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Abstract. In this paper, we prove the hyperstability of the fol-
lowing mixed additive-quadratic-Jensen functional equation
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1 Introduction and Preliminaries

The study of stability problems for functional equations is related to a ques-
tion of Ulam [29] concerning the stability of group homomorphisms and af-
firmatively answered for Banach spaces by Hyers [16]. The result of Hyers
was generalized by Aoki [2] for approximate additive mappings. In 1978, Th.
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M. Rassias [27] generalized the result of Hyers by considering the stability
problem for unbounded Cauchy differences. This phenomenon of stability
introduced by Th. M. Rassias [27] is called the Hyers-Ulam-Rassias stability.

Theorem 1.1 ([27, Th. M. Rassias]). Let f : E1 → E2 be a mapping from a
real normed vector space E1 into a Banach space E2 satisfying the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p), (1.1)

for all x, y ∈ E1, where θ and p are constants with θ > 0 and p < 1. Then
there exists a unique additive mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p , (1.2)

for all x ∈ E1. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2)
for x 6= 0. Also, if the function t → f(tx) from R into E2 is continuous for
each fixed x ∈ E1, then T is linear.

In 1994, a generalization of Rassias’ theorem was obtained by Gǎvruta
[13], who replaced θ(‖x‖p + ‖y‖p) by a general control function ϕ(x, y).

The stability problems of several functional equations have been exten-
sively investigated by a number of authors and there are many interesting
results concerning this problem (see [3, 11,14,17–22,24,25,28]).

Recently, interesting results concerning additive-quadratic-Jensen type
functional equation (briefly, AQ-Jensen functional equation)
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= f(x) + f(y), (1.3)

have been obtained in [1] and [30].

We say a functional equation D is hyperstable if any function f satisfying
the equation D approximately is a true solution of D. The term hyper-
stability was used for first time probably in [23]. However, it seems that
the first hyperstability result was published in [5] and concerned the ring
homomorphisms. The hyperstability results for Cauchy equation were inves-
tigated by Brzdek in [7, 8, 10]. Gselmann in [15] studied the hyperstability
of the parametric fundamental equation of information. In [4] Bahyrycz and
Piszczek provided the hyperstability of the Jensen functional equation. In
[12] EL-Fassi and Kabbaj studied the hyperstability of a Cauchy-Jensen type
functional equation in Banach spaces.
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Throughout this paper, we will denote the set of natural numbers by N,
the set of integers by Z and the set of real numbers by R. Let N∗ be the set
of positive integers. We note that Nm0 (with m0 ∈ N∗) the set of all integers
greater than or equal to m0. Let R+ := [0,∞) be the set of nonnegative real
numbers and R∗+ := (0,∞) the set of positive real numbers and Y X denotes
the family of all functions mapping from a nonempty set X into a nonempty
set Y .

J. Brzdek and K. Ciepliński [9] introduced the following definition, which
describes the main ideas of such a hyperstability notion for equations in
several variables.

Definition 1.1. Let X be a nonempty set, (Y, d) be a metric space, ε : Xn →
R+ (with n ∈ N∗) be an arbitrary function, and let F1, F2 be two operators
mapping from a nonempty set D ⊂ Y X into Y Xn

. We say that the operator
equation

F1ϕ(x1, ..., xn) = F2ϕ(x1, ..., xn), (x1, ..., xn ∈ X) (1.4)

is ε-hyperstable provided that every ϕ0 ∈ D which satisfies

d(F1ϕ0(x1, ..., xn),F2ϕ0(x1, ..., xn)) ≤ ε(x1, ..., xn), (x1, ..., xn ∈ X)

fulfills equation (1.4) on X.

In this article, we introduce the following definition, which describes the
main ideas of the concept of hyperstability for equations in several variables.

Definition 1.2. Let X be a nonempty set, (Y, d) be a metric space, Σ ⊂ RXn

∗+
be a nonempty subset and F1, F2 be operators mapping from a nonempty set
D ⊂ Y X into Y Xn

We say that the operator equation

F1ϕ(x1, ..., xn) = F2ϕ(x1, ..., xn), (x1, ..., xn ∈ X) (1.5)

is Σ-hyperstable for the pair (X, Y ) provided for any ε ∈ Σ and ϕ0 ∈ D

satisfies the inequality

d(F1ϕ0(x1, ..., xn),F2ϕ0(x1, ..., xn)) ≤ ε(x1, ..., xn), (x1, ..., xn ∈ X)

fulfills equation (1.5) on X.

A function H : R2
+ → R+ is called homogeneous of degree a real number

p if it satisfies H(tu, tv) = tpH(u, v) for all t ∈ R∗+ and u, v ∈ R+ . In the
sequel, we assume that G = (G,+) is an 2-divisible abelian group, E is an
arbitrary real Banach space, H : R2

+ → R+ is a symmetric homogeneous
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function of degree p < 0 for which there exists a positive integer m0 such
that

inf{ε(x,mx) : m ∈ Nm0} = 0 (1.6)

for all x ∈ G and γ : G→ R∗+ is a function satisfying

(C1) γ
(
kx
2

)
= |k|

2
γ(x) for all x ∈ G and k ∈ Z\{0},

(C2) γ(x+ y) ≤ γ(x) + γ(y) for all x, y ∈ G.
We will denote by Σ the set of all functions ε : G2 → R+ for which there

exists a constant c ∈ R+ such that

ε(x, y) = cH(γ(x), γ(y)) x, y ∈ G. (1.7)

By the conditions (C1) and (C2), we notice that:

ε

(
kx

2
,
ky

2

)
=
∣∣∣k
2

∣∣∣pε(x, y)

for all x, y ∈ G and k ∈ Z\{0}.

In this paper, we present the hyperstability results for the mixed additive-
quadratic-Jensen type functional equation (1.3) in the class of functions from
an 2-divisible commutative group (G,+) into a Banach space E.

The method of the proof of the main results is motivated by an idea used
in [7–10, 26]. It is based on a fixed point theorem for functional spaces ob-
tained by Brzdek et al. (see [6, Theorem 1]).

First, we take the following three hypotheses (all notations come from [6]).

(H1) U is a nonempty set, V is a Banach space, f1, ....fk : U → U and
L1, ....Lk : U → R+ are given.

(H2) T : V U → V U is an operator satisfying the inequality

‖Tξ(x)− Tµ(x)‖ ≤
k∑

i=1

Li(x) ‖ξ(fi(x))− µ(fi(x))‖

for all ξ, µ ∈ V U , x ∈ U .

(H3) Λ : RU
+ → RU

+ is a linear operator defined by

Λδ(x) :=
k∑

i=1

Li(x)δ(fi(x))
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for all δ ∈ RU
+, x ∈ U .

The mentioned fixed point theorem is stated as follows.

Theorem 1.2. Let hypotheses (H1)-(H3) be valid and functions ε : U →
R+ and let ϕ : U → V fulfil the following two conditions:

‖Tϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ U

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈ U.

Then, there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ U.

Moreover
ψ(x) = lim

n→∞
Tnϕ(x), x ∈ U.

2 Hyperstability Results of eq (1.3)

The following theorems are the main results in this paper and concern the
Σ−hyperstability of equation (1.3).

Theorem 2.1. Let G be an 2-divisible abelian group and E be a Banach
space. If f : G→ E satisfies∥∥∥∥2f

(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(y)− f(x)

∥∥∥∥ ≤ ε(x, y) (2.1)

for all x, y ∈ G and ε ∈ Σ, then f is a solution of (1.3) on G.

Proof. Let ε ∈ Σ, then there exists a constant c ∈ R+ such that ε(x, y) =
cH(γ(x), γ(y)). Replacing (x, y) by (x,mx), with m ∈ N1, in (2.1), we get∥∥∥2f

(
1 +m

2
x

)
+ f

(
1−m

2
x

)
+ f

(
m− 1

2
x

)
− f(mx)− f(x)

∥∥∥
≤ ε(x,mx) = cH(γ(x), γ(mx)) := εm(x) (2.2)

for all x ∈ G. Further put

Tξ(x) := 2ξ

(
1 +m

2
x

)
+ξ

(
1−m

2
x

)
+ξ

(
m− 1

2
x

)
−ξ(mx), x ∈ G, ξ ∈ EG.
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Then the inequality (2.2) takes the form

‖Tf(x)− f(x)‖ ≤ εm(x), x ∈ G.
Now, we define an operator Λ : RG

+ → RG
+ by

Λδ(x) :=2δ

(
1 +m

2
x

)
+ δ

(
1−m

2
x

)
+ δ

(
m− 1

2
x

)
+ δ(mx), x ∈ G, δ ∈ RG

+. (2.3)

This operator has the form described in (H3) with k = 4 and f1(x) = 1+m
2
x,

f2(x) = 1−m
2
x, f3(x) = m−1

2
x, f4(x) = mx, L1(x) = 2 and L2(x) = L3(x) =

L4(x) = 1 for all x ∈ G.
Moreover, for every ξ, µ ∈ EG and x ∈ G, we obtain

‖Tξ(x)− Tµ(x)‖ =‖2(ξ − µ)(f1(x)) + (ξ − µ)(f2(x))(ξ − µ)(f3(x))− (ξ − µ)(f4(x))‖
≤2 ‖(ξ − µ)(f1(x))‖+ ‖(ξ − µ)(f2(x))‖+ ‖(ξ − µ)(f3(x))‖

+ ‖(ξ − µ)(f4(x))‖

=
4∑

i=1

Li(x) ‖(ξ − µ)(fi(x))‖ .

So, (H2) is valid. Not that for some p < 0, we have

lim
n→∞

(
2

(
1 +m

2

)p

+ 2

(
m− 1

2

)p

+mp

)
= 0,

then, there exists m0 ∈ N∗ such that

Am := 2

(
1 +m

2

)p

+ 2

(
m− 1

2

)p

+mp < 1, for all m ≥ m0.

Therefore, in view of (1.7) and (2.3), it is easily to check that

Λεm(x) = 2εm

(
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2
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)
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(
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)
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(
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2
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(
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(
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)
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(
m
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(
γ

(
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)
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(
m
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2

x

))
+H

(
γ

(
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2
x

)
, γ

(
m
m− 1

2
x

))
+H(γ(mx), γ(m.mx))

=2H

(
1 +m

2
γ(x),

1 +m

2
γ(mx)

)
+ 2H

(
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2
γ(x),
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2
γ(mx)

)
+H(mγ(x),mγ(mx))
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(
2

(
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2

)p

+ 2

(
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2

)p

+mp

)
H(γ(x), γ(mx))

=Amεm(x) (2.4)
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for all x ∈ G and m ≥ m0. Therefore, we obtain that

ε∗m(x) : =
∞∑
n=0

Λnεm(x)

= εm(x)
∞∑
n=0

(Am)n

=
εm(x)

1− Am

<∞.

for all x ∈ G and m ≥ m0. Thus, according to Theorem 1.2, for each m ≥ m0

there exists a unique solution Fm : G→ E of the equation

Fm(x) = 2Fm

(
1 +m

2
x

)
+ Fm

(
1−m

2
x

)
+ Fm

(
m− 1

2
x

)
− Fm(mx)

for all x ∈ G, such that

‖f(x)− Fm(x)‖ ≤ εm(x)

1− Am

, x ∈ G.

Moreover Fm(x) = limn→∞ Tnf(x) for all x ∈ G.
To prove that the function Fm satisfies the functional equation (1.3) on

G, it suffices to prove the following inequality∥∥∥∥2Tnf

(
x+ y

2

)
+ Tnf

(
x− y

2

)
+ Tnf

(
y − x

2

)
− Tnf(y)− Tnf(x)

∥∥∥∥ ≤ (Am)nε(x, y)

(2.5)

for all x, y ∈ G and n ∈ N. Indeed, if n = 0, then (2.5) is simply (2.1). So,
fix n ∈ N and suppose that (2.5) holds for n. Then∥∥∥2Tn+1f

(
x+ y

2

)
+ Tn+1f

(
x− y

2

)
+ Tn+1f

(
y − x

2

)
− Tn+1f(y)− Tn+1f(x)

∥∥∥
=
∥∥∥2
[

2Tnf

(
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2
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2

)
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2

)
− Tnf

(
m
x+ y

2
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+
[
2Tnf

(
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2
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+ Tnf

(
1−m

2
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2

)
+ Tnf

(
m− 1

2

x− y
2

)
− Tnf

(
m
x− y

2
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+
[
2Tnf

(
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2
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(
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2

y − x
2

)
+ Tnf

(
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2

y − x
2

)
− Tnf

(
m
y − x

2

)]
−
[
2Tnf

(
m+ 1

2
y

)
+ Tnf

(
1−m

2
y

)
+ Tnf

(
m− 1

2
y

)
− Tnf(my)

]
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−
[
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(
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2
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2
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(
m
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+ Tnf

(
m
x− y

2

)
+ Tnf

(
m
y − x

2

)
− Tnf(my)− Tnf(mx)

∥∥∥
≤(Am)n

[
2ε

(
m+ 1

2
x,
m+ 1

2
y

)
+ ε

(
1−m

2
x,

1−m
2

y

)
+ ε

(
m− 1

2
x,
m− 1

2
y

)
+ ε(mx,my)

]
=(Am)n+1ε(x, y)

for all x, y ∈ G. Thus, by induction, we have shown that (2.5) holds for all
x, y ∈ G and for all n ∈ N. Letting n→∞ in (2.5), we obtain

2Fm

(
x+ y

2

)
+ Fm

(
x− y

2

)
+ Fm

(
y − x

2

)
= Fm(y) + Fm(x) (2.6)

for all x, y ∈ G. So, we find a sequence (Fm)m≥m0 satisfies (1.3) on G such
that

‖f(x)− Fm(x)‖ ≤ εm(x)

1− Am

, x ∈ G, m ≥ m0.

Next, we prove that Fm = Fk for all m, k ∈ Nm0 . Let us fix m, k ∈ Nm0

and note that Fm and Fk satisfy (2.6). Hence, by replacing (x, y) by (x,mx)
in (2.6), we get TFm(x) = Fm(x), TFk(x) = Fk(x) for all x ∈ G and

‖Fm(x)− Fk(x)‖ ≤ εm(x)

1− Am

+
εk(x)

1− Ak
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for all x ∈ G. It follows, by linearity of Λ and (2.4) that

‖Fm(x)− Fk(x)‖ = ‖TnFm(x)− TnFk(x)‖

≤ Λnεm(x)

1− Am

+
Λnεk(x)

1− Ak

≤ (Am)n
[
εm(x)

1− Am

+
εk(x)

1− Ak

]
for all x ∈ G and n ∈ N. Letting n → ∞ we get Fm = Fk =: F . Thus, we
have

‖f(x)− F (x)‖ ≤ εm(x)

1− Am

, x ∈ G, m ≥ m0

and the function F is a solution of (1.3).
To prove the uniqueness of the function F , let us assume that there exists

a function F ′ : G→ E which satisfies (1.3) and the inequality

‖f(x)− F ′(x)‖ ≤ εm(x)

1− Am

, x ∈ G, m ≥ m0.

Then

‖F (x)− F ′(x)‖ ≤ 2εm(x)

1− Am

, x ∈ G, m ≥ m0.

Further TF ′(x) = F ′(x) for all x ∈ G. Therefore, with a fixed m ∈ Nm0

‖F (x)− F ′(x)‖ = ‖TnF (x)− TnF ′(x)‖

≤ 2Λnεm(x)

1− Am

≤ 2(Am)n × εm(x)

1− Am

for all x ∈ G and n ∈ N. Letting n→∞ we get F = F ′, which yields

‖f(x)− F (x)‖ ≤ εm(x)

1− Am

, x ∈ G, m ≥ m0.

Next, in view of (1.6), we have

inf

{
εm(x)

1− Am

: m ≥ m0

}
= 0

for all x ∈ G, this means that f(x) = F (x) for x ∈ G, which implies that f
satisfies the functional equation (1.3) on G and the proof of the theorem is
complete.
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In a similar way we can prove that Theorem (2.1) holds if the inequality
(2.1) is defined on G\{0} := G0.

Theorem 2.2. Let G be an 2-divisible abelian group and E be a Banach
space. Let Σ be the set of all functions ε : G0 → R+ which satisfy the
conditions as stated in the Section (1). If f : G→ E satisfies∥∥∥∥2f

(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(y)− f(x)

∥∥∥∥ ≤ ε(x, y) (2.7)

for all x, y ∈ G0 and ε ∈ Σ, then f is a solution of (1.3) on G0.

3 Applications

In this section we give some applications of the Theorem 2.2, with the case:

ε(x, y) = θ‖x‖p.‖y‖q

where θ ∈ R+, p, q ∈ R and x, y 6= 0.

Corollary 3.1. Let E1 and E2 ba a normed space and a Banach space,
respectively. Assume S := (S,+) is an 2-divisible subgroup of the group
(E1,+), p, q ∈ R, p+ q < 0 and θ ≥ 0. If f : S → E2 satisfies∥∥∥∥2f

(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(y)− f(x)

∥∥∥∥ ≤ θ‖x‖p‖y‖q

(3.1)
for all x, y ∈ S\{0}, then f is a solution of (1.3) on S\{0}.

Proof. Let Σ the set of all functions ε : S\{0} × S\{0} → R+ such that

ε(x, y) = θ‖x‖p‖y‖q

for some θ ∈ R+ and for all x, y ∈ S\{0}. Define H : R2
+∗ → R+ by

H(u, v) = cupvq for some c ≥ 0, p + q < 0 and for all u, v ∈ R+∗ and
γ : S → R+ by γ(x) = ‖x‖ for all x ∈ S. It is easily seen that H is
monotonically symmetric homogeneous function of degree p + q < 0 and
conditions indicated in the start of the second section are fulfilled. Therefore
every function f : S\{0} → E2 satisfying (3.1) is a solution of the functional
equation (1.3) on S\{0}.
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We know that any norm that satisfies the parallelogram law is bound to
have been originated from a scalar product. The following corollary gives a
characterization of the inner product space, which is one of the applications
of Corollary 3.1.

Corollary 3.2. Let X be a normed space and X0 = X\{0}. Write

D(x, y) =

∣∣∣∣∣2
∥∥∥∥x+ y

2

∥∥∥∥2 +

∥∥∥∥x− y2

∥∥∥∥2 +

∥∥∥∥y − x2

∥∥∥∥2 − ‖y‖2 − ‖x‖2
∣∣∣∣∣

for all x, y ∈ X. Assume that

sup
x,y∈X0

D(x, y)

‖x‖p‖y‖q
<∞

for somme p, q ∈ R and p+ q < 0. Then X is an inner product space.

Proof. Write f(x) = ‖x‖2. Then from Corollary 3.1, we easily derive f is a
solution of the functional equation (1.3). That implies D(x, y) = 0. Thus,
the norm ‖.‖ on X satisfies the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

Therefore, X is an inner product space.

Corollary 3.3. Let G be an 2-divisible commutative group and E be a Ba-
nach space. Let Σ be the set of all functions ε : G → R+ which satisfy the
conditions as stated in the Section (1) and F : G2 → E be a mapping such
that F (x0, y0) 6= 0 for some x0, y0 ∈ G and

‖F (x, y)‖ ≤ ε(x, y), (3.2)

for all x, y ∈ G. Then the functional equation

2h

(
x+ y

2

)
+ h

(
x− y

2

)
+ h

(
y − x

2

)
= F (x, y) + h(y) + h(x), x, y, z ∈ G

(3.3)

has no solution in the class of functions h : G→ E.

Proof. Suppose that h : G → E is a solution to (3.3). Then (2.1) holds,
and consequently, according to the above theorems, h is Jensen on G, which
means that F (x0, y0) = 0. This is a contradiction.
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