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1 Introduction

This paper is concerned with the existence of three positive solutions for three
boundary value problems (BVP for short) of fractional differential equations
with infinite delay. We consider the BVP of the form :

Dαy(t) = f(t, yt), a.e, t ∈ J = [0, 1], α ∈ (2, 3], (1.1)

y(0) = y′(0) = 0, βy(η) = y(1) (1.2)

y(t) = φ(t), t ∈ (−∞, 0], (1.3)
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where Dα is the Riemann-Liouville fractional derivative, β > 0, η ∈ (0, 1)
such that 0 < β ηα−1 < 1 , f : J×B→ [0,+∞) is a given function satisfying
some assumptions that will be specified later, φ ∈ B and B is a phase space
that will defined in section 2. For any function y and any t ∈ [0, 1], we
denote by yt the element of B defined by yt(θ) = y(t + θ) for θ ∈ (−∞, 0].
We assume that the histories yt belong to B.
The notion of the phase space B plays an important role in the study of both
qualitative and quantitative theory for functional differential equations. A
usual choice is a seminormed space satisfying suitable axioms, which was
introduced by Hale and Kato [12] (see also Kappel and Schappacher [14] and
Schumacher [27]. For a detailed discussion on this topic we refer the reader
to the book by [13].

Fractional differential equations have been of great interest recently. This
is because of both the intensive development of the theory of fractional cal-
culus itself and the applications of such constructions in various scientific
fields such as physics, mechanics, chemistry, engineering, etc. For details,see
[7, 15–18,20,22] and the references therein.

The solution of differential equations with fractional order is quite in-
volved. Therefore, the theory of fractional differential equations has been
developed very quickly and the investigation for the existence of its solutions
has attracted a considerable attention from researches . (see [2,4,5,8,16,22]
and the references therein).

In recent years, many researchers focused on the solutions, especially the
positive solutions of fractional differential equation boundary value problems,
we refer to [1, 3, 6, 21, 26,28,29] and references therein.

Some analytical methods are presented, such as the popular Laplace
transform method [25], the Fourier transform method [23], the iteration
method and the Green function method. Numerical schemes for solving
fractional differential equations are introduced, for example, in [24].

Our results complement the few results devoted to existence of positive
solutions for functional differential equations using different method kras-
noselskii fixed point theorem, index fixed point theorem. To our best Knowl-
edge, there are few results for existence of positive solutions for functional
differential equations with fractional order and using Legett Williams fixed
point theorem. Also, as far as we know, no papers exist in the literature
devoted to such problems with existence of positive solutions for functional
differential equations with fractional order and infinite delay.

Over the past several years it has become apparent that existence of
positive solutions for differential equations with delay arise also in several
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areas such as in classical electrodynamics , in population models, in models of
commodity price fluctuations, and in models of blood cell productions. they
also arise from the modeling of infection disease transmission, the modeling
of immune response systems and the modeling of respiration, where the delay
is due to the time required to accumulate an appropriate dosage of infection
or antigen concentration.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. By C(J,R) we denote the Banach
space of all continuous functions from J into R with the norm:

‖y‖∞ := sup{|y(t)| : t ∈ J}.

For the definition of the phase space B we introduce the following axioms.

(A1) If y : (−∞, 1) → R, , y0 ∈ B, then for every t ∈ [0, 1] the following
conditions hold:
(i) yt ∈ B,
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+ → R+, independent of
y, with K continuous and M locally bounded such that:

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y(.) in (A1), yt is a B-valued continuous function on
[0, 1].

(A3) The space B is complete.

Denote
K = sup{K(t) : t ∈ [0, 1]}

and
M = sup{M(t) : t ∈ [0, 1]}.

Definition 2.1. ([10,?ElSayed9]). The fractional (arbitrary) order integral
of the function h ∈ L1([a, b], R+) of order α ∈ R+ is defined by:

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,
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where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ϕα(t),
where ϕα(t) = tα−1

Γ(α)
for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as

α→ 0, where δ is the delta function.

Definition 2.2. ([10, ?ElSayed9]). For a function h given on the interval
[a, b], the αth Riemann-Liouville fractional-order derivative of h, α ∈ R+ is
defined by:

Dα
0+h(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− s)n−α−1h(s)ds.

Let (E, ‖.‖) be a Banach space and C ⊂ E be a cone in E. by a concave,
positive and continuous functional ψ on C, we mean a continuous mapping

ψ : C → [0,∞)

with

ψ(λx+ (1− λ)y) ≥ λψ(x) + (1− λ)ψ(y) for all x, y ∈ C and λ ∈ [0, 1].

For K,L, r ≥ 0 constants with C and ψ as above, let

CK = {y ∈ C : ‖y‖ < K}

and
C(ψ,L,K) = {y ∈ C : ψ(y) ≥ L and ‖y‖ ≤ K}.

Our consideration is based on the following fixed point theorem given by
Leggett and Williams in 1979 [19] (see also Guo and Lakshmikantham [11]).

Theorem 2.1. Let E be a Banach space, C ⊂ E a cone in E and R > 0 a
constant. Suppose there exists a concave positive continuous functional on C
with ψ(y) ≤ ‖y‖ for all y ∈ CR and let N : CR → CR be a continuous compact
map. Assume that there are numbers r, L and K with 0 < r < L < K ≤ R
such that

(A1) {y ∈ C(ψ,L,K) : ψ(y) > L, ‖y‖ ≤ K} 6= Ø and ψ(N(y)) > L for all
y ∈ C(ψ,L,K);

(A2) ‖N(y)‖ < r for all y ∈ Cr;

(A3) ψ(N(y)) > L for all y ∈ C(ψ,L,R) with ‖N(y)‖ > K.

Then N has at least three fixed points y1, y2, y3 in CR. Furthermore, we
have

y1 ∈ Cr, y2 ∈ {y ∈ C(ψ,L,R) : ψ(y) > L}
and

y3 ∈ CR − {C(ψ,L,R) ∪ Cr}.



Vol. LIII (2015) Existence of three positive solutions for boundary value problem 61

3 Main results

Let us start by defining what we mean by a solution of the problem (1.1)-
(1.3).

Set

B1 = {y : (−∞, 1]→ R : y|(−∞,0] ∈ B, y|J ∈ C2(J,R)},

and let ‖.‖1 the seminorm in B1 defined by :

‖y‖1 = ‖y0‖B + sup{|y(t)| : 0 ≤ t ≤ 1}, y ∈ B1.

Definition 3.1. A function y ∈ B1 is said to be a solution of (1.1)-(1.3) if y
satisfies the equation Dαy(t) = f(t, yt) on J , and conditions y(t) = φ(t), t ∈
(−∞, 0], y(0) = y′(0) = 0, βy(η) = y(1).

For the existence of solutions for the problem (1.1) − (1.3), we need the
following auxiliary Lemmas.

Lemma 3.1. [28] Let α > 0, then the differential equation

Dαh(t) = 0

has solutions h(t) = c1t
α−1 + c2t

α−22 + ....+ cnt
α−n, ci ∈ R, i = 1, 2, ...., n,

n = [α] + 1.

Lemma 3.2. [28] Let α > 0, then

IαDαh(t) = h(t) + c1t
α−1 + c2t

α−22 + ....+ cnt
α−n

for some ci ∈ R, i = 0, 1, 2, ...., n− 1, n = [α] + 1.

Let h be a continuous function and consider the boundary value problem
problem

Dαy(t) = ρ(t), a.e, t ∈ J = [0, 1], (3.1)

y(0) = y′(0) = 0, βy(η) = y(1), (3.2)

y(t) = φ(t), t ∈ (−∞, 0]. (3.3)

Lemma 3.3. The problem (3.1)− (3.3) has a unique solution given by:

y(t) =

∫ 1

0

G(t, s)ρ(s)ds+
βtα−1

1− βη

∫ 1

0

G(η, s)ρ(s)ds, (3.4)

where G(t, s) is given by :

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−1, 0 ≤ t ≤ s ≤ 1.

(3.5)



62 Hedia Benaouda An. U.V.T.

By Lemma 3.2 we have y(t) = c1t
α−1 + c2t

α−2 − 1
Γ(α)

∫ t
0
(t− s)α−1σ(s)ds,

in view that y(0) = 0 we have c2 = 0 and then

y(t) = c1t
α−1 − 1

Γ(α)

∫ t

0

(t− s)α−1ρ(s)ds

y(1) = c1 − 1
Γ(α)

∫ 1

0
(1− s)α−1ρ(s)ds

βy(η) = βηα−1c1 − β
Γ(α)

∫ η
0

(η − s)α−1ρ(s)ds,

and so :

y(t) =
1

Γ(α)

∫ 1

0

(1− s)α−1tα−1ρ(s)ds

+
βηα−1

(1− βηα−1)Γ(α)

∫ 1

0

(1− s)α−1tα−1ρ(s)ds

− β

(1− βηα−1)Γ(α)

∫ η

0

(η − s)α−1tα−1ρ(s)ds

− 1

Γ(α)

∫ t

0

(t− s)α−1ρ(s)ds,

y(t) =
1

Γ(α)

∫ 1

0

[(1− s)α−1tα−1 − (t− s)α−1]ρ(s)ds

+
1

Γ(α)

∫ 1

t

(1− s)α−1tα−1ρ(s)ds

+
βtα−1

1− βηα−1)Γ(α)

(∫ η

0

[(1− s)α−1ηα−1 − (η − s)α−1]ρ(s)ds

+

∫ 1

η

(1− s)α−1ηα−1ρ(s)ds

)
.

And then we have:

y(t) =

∫ 1

0

G(t, s)ρ(s)ds+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)ρ(s)ds.

By an easy computation we obtain (3.4) :

Lemma 3.4. the function defined by (3.5) satisfies the following conditions:

(i) G(t, s) ≥ 0 G(t, s) ≤ G(s, s), for all s, t ∈ [0, 1]
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(ii) max0≤t≤b
∫ 1

0
G(t, s)ds = Γ(α)

Γ(2α)
.

(iii) there exists a positive function g ∈ C(0, 1)such that
minγ≤t≤δ G(t, s) ≥ g(s)G(s, s), s ∈ (0, 1), where 0 < γ < δ < 1 and

g(s) =

{
δα−1(1−s)α−1−(δ−s)α−1

tα−1(1−s)α−1 , if s ∈ [0,m1],

(γ
s
)α−1, if. s ∈ [m1, 1],

(3.6)

Where γ < m1 < δ.

Proof. By definition of G(t, s), for all (t, s) ∈ [0, 1] × [0, 1] if s ≤ t it can be
written :

G(t, s) =
1

Γ(α)

(
tα−1(1− s)α−1 − (t− s)α−1

)
≥ 1

Γ(α)

[
tα−1(1− s)α−1 − (t− ts)α−1

]
≥ tα−1

Γ(α)
tα−1

[
(1− s)α−1 − (1− s)α−1

]
= 0,

and if t ≤ s it is obvious that G(t, s) ≥ 0 Therefore one can conclude that :
G(t, s) ≥ 0, for all (t, s) ∈ [0, 1]× [0, 1].

Let L(t, s) = tα−1(1− s)α−1 − (t− s)α−1 for 0 ≤ s ≤ t ≤ 1. Then

dL(t, s)

dt
= (α− 1)

[
tα−2(1− s)α−1 − (t− s)α−2

]
= (α− 1)tα−2

[
tα−2(1− s)α−1 − (1− s

t
)α−2

]
≤ (α− 1)tα−2

[
(1− s)α−1 − (1− s)α−2

]
≤ 0,

which implies that L(t, s) is non-increasing for all s ∈ [0, 1], hence, we obtain
that :

L(t, s) ≤ L(s, s) for all 0 ≤ s ≤ t ≤ 1. (3.7)

Thus, by definition of G and (3.7), we Know that G(t, s) ≤ G(s, s) for all
s, t ∈ [0, 1].
(ii) Let J(t, s) = tα−1(1−s)α−1, for t ≤ s ≤ b , since L(t, s) is non increasing,
J(t, s) is non decreasing for all s ∈ [0, 1] then one can give :
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min
γ≤t≤δ

G(t, s) =
1

Γ(α)


L(γ, s), s ∈ [0, γ]
min{L(γ, s), J(δ, s)} s ∈ [γ, δ]
J(δ, s), s ∈ [δ, s].

=
1

Γ(α)

{
L(γ, s), s ∈ [0,m1]
J(δ, s), s ∈ [m1, 1]

=
1

Γ(α)


(γα−1(1− s)α−1 − (γ − s)α−1) ,

s ∈ [0,m1]
δα−1(1− s)α−1, s ∈ [m1, 1]

where γ ≤ m1 ≤ δ is the solution of equation :

γα−1(1− s)α−1 − (γ − s)α−1 = δα−1(1− s)α−1.

It follows from the monotonocity of L and J that:

max
t≤0≤b

G(t, s) = G(s, s) =
sα−1(1− s)α−1

Γ(α)
. (3.8)

Thus we set g(s) as in (3.6).
By (3.8) and beta function we have :

max
0≤t≤1

∫ 1

0

G(t, s)ds =
Γ(α)

Γ(2α)
.

Therefore the proof is complete.
We define now :

µ = min
t∈[γ,δ]

g(t), σ = max{γα−1, µ}. (3.9)

For the next theorem we need the following assumptions:

(H1) f is a continuous function.

(H2) There exist a functions q : [0,∞) → [0,∞) continuous and non-
decreasing, a function h : [0,∞)→ [0,∞) continuous and non-
increasing, p1 ∈ C(J,R+), p2 ∈ C(J,R+) such that

p2(t)h(‖u‖) ≤ f(t, u) ≤ p1(t)q(‖u‖),

for each (t, u) ∈ J ×B.
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(H3) There exists a constant r > 0 such that :

q(Kr +M‖φ‖B)‖p1‖∞
Γ(α)

Γ(2α)

{
1 +

β

1− βηα−1

}
≤ r.

(H4) There exists a constant L > r such that

h(K L+M‖φ‖B)‖p2‖∞
{∫ δ

γ
G(t, s)ds+ β

1−βηα−1

∫ δ
γ
G(η, s)ds

}
≥ L.

(H5) There exist 0 < r < L ≤ σ R such that

q(KR +M‖φ‖B)‖p1‖∞
Γ(α)

Γ(2α)

{
1 +

β

1− βηα−1

}
≤ R.

Theorem 3.5. Assume (H1)-(H5) are satisfied. Then problem (1.1)-(1.3)
has at least three positives solutions.

Proof. Our result is based on Legett-Williams fixed point Theorem.
Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator

N : B1 → B1

defined by:

N(y)(t) =

{
φ(t), t ∈ (−∞, 0],∫ 1

0
G(t, s)f(s, ys)ds+ βtα−1

1−βηα−1

∫ 1

0
G(η, s)f(s, ys)ds, t ∈ [0, 1],

and the function G(t, s) is given by (3.5). Clearly, the fixed points of the
operator N are solution of the problem (1.1)-(1.3).

Let x(.) : (−∞, 1]→ R be the function defined by :

x(t) =

{
φ(t), if t ∈ (−∞, 0],

0, if t ∈ [0, 1].

Then x0 = φ. For each z ∈ B with z0 = 0, we denote by z the function
defined by

z(t) =

{
0, if t ∈ (−∞, 0],

z(t), if t ∈ [0, 1].

If y(·) satisfies the integral equation :

y(t) =

∫ 1

0

G(t, s)f(s, ys)ds+
βtα−1

1− β ηα−1

∫ 1

0

G(η, s)f(s, ys)ds,
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we can decompose y(.) into y(t) = z(t) + x(t), 0 ≤ t ≤ 1, which implies
yt = zt + xt, for every t ∈ [0, 1], and the function z(·) satisfies :

z(t) =

∫ 1

0

G(t, s)f(s, zs + xs)) +
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, ys)ds.

Set
B0 = {z ∈ C([0, 1], R) : z0 = 0}.

Let ‖.‖1 be the seminorm in B0 defined by:

‖z‖1 = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ 1} = sup{|z(s)| : 0 ≤ s ≤ 1}) = ‖z‖0.

B0 is a Banach space with the norm ‖.‖0. We define the operator P : B0 → B0

by :

P (z)(t) =

∫ 1

0

G(t, s)f(s, zs + xs)ds+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, zs + xs)ds.

(3.10)
Obviously the operator N has a fixed point is equivalent to P has one,

so we need to prove that P has a fixed point.
We show firstly that P is completely continuous :

Step 1: P is continuous

Let {zn} be a sequence such that zn → z in B0. Then

|P (zn)(t)− P (z)(t)|

≤
∫ t

0

G(t, s)|f(s, zns + xs))− f(s, zs + xs)|ds+

+
β

1− βηα−1

∫ 1

0

G(η, s)|f(s, zns + xs))− f(s, zs + xs)|ds.

≤ ‖f(., zn(.)
+ x(.)))− f(., z(.) + x(.))‖ max

0≤t≤1

∫ 1

0

G(t, s)ds

+
β

1− βηα−1
‖f(., zn(.)

+ x(.)))− f(., z(.) + x(.))‖ max
0≤t≤1

∫ 1

0

G(η, s)ds.

≤ Γ(α)

Γ(2α)

(
1 +

β

1− βηα−1

)(
‖f(., zn(.)

+ x(.))− f(., z(.) + x(.))‖
)
.

Using (H1) we have:

‖P (zn)− P (z)‖0 → 0 as n→∞.
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Step 2: P maps bounded sets into bounded sets in B0.

Indeed, it is enough to show that for any ξ > 0, there exists a positive
constant ` such that for each z ∈ Bξ = {z ∈ B0 : ‖z‖0 ≤ η∗}, one has
‖Pz‖∞ ≤ ` by (H2) we have for each t ∈ [0, 1],

|P (z)(t)| ≤
∫ 1

0

|G(t, s)f(s, zs + xs)|ds+
βtα−1

1− βηα−1∫ 1

0

|G(η, s)f(s, zs + xs)|ds

≤
∫ 1

0

G(t, s)p1(s)q(‖zs + xs‖)ds

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)p1(s)q(‖zs + xs‖)

≤ Γ(α)

Γ(2α)

(
1 +

β

1− βηα−1

)
‖p1‖∞q(η∗) =: `

‖zs + xs‖B ≤ ‖zs‖B + ‖xs‖B
≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t}+M(t)‖z0‖B
+ K(t) sup{|x(s)| : 0 ≤ s ≤ t}+M(t)‖x0‖B
≤ K sup{|z(s)| : 0 ≤ s ≤ t}+M‖φ‖B +K|φ(0)|.
≤ K sup{|z(s)| : 0 ≤ s ≤ t}+M‖φ‖B.
≤ Kξ +M‖φ‖B = η∗.

(3.11)

Step 3: P maps bounded sets into equicontinuous sets of B0.

Let τ1, τ2 ∈ [0, 1], τ1 < τ2, let Bξ a bounded set of B0 as in Step 2, and
let z ∈ Bξ. Then,

|P (z)(τ2)− P (z)(τ1)| ≤
≤

∣∣∣∫ 1

0
G(τ2, s)f(s, zs + xs)ds+

βτα−1
2

1−βηα−1

∫ 1

0
G(η, s)f(zs + xs)ds

−
∫ 1

0
G(τ1, s)f(s, zs + xs)ds| − βτα−1

1

1−βηα−1

∫ 1

0
G(η, s)f(zs + xs)ds

∣∣∣
≤

∣∣∣∫ 1

0
G(τ2, s)f(s, zs + xs)ds−

∫ 1

0
G(τ1, s)f(s, zs + xs)ds

∣∣∣
+ β

τα−1
2 −τα−1

1

1−βηα−1

∫ 1

0
G(η, s)|f(zs + xs)|ds

≤
∫ 1

0
|G(τ2, s)−G(τ1, s)|p1(s)q(‖zs + xs‖B)ds.

+ β
τα−1
2 −τα−1

1

1−βηα−1

∫ 1

0
G(η, s)p(s)q(‖zs + xs‖B)ds

≤ ‖p1‖∞q(η∗) maxs∈[0,1] (|G(τ1, s)−G(τ2, s)|)
+ β

τα−1
2 −τα−1

1

1−βηα−1 ‖p‖∞q(η∗) maxs∈[0,1] (|G(η, s)|.)
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Since G is continuous function we have:

|P (z)(τ2)− P (z)(τ1)| ≤ ‖p1‖∞q(η∗)
[

max
s∈[0,1]

(|G(τ1, s)−G(τ2, s)|)

+ β
τα−1

2 − τα−1
1

1− βηα−1
max
s∈[0,1]

(|G(η, s))|.
]

Since G is continuous function we have: The right-hand side of the above
inequality tends to zero, as t2 → t1 and this proves that: P (B(0, ξ)) is
equicontinuous in B0 . As a consequence of the steps 1 to 3 together with
the Ascoli-Arzela Theorem, we can conclude that the operator P : B0 → B0

is completely continuous.

Let

C = {z ∈ B0 : z(t) ≥ 0 min
t∈[γ,δ]

z(t) ≥ σ

3
‖z‖0 for t ∈ J}

be a cone in B0.

We prove now that P : C → C is well defined. Let z ∈ C, then it follows
from Lemma (3.4), (3.9) ,(3.10) that :

‖Pz‖0 ≤
∫ 1

0

G(s, s)f(s, zs + xs)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(s, s)f(s, zs + xs)ds

=

(∫ γ

0

+

∫ δ

γ

+

∫ 1

δ

)
G(s, s)f(zs + xs)ds

+
βtα−1

1− βηα−1

(∫ γ

0

+

∫ δ

γ

+

∫ 1

δ

)
G(s, s)f(zs + xs)ds

≤ 3[

∫ δ

γ

G(s, s)f(zs + xs)ds+

+
β

1− βηα−1

∫ δ

γ

G(s, s)f(zs + xs)ds.]

On the other hand lemma 3.4 and (3.9) imply that for any t ∈ [γ, δ]
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(Pz)(t) =

∫ 1

0

G(t, s)f(s, zs + xs)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, zs + xs)ds

≥
∫ δ

γ

G(t, s)f(s, zs + xs)ds+

+
βtα−1

1− βηα−1

∫ δ

γ

G(η, s)f(s, zs + xs)ds

≥
∫ δ

γ

g(s))G(s, s)f(s, zs + xs)ds+

+
βγα−1

1− βηα−1

∫ δ

γ

g(s)G(s, s)f(s, zs + xs)ds

≥ σ

[∫ δ

γ

G(s, s)f(s, zs + xs)ds+
β

1− βηα−1

×
∫ δ

γ

G(s, s)f(s, zs + xs)ds

]
.

≥ σ

3
‖Pz‖0.

This fact directly implies that P : C→ C is well defined.

Using the hypotheses (H1)− (H2) and (H5) P : CR → CR is well defined
and completely continuous.

Let ψ : C→ [0,∞) be defined by :

ψ(z) = min
t∈[γ,δ]

z(t).

It is clear that ψ is a nonnegative concave continuous functional and

ψ(z) ≤ ‖z‖0 for z ∈ CR.

Now it remains to show that the hypotheses of Theorem 2.1 are satisfied.
First notice that condition (A2) of Theorem 2.1 holds since for z ∈ Cr, and
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from (H2),(H3) and (3.11) we have :

‖P (z)‖ = max
0≤t≤1

|P (z)(t)|

= max
0≤t≤1

|(
∫ 1

0

G(t, s)f(s, zs + xs)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, zs + xs)ds|)

≤ max
0≤t≤1

(

∫ 1

0

|G(t, s)|q(‖zs + xs‖)|p1(s)|ds+

+
β

1− βηα−1

∫ 1

0

|G(η, s)|q(‖zs + xs‖)|p1(s)|)

≤ max
0≤t≤1

(∫ 1

0

G(t, s)q(K‖z‖0 +M‖φ‖B)p1(s)ds

+
β

1− βηα−1

∫ 1

0

G(η, s)q(K‖z‖0 +M‖φ‖B)p1(s)ds

)
≤ q(Kr +M‖φ‖B)‖p1‖∞ max

0≤t≤1
{
∫ 1

0

G(t, s)ds+

+
β

1− βηα−1

∫ 1

0

G(η, s)ds}

≤ q(Kr +M‖φ‖B)‖p1‖∞
Γ(α)

Γ(2α)

{
1 +

β

1− βηα−1

}
≤ r.

We show now that that condition (A1) of Theorem is satisfied.

Clearly if z ∈ C(ψ,L, L
σ

) then L ≤ z(s) ≤ L
σ

, s ∈ [γ, δ].
and then {z ∈ C(ψ,L, L

σ
), ψ(z) > L} 6= �.

By condition (H4) we get :

ψ(P (z)) = min
γ≤t≤δ

(

∫ 1

0

G(t, s)f(s, z + xs)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, z + xs)ds)

≥ min
γ≤t≤δ

[

∫ 1

0

G(t, s)h(‖zs + xs‖)p2(s)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)h(‖zs + xs‖)p2(s)ds]
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≥ h(K L+M‖φ‖B)‖p2‖∞ min
γ≤t≤δ

{
∫ δ

γ

G(t, s)ds+

+
β

1− βηα−1

∫ δ

γ

G(η, s)ds} ≥ L.

Therefore the condition (A1) of Theorem 2.1 is satisfied.

Finally, We show that that condition (A3) of Theorem is also satisfied. If
z ∈ C(ψ,L,R). and ‖Pz‖ > L

σ
,

ψ(Pz) = min
t∈[γ,δ]

(∫ 1

0

G(t, s)f(s, zs + xs)ds+

+
βtα−1

1− βηα−1

∫ 1

0

G(η, s)f(s, zs + xs)ds
)

≥ σ‖Pz‖ ≥ L.

Thus condition (A3) holds. Then Leggett and Williams fixed point Theo-
rem implies that N has at least three fixed points z1, z2, z3 which are solutions
to problem (1.1)-(1.3). Furthermore, we have

z1 ∈ Cr, z2 ∈ {z ∈ C(ψ,L,R) : ψ(z) > L}, z3 ∈ CR − {(ψ,L,R) ∪ (Cr)}.

Therefore the condition (A3) of Theorem is also satisfied.
By Theorem 2.1, there exist three positive solutions z1, z2, z3 such that ‖z1‖ <
r, L < α(z2(t)), and ‖z3‖ > r, with α(z3(t)) < L.
Finally the problem (1.1) − (1.3) has three positive solutions y1, y2, y3 such
that :

yi(t) =

{
φ(t), if t ∈ (−∞, 0],

zi(t), if t ∈ [0, 1],

i ∈ {1, 2, 3} therefore, we have the conclusion.

Example 3.1. In this section we give an illustrative example showing the
usefulness of our main results. Let us consider the functional differential
equation.

Dαy(t) =
(‖yt‖+ 1)e

t
100

(1 + t)e‖yt‖
, if t ∈ J = [0, 1], α =

29

10
, (3.12)

y(t) = φ(t) if t ∈ (−∞, 0],

y(0) = y′(0) = 0, y(1) =
3

4
y(

1

3
) = 0. (3.13)
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We choose φ that ‖φ‖ = 1
10

, Bγ to be defined by:

Bγ = {y ∈ C((−∞, 0], R) : lim
θ→−∞

eγθy(θ) exists}

with the norm
‖y‖γ = sup

θ∈(−∞,0]

eγθ|y(θ)|.

Let y : (−∞, 1]→ R be such that y0 ∈ Bγ. Then

lim
θ→−∞

eγθy(θ) = lim
θ→−∞

eγθy(t+ θ)

= lim
θ→−∞

eγ(θ−t)y(θ)

= eγ t lim
θ→−∞

e−γθy0(θ) < +∞.

Hence yt ∈ Bγ. Finally we prove that

‖yt‖γ ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖γ,
where K = M = 1 and H = 1. We have y(t) = y(t+ φ).
If t+ θ ≤ 0 we get

‖yt(θ)‖ ≤ sup{ |y(s)| : −∞ ≤ s ≤ 0}.

For then we have t+ θ ≥ 0

‖yt(θ)‖ ≤ sup{ |y(s)| : 0 ≤ s ≤ t}.

Thus for all t+ θ ∈ [0, 1], we have

‖yt(θ)‖ ≤ sup{ |y(s)| : −∞ ≤ s ≤ 0}+ sup{ |y(s)| : 0 ≤ s ≤ t}.

Thus
‖yt‖γ ≤ ‖y‖0 + sup{ |y(s)| : 0 ≤ s ≤ t}.

It is clear that (Bγ, ‖y‖γ)is a Banach space. We can conclude that Bγ is a
phase space. Set

f(t, u) =
(‖u‖+ 1)e

t
100

(1 + t)e‖u‖
, (t, u) ∈ J ×Bγ.

q(u) = u+ 1, p1(t) = e
t

100 , u ≥ 0, t ∈ [0, 1]

h(u) = e−u, p2(t) =
1

1 + t
, u ≥ 0, t ∈ [0, 1].
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It follows from the definition of f , q, p1, h, p2, that:

p2(t)h(‖u‖) ≤ f(t, u) ≤ p1(t)q(‖u‖).

We choose γ = 1
3
, δ = 2

3
,according to the above η = 1

3
, β = 3

4
,then, by

direct calculation, we can obtain that

min
γ≤t≤δ

(∫ δ

γ

G(t, s)ds+
β

1− βηα−1

∫ δ

γ

G(η, s)ds

)
=

min
( 1
3

)≤t≤ 2
3

(∫ 2
3

1
3

G(t, s)ds+
3
4

1− 3
4
(1

3
)
19
10

∫ 2
3

1
3

G(
1

3
, s)ds

)
= 0.0831

σ = 0.121

h(K L+M‖φ‖B)‖p2‖∞ = h(
1

100
+ L),

and then :

h(K L+M‖φ‖B)‖p2‖∞
{∫ δ

γ

G(t, s)ds+
β

1− βηα−1

∫ δ

γ

G(η, s)ds

}
≥ L,

(3.14)
which yields :

e−
1

100
−L × 0.0831 ≥ L. (3.15)

Choose L = 0.073,
in another hand :

q(Kr +M‖φ‖B)‖p1‖∞ = (r + 1 +
1

100
)e

1
100 , (3.16)

and
Γ(29

10
)

Γ(29
5

)

{
1 +

3
4

1− 3
4
(1

3
)
19
10

}
= 0.0264,

and so:

q(Kr +M‖φ‖B)‖p1‖∞
Γ(α)

Γ(2α)

{
1 +

β

1− βηα−1

}
≤ r, (3.17)

which yields

(r + 1 +
1

100
)e

1
100 × 0.0264 ≤ r. (3.18)
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Choose r = 0.070

(R + 1 +
1

100
)e

1
100 × 0.0264 ≤ R. (3.19)

Choose R = 10,
then all assumptions of Theorem 3.5 are satisfied , problem (3.12)−(3.13)

has three positive solutions y1, y2, y3.

Remark 3.1. Change will occur if we replace the Riemann-Liouville deriva-
tive by other kinds of fractional order derivatives, for example if we take
Caputo fractional derivative, the operator solution N change in view that
lemma 3.2[28] is not the same as Caputo fractional derivative, in another
hand the Green function change too, so others hypothesis should be imposed
to prove existence result.

4 Conclusion

In this paper we have proved the existence of at least three positive solutions
for differential equation with fractional order and infinite delay using Leggett-
Williams fixed point Theorem.
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