ψ(t)) (f(t, x1)− f(t, x2)) ‖Rd2 =

= ‖ (Id ⊗Ψ(t)) (Vec (F (t,X1))− Vec (F (t,X2))) ‖Rd2 =

= ‖ (Id ⊗Ψ(t))Vec (F (t,X1)− F (t,X2)) ‖Rd2 ≤
≤ | Ψ(t) (F (t,X1)− F (t,X2)) | ≤ γ(t) | Ψ(t) (X1 −X2) | ≤
≤ dγ(t) ‖ (Id ⊗Ψ(t))Vec(X1 −X2) ‖Rd2 =

≤ dγ(t) ‖ (Id ⊗Ψ(t)) (Vec (X1)− Vec (X2)) ‖Rd2 =

= dγ(t) ‖ (Id ⊗Ψ(t)) (x1 − x2) ‖Rd2 ,
for all t ≥ 0 and x1, x2 ∈ Rd2 .

Thus, is ensured the hypothesis 2 of Theorem 5.1.
From Theorem 5.1, variant for differential systems, the trivial solution of

the system (6) is Id ⊗Ψ− conditionally exponentially asymptotically stable
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on R+. From Lemma 2.7 again, results that the trivial solution of (1) is Ψ−
conditionally exponentially asymptotically stable on R+.

The proof is now complete.

Remark 5.2. For F (t,X) = Od, one obtain Theorem 4.5.

Corollary 5.4. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0 and

positive constants K1, K2, λ1, λ2 such that the fundamental matrices X(t)
and Y (t) (with X(0) = Y (0) = Id) for the equations (4) and (5) respectively
satisfy the condition
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K1e

−λ1(t−s),
for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K2e

−λ2(s−t),
for 0 ≤ t ≤ s

;

2). A1(t) and B1(t) are continuous d× d matrices functions on R+ and
satisfy the condition

sup
t≥0

[
| Ψ(t)A1(t)Ψ

−1(t) | + | B1(t) |
]
< d−1

(
K1

λ1
+
K2

λ2

)−1
.

Then, the equation (2) is Ψ− conditionally exponentially asymptotically
stable on R+.

Proof. It results from the above Theorem.
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