

Analele Universității de Vest, Timișoara Seria Matematică – Informatică LIII, 2, (2015), 59– 72

The hyperstability of AQ-Jensen functional equation on 2-divisible abelian group and inner product spaces

Iz-iddine EL-Fassi* and Samir Kabbaj

Abstract. In this paper, we prove the hyperstability of the following mixed additive-quadratic-Jensen functional equation

$$2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) = f(x) + f(y)$$

in the class of functions from an 2-divisible abelian group ${\cal G}$ into a Banach space.

AMS Subject Classification (2000). Primary 39B82, 39B52 Secondary 47H14, 47H10.

Keywords. Hyperstability, additive-quadratic-Jensen Functional Equation, fixed point theorem.

1 Introduction and Preliminaries

The study of stability problems for functional equations is related to a question of Ulam [29] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [16]. The result of Hyers was generalized by Aoki [2] for approximate additive mappings. In 1978, Th.

^{*}Corresponding author

M. Rassias [27] generalized the result of Hyers by considering the stability problem for unbounded Cauchy differences. This phenomenon of stability introduced by Th. M. Rassias [27] is called the Hyers-Ulam-Rassias stability.

Theorem 1.1 ([27, Th. M. Rassias]). Let $f : E_1 \to E_2$ be a mapping from a real normed vector space E_1 into a Banach space E_2 satisfying the inequality

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p),$$
(1.1)

for all $x, y \in E_1$, where θ and p are constants with $\theta > 0$ and p < 1. Then there exists a unique additive mapping $T : E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p,$$
 (1.2)

for all $x \in E_1$. If p < 0 then inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \to f(tx)$ from \mathbb{R} into E_2 is continuous for each fixed $x \in E_1$, then T is linear.

In 1994, a generalization of Rassias' theorem was obtained by Găvruta [13], who replaced $\theta(||x||^p + ||y||^p)$ by a general control function $\varphi(x, y)$.

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [3, 11, 14, 17–22, 24, 25, 28]).

Recently, interesting results concerning additive-quadratic-Jensen type functional equation (briefly, AQ-Jensen functional equation)

$$2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) = f(x) + f(y), \qquad (1.3)$$

have been obtained in [1] and [30].

We say a functional equation \mathfrak{D} is hyperstable if any function f satisfying the equation \mathfrak{D} approximately is a true solution of \mathfrak{D} . The term hyperstability was used for first time probably in [23]. However, it seems that the first hyperstability result was published in [5] and concerned the ring homomorphisms. The hyperstability results for Cauchy equation were investigated by Brzdek in [7, 8, 10]. Gselmann in [15] studied the hyperstability of the parametric fundamental equation of information. In [4] Bahyrycz and Piszczek provided the hyperstability of the Jensen functional equation. In [12] EL-Fassi and Kabbaj studied the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces.

Throughout this paper, we will denote the set of natural numbers by \mathbb{N} , the set of integers by \mathbb{Z} and the set of real numbers by \mathbb{R} . Let \mathbb{N}^* be the set of positive integers. We note that \mathbb{N}_{m_0} (with $m_0 \in \mathbb{N}^*$) the set of all integers greater than or equal to m_0 . Let $\mathbb{R}_+ := [0, \infty)$ be the set of nonnegative real numbers and $\mathbb{R}_{*+} := (0, \infty)$ the set of positive real numbers and Y^X denotes the family of all functions mapping from a nonempty set X into a nonempty set Y.

J. Brzdek and K. Ciepliński [9] introduced the following definition, which describes the main ideas of such a hyperstability notion for equations in several variables.

Definition 1.1. Let X be a nonempty set, (Y, d) be a metric space, $\varepsilon : X^n \to \mathbb{R}_+$ (with $n \in \mathbb{N}^*$) be an arbitrary function, and let $\mathcal{F}_1, \mathcal{F}_2$ be two operators mapping from a nonempty set $\mathcal{D} \subset Y^X$ into Y^{X^n} . We say that the operator equation

$$\mathcal{F}_1\varphi(x_1,...,x_n) = \mathcal{F}_2\varphi(x_1,...,x_n), \quad (x_1,...,x_n \in X)$$

$$(1.4)$$

is ε -hyperstable provided that every $\varphi_0 \in \mathcal{D}$ which satisfies

$$d(\mathcal{F}_1\varphi_0(x_1,...,x_n),\mathcal{F}_2\varphi_0(x_1,...,x_n)) \le \varepsilon(x_1,...,x_n), \ (x_1,...,x_n \in X)$$

fulfills equation (1.4) on X.

In this article, we introduce the following definition, which describes the main ideas of the concept of hyperstability for equations in several variables.

Definition 1.2. Let X be a nonempty set, (Y, d) be a metric space, $\Sigma \subset \mathbb{R}_{*+}^{X^n}$ be a nonempty subset and \mathcal{F}_1 , \mathcal{F}_2 be operators mapping from a nonempty set $\mathcal{D} \subset Y^X$ into Y^{X^n} We say that the operator equation

$$\mathcal{F}_{1}\varphi(x_{1},...,x_{n}) = \mathcal{F}_{2}\varphi(x_{1},...,x_{n}), \quad (x_{1},...,x_{n} \in X)$$
(1.5)

is Σ -hyperstable for the pair (X, Y) provided for any $\varepsilon \in \Sigma$ and $\varphi_0 \in \mathcal{D}$ satisfies the inequality

$$d(\mathcal{F}_{1}\varphi_{0}(x_{1},...,x_{n}),\mathcal{F}_{2}\varphi_{0}(x_{1},...,x_{n})) \leq \varepsilon(x_{1},...,x_{n}), \ (x_{1},...,x_{n} \in X)$$

fulfills equation (1.5) on X.

A function $H : \mathbb{R}^2_+ \to \mathbb{R}_+$ is called homogeneous of degree a real number p if it satisfies $H(tu, tv) = t^p H(u, v)$ for all $t \in \mathbb{R}_{*+}$ and $u, v \in \mathbb{R}_+$. In the sequel, we assume that G = (G, +) is an 2-divisible abelian group, E is an arbitrary real Banach space, $H : \mathbb{R}^2_+ \to \mathbb{R}_+$ is a symmetric homogeneous

An. U.V.T.

function of degree p < 0 for which there exists a positive integer m_0 such that

$$\inf\{\varepsilon(x, mx) : m \in \mathbb{N}_{m_0}\} = 0 \tag{1.6}$$

for all $x \in G$ and $\gamma: G \to \mathbb{R}_{*+}$ is a function satisfying

(C1) $\gamma\left(\frac{kx}{2}\right) = \frac{|k|}{2}\gamma(x)$ for all $x \in G$ and $k \in \mathbb{Z} \setminus \{0\}$,

(C2) $\gamma(x+y) \leq \gamma(x) + \gamma(y)$ for all $x, y \in G$.

We will denote by Σ the set of all functions $\varepsilon: G^2 \to \mathbb{R}_+$ for which there exists a constant $c \in \mathbb{R}_+$ such that

$$\varepsilon(x,y) = cH(\gamma(x),\gamma(y)) \quad x,y \in G.$$
(1.7)

By the conditions (C1) and (C2), we notice that:

$$\varepsilon\left(\frac{kx}{2},\frac{ky}{2}\right) = \left|\frac{k}{2}\right|^p \varepsilon(x,y)$$

for all $x, y \in G$ and $k \in \mathbb{Z} \setminus \{0\}$.

In this paper, we present the hyperstability results for the mixed additivequadratic-Jensen type functional equation (1.3) in the class of functions from an 2-divisible commutative group (G, +) into a Banach space E.

The method of the proof of the main results is motivated by an idea used in [7-10, 26]. It is based on a fixed point theorem for functional spaces obtained by Brzdek et al. (see [6, Theorem 1]).

First, we take the following three hypotheses (all notations come from [6]).

(H1) U is a nonempty set, V is a Banach space, $f_1, ..., f_k : U \to U$ and $L_1, ..., L_k : U \to \mathbb{R}_+$ are given.

(H2) $\Upsilon: V^U \to V^U$ is an operator satisfying the inequality

$$\|\Im\xi(x) - \Im\mu(x)\| \le \sum_{i=1}^{k} L_i(x) \|\xi(f_i(x)) - \mu(f_i(x))\|$$

for all $\xi, \mu \in V^U, x \in U$.

(H3) $\Lambda : \mathbb{R}^U_+ \to \mathbb{R}^U_+$ is a linear operator defined by

$$\Lambda\delta(x) := \sum_{i=1}^{k} L_i(x)\delta(f_i(x))$$

for all $\delta \in \mathbb{R}^U_+$, $x \in U$.

The mentioned fixed point theorem is stated as follows.

Theorem 1.2. Let hypotheses (H1)-(H3) be valid and functions $\varepsilon : U \to \mathbb{R}_+$ and let $\varphi : U \to V$ fulfil the following two conditions:

$$\|\Im\varphi(x) - \varphi(x)\| \le \varepsilon(x), \ x \in U$$
$$\varepsilon^*(x) := \sum_{n=0}^{\infty} \Lambda^n \varepsilon(x) < \infty, \ x \in U.$$

Then, there exists a unique fixed point ψ of \mathfrak{T} with

$$\|\varphi(x) - \psi(x)\| \le \varepsilon^*(x), \ x \in U.$$

Moreover

$$\psi(x) = \lim_{n \to \infty} \mathfrak{T}^n \varphi(x), \ x \in U.$$

2 Hyperstability Results of eq (1.3)

The following theorems are the main results in this paper and concern the Σ -hyperstability of equation (1.3).

Theorem 2.1. Let G be an 2-divisible abelian group and E be a Banach space. If $f: G \to E$ satisfies

$$\left\|2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) - f(y) - f(x)\right\| \le \varepsilon(x,y) \quad (2.1)$$

for all $x, y \in G$ and $\varepsilon \in \Sigma$, then f is a solution of (1.3) on G.

Proof. Let $\varepsilon \in \Sigma$, then there exists a constant $c \in \mathbb{R}_+$ such that $\varepsilon(x, y) = cH(\gamma(x), \gamma(y))$. Replacing (x, y) by (x, mx), with $m \in \mathbb{N}_1$, in (2.1), we get

$$\left\| 2f\left(\frac{1+m}{2}x\right) + f\left(\frac{1-m}{2}x\right) + f\left(\frac{m-1}{2}x\right) - f(mx) - f(x) \right\|$$
$$\leq \varepsilon(x, mx) = cH(\gamma(x), \gamma(mx)) := \varepsilon_m(x) \tag{2.2}$$

for all $x \in G$. Further put

$$\Im\xi(x) := 2\xi\left(\frac{1+m}{2}x\right) + \xi\left(\frac{1-m}{2}x\right) + \xi\left(\frac{m-1}{2}x\right) - \xi(mx), \quad x \in G, \ \xi \in E^G.$$

Then the inequality (2.2) takes the form

$$\|\Im f(x) - f(x)\| \le \varepsilon_m(x), \ x \in G.$$

Now, we define an operator $\Lambda:\mathbb{R}^G_+\to\mathbb{R}^G_+$ by

$$\Lambda\delta(x) := 2\delta\left(\frac{1+m}{2}x\right) + \delta\left(\frac{1-m}{2}x\right) + \delta\left(\frac{m-1}{2}x\right) + \delta(mx), \ x \in G, \ \delta \in \mathbb{R}^G_+.$$

$$(2.3)$$

This operator has the form described in (H3) with k = 4 and $f_1(x) = \frac{1+m}{2}x$, $f_2(x) = \frac{1-m}{2}x$, $f_3(x) = \frac{m-1}{2}x$, $f_4(x) = mx$, $L_1(x) = 2$ and $L_2(x) = L_3(x) = L_4(x) = 1$ for all $x \in G$. Moreover, for every $\xi, \mu \in E^G$ and $x \in G$, we obtain

$$\begin{aligned} \|\Im\xi(x) - \Im\mu(x)\| &= \|2(\xi - \mu)(f_1(x)) + (\xi - \mu)(f_2(x))(\xi - \mu)(f_3(x)) - (\xi - \mu)(f_4(x))\| \\ &\leq 2 \|(\xi - \mu)(f_1(x))\| + \|(\xi - \mu)(f_2(x))\| + \|(\xi - \mu)(f_3(x))\| \\ &+ \|(\xi - \mu)(f_4(x))\| \\ &= \sum_{i=1}^{4} L_i(x) \|(\xi - \mu)(f_i(x))\| . \end{aligned}$$

So, (H2) is valid. Not that for some p < 0, we have

i = 1

$$\lim_{n \to \infty} \left(2\left(\frac{1+m}{2}\right)^p + 2\left(\frac{m-1}{2}\right)^p + m^p \right) = 0,$$

then, there exists $m_0 \in \mathbb{N}^*$ such that

$$A_m := 2\left(\frac{1+m}{2}\right)^p + 2\left(\frac{m-1}{2}\right)^p + m^p < 1, \text{ for all } m \ge m_0.$$

Therefore, in view of (1.7) and (2.3), it is easily to check that

$$\begin{split} \Lambda \varepsilon_m(x) &= 2\varepsilon_m \left(\frac{1+m}{2}x\right) + \varepsilon_m \left(\frac{1-m}{2}x\right) + \varepsilon_m \left(\frac{m-1}{2}x\right) + \varepsilon_m(mx) \\ &= 2H\left(\gamma\left(\frac{1+m}{2}x\right), \gamma\left(m\frac{1+m}{2}x\right)\right) + H\left(\gamma\left(\frac{1-m}{2}x\right), \gamma\left(m\frac{1-m}{2}x\right)\right) \\ &+ H\left(\gamma\left(\frac{m-1}{2}x\right), \gamma\left(m\frac{m-1}{2}x\right)\right) + H(\gamma(mx), \gamma(m.mx)) \\ &= 2H\left(\frac{1+m}{2}\gamma(x), \frac{1+m}{2}\gamma(mx)\right) + 2H\left(\frac{m-1}{2}\gamma(x), \frac{m-1}{2}\gamma(mx)\right) \\ &+ H(m\gamma(x), m\gamma(mx)) \\ &= \left(2\left(\frac{1+m}{2}\right)^p + 2\left(\frac{m-1}{2}\right)^p + m^p\right) H(\gamma(x), \gamma(mx)) \\ &= A_m \varepsilon_m(x) \end{split}$$
(2.4)

for all $x \in G$ and $m \geq m_0$. Therefore, we obtain that

$$\varepsilon_m^*(x) := \sum_{n=0}^{\infty} \Lambda^n \varepsilon_m(x)$$
$$= \varepsilon_m(x) \sum_{n=0}^{\infty} (A_m)^n$$
$$= \frac{\varepsilon_m(x)}{1 - A_m} < \infty.$$

for all $x \in G$ and $m \ge m_0$. Thus, according to Theorem 1.2, for each $m \ge m_0$ there exists a unique solution $F_m : G \to E$ of the equation

$$F_m(x) = 2F_m\left(\frac{1+m}{2}x\right) + F_m\left(\frac{1-m}{2}x\right) + F_m\left(\frac{m-1}{2}x\right) - F_m(mx)$$

for all $x \in G$, such that

$$||f(x) - F_m(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m}, \ x \in G.$$

Moreover $F_m(x) = \lim_{n \to \infty} \mathfrak{T}^n f(x)$ for all $x \in G$.

To prove that the function F_m satisfies the functional equation (1.3) on G, it suffices to prove the following inequality

$$\left\| 2\mathfrak{T}^n f\left(\frac{x+y}{2}\right) + \mathfrak{T}^n f\left(\frac{x-y}{2}\right) + \mathfrak{T}^n f\left(\frac{y-x}{2}\right) - \mathfrak{T}^n f(y) - \mathfrak{T}^n f(x) \right\| \le (A_m)^n \varepsilon(x,y)$$

$$(2.5)$$

for all $x, y \in G$ and $n \in \mathbb{N}$. Indeed, if n = 0, then (2.5) is simply (2.1). So, fix $n \in \mathbb{N}$ and suppose that (2.5) holds for n. Then

$$\begin{split} & \left\| 2\mathfrak{T}^{n+1}f\left(\frac{x+y}{2}\right) + \mathfrak{T}^{n+1}f\left(\frac{x-y}{2}\right) + \mathfrak{T}^{n+1}f\left(\frac{y-x}{2}\right) - \mathfrak{T}^{n+1}f(y) - \mathfrak{T}^{n+1}f(x) \right\| \\ = & \left\| 2\Big[2\mathfrak{T}^n f\left(\frac{m+1}{2}\frac{x+y}{2}\right) + \mathfrak{T}^n f\left(\frac{1-m}{2}\frac{x+y}{2}\right) + \mathfrak{T}^n f\left(\frac{m-1}{2}\frac{x+y}{2}\right) \right] \\ & - \mathfrak{T}^n f\left(m\frac{x+y}{2}\right) \Big] + \Big[2\mathfrak{T}^n f\left(\frac{m+1}{2}\frac{x-y}{2}\right) + \mathfrak{T}^n f\left(\frac{1-m}{2}\frac{x-y}{2}\right) \\ & + \mathfrak{T}^n f\left(\frac{m-1}{2}\frac{x-y}{2}\right) - \mathfrak{T}^n f\left(m\frac{x-y}{2}\right) \Big] + \Big[2\mathfrak{T}^n f\left(\frac{m+1}{2}\frac{y-x}{2}\right) \\ & + \mathfrak{T}^n f\left(\frac{1-m}{2}\frac{y-x}{2}\right) + \mathfrak{T}^n f\left(\frac{m-1}{2}\frac{y-x}{2}\right) - \mathfrak{T}^n f\left(m\frac{y-x}{2}\right) \Big] \\ & - \Big[2\mathfrak{T}^n f\left(\frac{m+1}{2}y\right) + \mathfrak{T}^n f\left(\frac{1-m}{2}y\right) + \mathfrak{T}^n f\left(\frac{m-1}{2}y\right) - \mathfrak{T}^n f(my) \Big] \end{split}$$

$$\begin{split} &- \left[2\mathfrak{T}^{n}f\left(\frac{m+1}{2}x\right) + \mathfrak{T}^{n}f\left(\frac{1-m}{2}x\right) + \mathfrak{T}^{n}f\left(\frac{m-1}{2}x\right) - \mathfrak{T}^{n}f(mx)\right] \right\| \\ \leq & 2 \Big\| 2\mathfrak{T}^{n}f\left(\frac{m+1}{2}\frac{x+y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{m+1}{2}\frac{x-y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{m+1}{2}\frac{y-x}{2}\right) \\ &- \mathfrak{T}^{n}f\left(\frac{m+1}{2}y\right) - \mathfrak{T}^{n}f\left(\frac{m+1}{2}x\right) \Big\| + \Big\| 2\mathfrak{T}^{n}f\left(\frac{1-m}{2}\frac{x+y}{2}\right) \\ &+ \mathfrak{T}^{n}f\left(\frac{1-m}{2}\frac{x-y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{1-m}{2}\frac{y-x}{2}\right) - \mathfrak{T}^{n}f\left(\frac{1-m}{2}\frac{x-y}{2}\right) \\ &- \mathfrak{T}^{n}f\left(\frac{1-m}{2}\frac{y-x}{2}\right) + \left(\mathfrak{T}^{n}f\left(\frac{m-1}{2}\frac{x+y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{m-1}{2}x\right) \Big\| \\ &+ \left\| 2\mathfrak{T}^{n}f\left(\frac{m-1}{2}\frac{y-x}{2}\right) - \mathfrak{T}^{n}f\left(\frac{m-1}{2}y\right) - \mathfrak{T}^{n}f\left(\frac{m-1}{2}x\right) \right\| \\ &+ \left\| 2\mathfrak{T}^{n}f\left(\frac{m}{2}\frac{x+y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{m}{2}\frac{x-y}{2}\right) + \mathfrak{T}^{n}f\left(\frac{m}{2}\frac{y-x}{2}\right) - \mathfrak{T}^{n}f(mx) - \mathfrak{T}^{n}f(mx) \right\| \\ \leq & (A_{m})^{n} \Big[2\varepsilon\left(\frac{m+1}{2}x,\frac{m+1}{2}y\right) + \varepsilon\left(\frac{1-m}{2}x,\frac{1-m}{2}y\right) + \varepsilon\left(\frac{m-1}{2}x,\frac{m-1}{2}y\right) \\ &+ \varepsilon(mx,my) \Big] \\ = & (A_{m})^{n+1}\varepsilon(x,y) \end{split}$$

for all $x, y \in G$. Thus, by induction, we have shown that (2.5) holds for all $x, y \in G$ and for all $n \in \mathbb{N}$. Letting $n \to \infty$ in (2.5), we obtain

$$2F_m\left(\frac{x+y}{2}\right) + F_m\left(\frac{x-y}{2}\right) + F_m\left(\frac{y-x}{2}\right) = F_m(y) + F_m(x) \qquad (2.6)$$

for all $x, y \in G$. So, we find a sequence $(F_m)_{m \ge m_0}$ satisfies (1.3) on G such that

$$||f(x) - F_m(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m}, \ x \in G, \ m \ge m_0.$$

Next, we prove that $F_m = F_k$ for all $m, k \in \mathbb{N}_{m_0}$. Let us fix $m, k \in \mathbb{N}_{m_0}$ and note that F_m and F_k satisfy (2.6). Hence, by replacing (x, y) by (x, mx)in (2.6), we get $\Im F_m(x) = F_m(x)$, $\Im F_k(x) = F_k(x)$ for all $x \in G$ and

$$||F_m(x) - F_k(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m} + \frac{\varepsilon_k(x)}{1 - A_k}$$

for all $x \in G$. It follows, by linearity of Λ and (2.4) that

$$\|F_m(x) - F_k(x)\| = \|\mathfrak{T}^n F_m(x) - \mathfrak{T}^n F_k(x)\|$$

$$\leq \frac{\Lambda^n \varepsilon_m(x)}{1 - A_m} + \frac{\Lambda^n \varepsilon_k(x)}{1 - A_k}$$

$$\leq (A_m)^n \left[\frac{\varepsilon_m(x)}{1 - A_m} + \frac{\varepsilon_k(x)}{1 - A_k}\right]$$

for all $x \in G$ and $n \in \mathbb{N}$. Letting $n \to \infty$ we get $F_m = F_k =: F$. Thus, we have

$$||f(x) - F(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m}, \quad x \in G, \quad m \ge m_0$$

and the function F is a solution of (1.3).

To prove the uniqueness of the function F, let us assume that there exists a function $F': G \to E$ which satisfies (1.3) and the inequality

$$||f(x) - F'(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m}, \ x \in G, \ m \ge m_0.$$

Then

$$||F(x) - F'(x)|| \le \frac{2\varepsilon_m(x)}{1 - A_m}, \ x \in G, \ m \ge m_0.$$

Further $\Im F'(x) = F'(x)$ for all $x \in G$. Therefore, with a fixed $m \in \mathbb{N}_{m_0}$

$$\|F(x) - F'(x)\| = \|\mathfrak{T}^n F(x) - \mathfrak{T}^n F'(x)\|$$
$$\leq \frac{2\Lambda^n \varepsilon_m(x)}{1 - A_m}$$
$$\leq 2(A_m)^n \times \frac{\varepsilon_m(x)}{1 - A_m}$$

for all $x \in G$ and $n \in \mathbb{N}$. Letting $n \to \infty$ we get F = F', which yields

$$||f(x) - F(x)|| \le \frac{\varepsilon_m(x)}{1 - A_m}, \ x \in G, \ m \ge m_0.$$

Next, in view of (1.6), we have

$$\inf\left\{\frac{\varepsilon_m(x)}{1-A_m}:m\ge m_0\right\}=0$$

for all $x \in G$, this means that f(x) = F(x) for $x \in G$, which implies that f satisfies the functional equation (1.3) on G and the proof of the theorem is complete.

In a similar way we can prove that Theorem (2.1) holds if the inequality (2.1) is defined on $G \setminus \{0\} := G_0$.

Theorem 2.2. Let G be an 2-divisible abelian group and E be a Banach space. Let Σ be the set of all functions $\varepsilon : G_0 \to \mathbb{R}_+$ which satisfy the conditions as stated in the Section (1). If $f : G \to E$ satisfies

$$\left\|2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) - f(y) - f(x)\right\| \le \varepsilon(x,y) \quad (2.7)$$

for all $x, y \in G_0$ and $\varepsilon \in \Sigma$, then f is a solution of (1.3) on G_0 .

3 Applications

In this section we give some applications of the Theorem 2.2, with the case:

$$\varepsilon(x,y) = \theta \|x\|^p \cdot \|y\|^q$$

where $\theta \in \mathbb{R}_+$, $p, q \in \mathbb{R}$ and $x, y \neq 0$.

Corollary 3.1. Let E_1 and E_2 be a normed space and a Banach space, respectively. Assume S := (S, +) is an 2-divisible subgroup of the group $(E_1, +), p, q \in \mathbb{R}, p + q < 0 \text{ and } \theta \ge 0$. If $f : S \to E_2$ satisfies

$$\left\|2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) - f(y) - f(x)\right\| \le \theta \|x\|^p \|y\|^q$$

$$(3.1)$$

for all $x, y \in S \setminus \{0\}$, then f is a solution of (1.3) on $S \setminus \{0\}$.

Proof. Let Σ the set of all functions $\varepsilon : S \setminus \{0\} \times S \setminus \{0\} \to \mathbb{R}_+$ such that

$$\varepsilon(x,y) = \theta \|x\|^p \|y\|^q$$

for some $\theta \in \mathbb{R}_+$ and for all $x, y \in S \setminus \{0\}$. Define $H : \mathbb{R}^2_{+*} \to \mathbb{R}_+$ by $H(u, v) = cu^p v^q$ for some $c \geq 0$, p + q < 0 and for all $u, v \in \mathbb{R}_{+*}$ and $\gamma : S \to \mathbb{R}_+$ by $\gamma(x) = ||x||$ for all $x \in S$. It is easily seen that H is monotonically symmetric homogeneous function of degree p + q < 0 and conditions indicated in the start of the second section are fulfilled. Therefore every function $f : S \setminus \{0\} \to E_2$ satisfying (3.1) is a solution of the functional equation (1.3) on $S \setminus \{0\}$.

We know that any norm that satisfies the parallelogram law is bound to have been originated from a scalar product. The following corollary gives a characterization of the inner product space, which is one of the applications of Corollary 3.1.

Corollary 3.2. Let X be a normed space and $X_0 = X \setminus \{0\}$. Write

$$D(x,y) = \left| 2 \left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 + \left\| \frac{y-x}{2} \right\|^2 - \|y\|^2 - \|x\|^2$$

for all $x, y \in X$. Assume that

$$\sup_{x,y \in X_0} \frac{D(x,y)}{\|x\|^p \|y\|^q} < \infty$$

for somme $p, q \in \mathbb{R}$ and p + q < 0. Then X is an inner product space.

Proof. Write $f(x) = ||x||^2$. Then from Corollary 3.1, we easily derive f is a solution of the functional equation (1.3). That implies D(x, y) = 0. Thus, the norm ||.|| on X satisfies the parallelogram law:

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2, x, y \in X.$$

Therefore, X is an inner product space.

Corollary 3.3. Let G be an 2-divisible commutative group and E be a Banach space. Let Σ be the set of all functions $\varepsilon : G \to \mathbb{R}_+$ which satisfy the conditions as stated in the Section (1) and $F : G^2 \to E$ be a mapping such that $F(x_0, y_0) \neq 0$ for some $x_0, y_0 \in G$ and

$$||F(x,y)|| \le \varepsilon(x,y), \tag{3.2}$$

for all $x, y \in G$. Then the functional equation

$$2h\left(\frac{x+y}{2}\right) + h\left(\frac{x-y}{2}\right) + h\left(\frac{y-x}{2}\right) = F(x,y) + h(y) + h(x), \quad x, y, z \in G$$
(3.3)

has no solution in the class of functions $h: G \to E$.

Proof. Suppose that $h: G \to E$ is a solution to (3.3). Then (2.1) holds, and consequently, according to the above theorems, h is Jensen on G, which means that $F(x_0, y_0) = 0$. This is a contradiction.

Acknowledgement

The author would like to thanks the anonymous referee for his careful reading and valuable suggestions to improve the quality of the paper.

References

- M. A. Abolfathi, A. Ebadian, and R. Aghalary, Stability of mixed additivequadratic Jensen type functional equation in non-Archimedean *l*-fuzzy normed spaces, *Annali dell'Universit di Ferrara*, 60, (2014), 307-319
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, (1950), 64-66
- [3] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.), 22, (2006), 1789-1796
- [4] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar., 142, (2014), 353-365
- [5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, *Duke Math. J.*, 16, (1949), 385-397
- [6] J. Brzdek, J. Chudziak, and Z. Páles, A fixed point approach to stability of functional equations, *Nonlinear Anal.*, 74, (2011), 6728-6732
- [7] J. Brzdek, Remarks on hyperstability of the Cauchy equation, Aequations Mathematicae, 86, (2013), 255-267
- [8] J. Brzdek, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungarica, 141, (2013), 58-67
- [9] J. Brzdek and K. Ciepliński, Hyperstability and superstability, Abstract and Applied Analysis. Special Issue., (2013), 1-13
- [10] J. Brzdek, A hyperstability result for the Cauchy equation, Bulletin of the Australian Mathematical Society, 89, (2014), 33-40
- [11] L. Cădariu and V. Radu, Fixed points and the stability of Jensens functional equation, Journal of Inequalities in Pure and Applied Mathematics, 4, (2003)
- [12] Iz. EL-Fassi and S. Kabbaj, On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces, *Proyectiones J. Math.*, 34, (2015), 359-375
- [13] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J Math. Anal. Appl., 184, (1994), 431-436
- [14] M. E. Gordji, H. Khodaei, and M. Kamyar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, *Computers and Mathematics* with Applications, 62, (2011), 2950- 2960
- [15] E. Gselmann, Hyperstability of a functional equation, Acta Mathematica Hungarica, 124, (2009), 179-188

- [16] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27, (1941), 222-224
- [17] K. W. Jun, H. M. Kim, and J. M. Rassias, Extended Hyers-Ulam stability for Cauchy-Jensen mappings, J. Diference Equ. Appl., 13, (2007), 1139-1153
- [18] S.-M. Jung, M. S. Moslehian, and P. K. Sahoo, Stability of a generalized Jensen equation on restricted domains, J. Math. Ineq., 4, (2010), 191-206
- [19] S.-M. Jung, D.Popa, and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, *Journal of Global Optimization*, 59, (2014), 165-171
- [20] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22, (1989), 499-507
- [21] Y.-H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensens equation, J. Math. Anal. Appl., 238, (1999), 305-315
- [22] Y.-H. Lee, S.- M. Jung, and M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional functional equation, *Applied Mathematics and Computation*, 228, (2014), 13 -16
- [23] G. Maksa and Z. Páles, Hyperstability of a class of linear functional equations, Acta Math., 17, (2001), 107-112
- [24] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, *Fixed. Point. Theory. Appl.*, 15, (2007)
- [25] C.G. Park and Th.M. Rassias, Hyers -Ulam stability of a generalized Apollonius type quadratic mapping, *Journal of Mathematical Analysis and Applications*, 322, 371-381
- [26] M. Piszczek, Remark on hyperstability of the general linear equation, Aequations Mathematicae, 88, (2013), 163-168
- [27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, (1978), 297-300
- [28] J. M. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281, (2003), 516-524
- [29] S. M. Ulam, Problems in Modern Mathematics. Chapter IV, Science Editions, Wiley, New York, 1960
- [30] X. Yang, L. Chang, and G. Liu, Orthogonal Stability of Mixed Additive-Quadratic Jensen Type Functional Equation in Multi-Banach Spaces, Advances in Pure Mathematics, 5, (2015), 325-332

Iz-iddine EL-Fassi*

Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco. E-mail: izidd-math@hotmail.fr

Samir Kabbaj Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco. E-mail: samkabbaj@yahoo.fr

Received: 29.08.2015 Accepted: 15.01.2016