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Timişoara
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Abstract. The class of (k, h1, h2)-convex functions is introduced,
together with some particular classes of corresponding general-
ized convex dominated functions. Few regularity properties of
(k, h1, h2)-convex functions are proved by means of Bernstein-
Doetsch type results. Also we find conditions in which every local
minimizer of a (k, h1, h2)-convex function is global. Classes of
(k, h1, h2)-convex functions, which allow integral upper bounds of
Hermite-Hadamard type, are identified. Hermite-Hadamard type
inequalities are also obtained in a particular class of the (k, h1, h2)-
convex dominated functions.
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1 Introduction

In what follows, R,Q,Z and N denote, respectively, the set of all real, ra-
tional, integer and natural numbers. If k : (0, 1) → R is a given function
then a subset D of a real linear space X is said to be k-convex (according
to [14]) if k(t)x + k(1 − t)y ∈ D, whenever x, y ∈ D and t ∈ (0, 1). Let
k, h1, h2 : (0, 1) → R be three given functions and assume that D ⊆ X is a
k-convex set.
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Definition 1.1. A function f : D → R is said to be (k, h1, h2)-convex if

f(k(t)x+ k(1− t)y) ≤ h1(t)f(x) + h2(t)f(y), (1.1)

for all x, y ∈ D and t ∈ (0, 1). If the inequality is strict then f is said to be
strictly (k, h1, h2)-convex.

This concept extends the (h1, h2)-convexity defined in our paper [3]. If
k(t) = t then (1.1) becomes the definition of (h1, h2)-convex functions from
[3]. Also, this definition extends the concept of (k, h)-convexity introduced
in [14], which may be obtained from (1.1) by taking h1(t) = h(t) and
h2(t) = h(1− t).

Many segmental convexity properties for functions are particular cases of
(k, h1, h2)-convexity. If k(t) = t, h1(t) = t and h2(t) = 1− t for all t ∈ (0, 1),
then Definition 1.1 gives the classically convex functions. If k(t) = t, h1(t) =
h2(t) = 1 for all t ∈ (0, 1), then Definition 1.1 identifies the P (D) class

introduced in [6]. Supposing that X = R, D = [0,+∞), s ∈ (0, 1], k(t) = t
1
s ,

h1(t) = t and h2(t) = 1 − t for all t ∈ (0, 1) then (1.1) describes the s-
convexity in the first sense (also known as Orlicz’s convexity since it comes
from [16]). Taking now 0 < s ≤ 1, k(t) = t, h1(t) = ts and h2(t) = (1 − t)s
for all t ∈ (0, 1), Definition 1.1 gives the functions that are s-convex in
the second sense (or Breckner-convex, originating in [2]). Suppose now that
k(t) = t and that h : [0, 1] → R is a nonnegative function. If h1(t) = h(t)
and h2(t) = h(1 − t) then Definition 1.1 introduces the h-convexity defined
by Varošanec in [21]. The Godunova-Levin Q(D) class of functions (see [8])
is obtained from Definition 1.1 if k(t) = t, h1(t) = t−1 and h2(t) = (1− t)−1
for all t ∈ (0, 1) and function f : I → R, I ⊆ R interval. Combining the
definition of the Godunova-Levin class and the Breckner-convexity the class
of s − Q(D) convexity was obtained in [15] by taking 0 < s ≤ 1, k(t) = t,
h1(t) = t−s and h2(t) = (1 − t)−s for t ∈ (0, 1), which means that the
inequality (1.1) becomes

f(tx+ (1− t)y) ≤ f(x)

ts
+

f(y)

(1− t)s
, (1.2)

for all x, y ∈ I ⊆ R and t ∈ (0, 1).
In this paper we intend to study regularity and extremal properties within
classes of functions having generalized convexity properties of the type intro-
duced in Definition 1.1. In Section 2 of this paper we identify conditions in
which boundedness and continuity of functions having (k, h1, h2)-convexity
with respect to a set T occur. Conditions for Bernstein-Doetsch type re-
sult (see [1]) are identified in this case of generalized convexity. We identify
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conditions, in which every local minimizer of a (k, h1, h2)-convex function
is a global one. In Section 3 we prove an integral inequality of Hermite-
Hadamard type, which holds within the class of (k, h1, h2)-convex functions.
Section 4 refers to functions that are (k, h1, h2)-convex dominated, deriving
Hermite-Hadamard type inequalities in the framework provided by a partic-
ular function k.

2 Regularity properties of the (k, h1, h2)-convex func-
tions

In [10] is introduced the more general concept of (k, h)-convexity with respect
to a subset T of a real linear space X. The set T is supposed to verify the
property that it contains the element 1 − t whenever t ∈ T . Functions
k, h : T → R and Definition 1.1 is supposed to hold for h1 = h(t) and
h2(t) = h(1 − t), for every t ∈ T . Regularity properties of the (k, h)-convex
functions are studied in [10].
In the sequel we suppose that (X, ‖·‖) is a real or complex normed space and
T ⊆ R such that 1− t ∈ T if and only if t ∈ T . Let k, h1, h2 : T → R be three
given functions. Consider a set D ⊆ X, which is k-convex. In this section
we study few smoothness properties of the (k, h1, h2)-convex functions with
respect to T , i.e. functions f : D → R that verify (1.1) for all x, y ∈ D
and t ∈ T . If T = {t} is a singleton set then a function that verifies (1.1) is
called (k, h1, h2)-convex functions with respect to t. For example, if T = {1

2
},

h1(t) = t, h2(t) = 1− t, then the (k, h1, h2)-convex functions with respect to
1
2

become the Jensen-convex functions [12].

Theorem 2.1. Let k, h1, h2 : T → R such that k(t) + k(1 − t) = 1 for all
t ∈ T . Let f : D → R be a (k, h1, h2)-convex function with respect to T .
Then

1. if h1(t) + h2(t) ≥ 1 for all t ∈ T and there is a point t0 ∈ T such as
h1(t0) + h2(t0) > 1 then f is nonnegative;

2. if h1(t) + h2(t) ≤ 1 for all t ∈ T and there is a point t0 ∈ T such as
h1(t0) + h2(t0) < 1 then f is non-positive;

3. if there are t1, t2 ∈ T such that h1(t1)+h2(t1) > 1 and h1(t2)+h2(t2) < 1
then f is constant 0.
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Proof. 1. Let x ∈ D be an arbitrary element. From the (k, h1, h2)-
convexity of function f one gets

f(x) = f(k(t0)x+ k(1− t0)x)

≤ h1(t0)f(x) + h2(t0)f(x) = f(x)(h1(t0) + h2(t0)),

which means that

f(x)(h1(t0) + h2(t0)− 1) ≥ 0.

Since h1(t0) + h2(t0)− 1 > 0 it follows that f(x) ≥ 0.

2. In a similar manner as above, since h1(t0) + h2(t0) − 1 < 0 it follows
that f(x) ≤ 0.

3. The result is an immediate consequence of the two previous cases.

Let us remind that a function f : D → R, with D ⊆ X, ia locally upper
bounded (or locally bounded from above) if for each point p ∈ D, there exist
r > 0 and a neighborhood B(p, r) = {x ∈ X|‖x − p‖ < r} such that f is
bounded from above on B(p, r).

Theorem 2.2. Let t ∈ T be fixed, k, h1, h2 : T → R be non-negative functions
such as:

1. k(t)k(1− t) 6= 0 and k(t) + k(1− t) = 1;

2. h1(t)h2(t) 6= 0.

Let D ⊆ X be a non-empty, open and k-convex set, and f : D → R be
a function that is (k, h1, h2)-convex with respect to t. Then if f is locally
bounded from above at a point p ∈ D and if h1(t)+h2(t) < 1 or h1(t)+h2(t) ≥
1 then f is locally bounded at every point of D.

Proof. The conclusion of locally upper boundedness is a consequence of The-
orem 2.1 in the case h1(t) +h2(t) < 1. As consequence, we take into account
the case h1(t) + h2(t) ≥ 1.
In order to prove the locally boundedness from above on D we construct the
sequence of subsets {Dn}n∈N ⊆ D as follows:

D0 := {p}, Dn+1 := k(t)Dn + k(1− t)D. (2.1)

We prove that

D =
∞⋃
n=1

Dn. (2.2)
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Since the relation
⋃∞

n=1Dn ⊆ D is obvious, we check the converse inclusion.
From (2.1) one gets

Dn = (k(t))np+ (1− (k(t))n)D

by induction. For a fixed point x ∈ D one defines the sequence {xn}n∈N by

xn :=
x− (k(t))np

1− (k(t))n
.

Obviously, limn→∞ xn = x, by the hypothesis on function k. Since D is open,
one gets that xn ∈ D for some n. Therefore,

x = (k(t))np+ (1− (k(t))n)xn ∈ (k(t))np+ (1− (k(t))n)D = Dn.

So, the reverse inclusion occurs and (2.2) as well.
Let us come back to the properties of function f . By hypothesis we have
that f is locally upper bounded at p ∈ D0. We proceed by induction on n to
prove that f is upper bounded at each point of D. Assume that f is locally
upper bounded at each point of Dn for some n. From (2.1) one gets that for
x ∈ Dn+1 there are x0 ∈ Dn and y0 ∈ D such that x = k(t)x0 + k(1 − t)y0.
From the inductive hypothesis it follows that there are r > 0 and M0 ≥ 0
such that f(x1) ≤M0 for ‖x0 − x1‖ < r. Then if x1 ∈ B0 := B(x0, r), by the
(k, h1, h2)-convexity of f with respect to t one has

f(k(t)x1 + k(1− t)y0) ≤ h1(t)f(x1) + h2(t)f(y0)

≤ h1(t)M0 + h2(t)f(y0) =: M.

As consequence, for

y ∈ B := k(t)B0 + k(1− t)y0 = B(k(t)x0 + k(1− t)y0, k(t)r) = B(x, k(t)r),

one obtains f(y) ≤ M , which means that f is locally bounded from above
on Dn+1. So, by (2.2) f is locally bounded from above on D.
Let us investigate now the locally boundedness from below of f . Let z ∈ D.
Since f is locally upper bounded at z, there are r > 0 and M > 0 such that

sup
x∈B(z,r)

f(x) ≤M.

Suppose that x ∈ B(z, k(1− t)r) and let

y :=
z − k(t)x

k(1− t)
∈ B(z, r).
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The (k, h1, h2)-convexity of f with respect to t implies f(z) ≤ h1(t)f(x) +
h2(t)f(y), which means that

f(x) ≥ 1

h1(t)
f(z)− h2(t)

h1(t)
f(y) ≥ 1

h1(t)
f(z)− h2(t)

h1(t)
M =: M1,

which means that the function is locally bounded from below at z. Since z
was arbitrarily chosen it follows that f is locally bounded from below at any
point of D.

The next result contains a sufficient condition for the local boundedness
to imply the continuity within the class of the (k, h1, h2)-convex functions
with respect to a set T .

Theorem 2.3. Let {tn}n∈N ⊂ [0, 1] be a sequence such that limn→∞ tn =
0 and let T = {tn}n∈N. Let k, h1, h2 : [0, 1] → R be three non-negative,
continuous functions such as:

1. h1(tn)h2(tn) 6= 0 for every n ∈ N;

2. k(tn) + k(1− tn) = 1 for every n ∈ N;

3. limt→0 h1(t) = 0, limt→1 h1(t) = 1;

4. limt→0 h2(t) = 1, limt→1 h2(t) = 0.

Let D ⊆ X a non-empty, open and k-convex set. If f : D → R is (k, h1, h2)-
convex with respect to T and locally bounded from above at a point of D, then
f is continuous on D.

Proof. Without loss of generality one may assume that h2(t) > 0. Let x0 ∈ D
such as f is locally upper bounded at x0. Then there is a neighborhood U
of x0 and a constant M > 0 such as f(x) ≤ M for every x ∈ U . Let ε > 0.
Then there exists n0 ∈ N such that

h1(tn)M + [h2(tn)− 1]f(x0) < ε,

for n ≥ n0, which means that

h1(tn)

h2(tn)
M +

[
1− 1

h2(tn)

]
f(x0) < ε.

Let V be a neighborhood of the origin of space X such that x0 +V ⊆ U and
denote by U ′ = x0 + k(tn)V. We intend to prove that |f(x) − f(x0| < ε for
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every x ∈ U ′.
Suppose that x ∈ U ′. Since

y − x0 =
1

k(tn)
(x− x0) ∈

1

k(tn)
k(tn)V = V,

z − x0 =
1− k(tn)

k(tn)
(x0 − x) ∈ 1− k(tn)

k(tn)
k(tn)V = (1− k(tn))V ⊆ V,

there are y, z ∈ x0 + V such as

x = k(tn)y + k(1− tn)x0 = k(tn)y + (1− k(tn))x0,

x0 = k(tn)z + k(1− tn)x = k(tn)z + (1− k(tn))x.

From the (k, h1, h2)-convexity of f with respect to T one gets

f(x) ≤ h1(tn)f(y) + h2(tn)f(x0) ≤ h1(tn)M + h2(tn)f(x0),

f(x0) ≤ h1(tn)f(z) + h2(tn)f(x) ≤ h1(tn)M + h2(tn)f(x).

These inequalities together with the limit hypothesis imply that

f(x)− f(x0) ≤ h1(tn)M +
[
h2(tn)− 1

]
f(x0) < ε (2.3)

and

f(x) ≥ f(x0)− h1(tn)M

h2(tn)
.

From these two inequalities one gets

f(x)− f(x0) ≥
[ 1

1− h1(tn)
− 1
]
f(x0)−

h1(tn)

h2(tn)
M > −ε. (2.4)

From (2.3), (2.4) and the limit hypothesis one concludes that |f(x)−f(x0| <
ε, which means that f is continuous at x0, as required.

Remark 2.1. Almost all the particular cases of (k, h1, h2)-convexity men-
tioned in Section 1 of this paper, in which k(t) = t, satisfy the hypotheses of
Theorem 2.2 and Theorem 2.3. So, the classic convexity, the s-convexity of
second kind have all the regularity properties discussed in the above proved
theorems. The limit hypotheses from Theorem 2.3 do not occur in case of
the Godunova-Levin class and also in P (D) class. There are counterexam-
ples of non-negative functions belonging to the Godunova-Levin class that
are monotone but are not continuous. The two theorems identify conditions
for function h such as the h-convexity defined in [21] have these regularity
properties. They also provide conditions for h1 and h2 such as the same
regularity properties occur in case of the (h1, h2)-convexity defined in [3].
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Remark 2.2. The limit conditions are not necessary, since there are cases of
known convexities, in which they do not fulfill. For example, this happens in
case of Jensen-convex functions, but the property of Bernstein-Doetsch type
is valid in this case (see [1]).

The next result states conditions, in which every local minimizer of a
(k, h1, h2)-convex function is a global one, as in the case of the convex func-
tions in the classical sense.

Theorem 2.4. Let k, h1, h2 : [0, 1]→ R be three non-negative and continuous
functions such as

lim
t→0+

k(t) = 0, lim
t→1−

k(t) = 1

and h1(t) + h2(t) ≤ 1, for all t ∈ [0, 1]. Let D ⊆ X be a non-empty, open
and k-convex set. Then every local minimizer of a (k, h1, h2)-convex function
f : D → R is a global one. More, if f is strictly (k, h1, h2)-convex then there
is at most one global minimum.

Proof. Let x0 ∈ D be a local minimizer of f . Then there is r > 0 such
that f(x0) ≤ f(x) for every x ∈ B(x0, r). Let us suppose that x0 is not
a global minimizer. Then there is x1 ∈ D such that f(x0) > f(x1). From
the (k, h1, h2)-convexity condition on function f , taking into account that
f(x1)− f(x0) < 0, it follows that

f(k(t)x0 + k(1− t)x1) ≤ h1(t)f(x0) + h2(t)f(x1)

≤ (1− h2(t))f(x0) + h2(t)f(x1) = f(x0) + h2(t) [f(x1)− f(x0)] < f(x0).

The limit conditions on function k imply that one can chose t in a sufficiently
small neighborhood of 1 such that k(t)x0 + k(1 − t)x1 ∈ B(x0, r). This is a
contradiction with the fact that x0 is a local minimizer.
If the convexity property of f is strict, supposing that there are two global
minimizers x1 6= x2, one gets

f(k(t)x1 + k(1− t)x2) ≤ h1(t)f(x1) + h2(t)f(x2)

= [h1(t) + h2(t)] f(x1) ≤ f(x1).

This is a contradiction with the extremal property of x1.

Corollary 2.5. The local minimizer is a global one in case of any convex
function in the classical sense. If the convexity is strict then the function has
at most one global minimum.
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Corollary 2.6. The local minimizer is a global one in case of any Orlicz-
convex function. If the Orlicz-convexity is strict then the function has at
most one global minimum.

Corollary 2.7. The local minimizer is a global one in case of any (k, h)-
convex function in the sense of [10] and [14] if k satisfies the hypothesis of
Theorem 2.4. Similar remark is valid in case of the h-convexity form [21] and
also in case of the (h1, h2)-convexity from [3] and [20]. If these generalized
convexities are strict then the function has at most one global minimum.

3 Hermite-Hadamard type upper bounds for (k, h1, h2)-
convex functions

Let us consider the space X = R and the function k : [0, 1] → [0, 1]. Let
I ⊆ R an open interval such that I is k-convex. In the sequel, L1(I) denotes
the set of those functions f : I → R, which are Lebesque integrable over
I. In this section we derive the following Hermite-Hadamard type integral
upper bound inequality:

Theorem 3.1. Let k, h1, h2 : [0, 1] → [0, 1] be three non-negative functions,
h1, h2 ∈ L1([0, 1]). Let I ⊆ R an open k-convex interval and a function
f : I → R, which is (k, h1, h2)-convex on I and f ∈ L1(I). Then the following
inequality holds:∫ 1

0

f(k(t)x+ k(1− t)y)dt ≤ f(x) + f(y)

2

∫ 1

0

[h1(t) + h2(t)]dt, (3.1)

whenever x, y ∈ I, x < y.

Proof. Let us consider x, y ∈ I, x < y. Since f is (k, h1, h2)-convex on I one
has

f(k(t)x+ k(1− t)y) ≤ h1f(x) + h2f(y),

f(k(1− t)x+ k(t)y) ≤ h2f(x) + h1f(y).

Computing the sum of these two inequalities and integrating the resulted
inequality side by side over [0, 1] with respect to t, one gets:∫ 1

0

f(k(t)x+ k(1− t)y)dt+

∫ 1

0

f(k(1− t)x+ k(t)y)dt

≤ [f(x) + f(y)]

∫ 1

0

[h1(t) + h2(t)] dt.
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In the second integral we perform the change of variable u = 1 − t and the
result is

2

∫ 1

0

f(k(t)x+ k(1− t)y)dt ≤ [f(x) + f(y)]

∫ 1

0

[h1(t) + h2(t)] dt,

which is the expected result.

Corollary 3.2. If k(t) = t, h1(t) = t and h2(t) = 1 − t, we obtain the case
of the classic convex functions. In this case, (3.1) becomes

1

y − x

∫ y

x

f(u)du ≤ f(x) + f(y)

2
, (3.2)

x, y ∈ I, x < y, which is the upper bound of the classical Hermite-Hadamard
inequality, according to [9] and [11].

Remark 3.1. From the case of the classic Hermite-Hadamard inequality
(3.2), which is sharp for linear functions and, which is a particular case of
(3.1), one concludes that (3.1) is sharp.

Corollary 3.3. If k(t) = t, h1(t) = h2(t) = 1 for all t ∈ [0, 1] then the
(k, h1, h2)-convexity identifies the P (I)-class. In this case (3.1) becomes

1

y − x

∫ y

x

f(u)du ≤ f(x) + f(y), (3.3)

for all x, y ∈ I, x < y. The integral inequality (3.3) was proved in [6].

Corollary 3.4. Let f : [0,+∞) → R and s ∈ (0, 1]. The Orlicz-convexity

is a (k, h1, h2)-convexity, with k(t) = t
1
s , h1(t) = t, h2(t) = 1 − t for all

t ∈ [0, 1]. In this case, the inequality (3.1) becomes∫ 1

0

f(t
1
sx+ (1− t)

1
s y)dt ≤ f(x) + f(y)

2
, (3.4)

for all x, y ∈ I, x < y. This inequality seems to be a new one.

Corollary 3.5. As in [2], suppose that 0 < s ≤ 1. A function f : I → R
is Breckner-convex, or s-convex of second kind if k(t) = t, h1(t) = ts and
h2(t) = (1− t)s for all t ∈ (0, 1), and the inequality (3.1) becomes

1

y − x

∫ y

x

f(u)du ≤ f(x) + f(y)

s+ 1
. (3.5)

for all x, y ∈ I, x < y. This Hermite-Hadamard type inequality for Breckner-
convex functions was proved in [4].
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Corollary 3.6. Let us suppose, as in [21], that h : [0, 1]→ R is a nonnegative
function. A function f : I → R is h-convex on I if k(t) = t, h1(t) = h(t)
and h2(t) = h(1 − t) for all t ∈ [0, 1]. In this case, the inequality (3.1) has
the form

1

y − x

∫ y

x

f(u)du ≤ [f(x) + f(y)]

∫ 1

0

h(t)dt. (3.6)

for all x, y ∈ I, x < y. This inequality was derived for the first time in [19].

Corollary 3.7. Let us suppose, as in [10] and [14], that k, h : [0, 1]→ R are
nonnegative functions, h1(t) = h(t), and h2(t) = h(1 − t) for all t ∈ [0, 1].
So, we are in case of the (k, h)-convexity. In this case, the inequality (3.1)
has the form∫ 1

0

f(k(t)x+ k(1− t)y)dt ≤ [f(x) + f(y)]

∫ 1

0

h(t)dt, (3.7)

for all x, y ∈ I, x < y. This inequality was derived for the first time in [14].

Corollary 3.8. Let us consider k(t) = t and two non-negative functions
h1, h2 : [0, 1]→ R. The (k, h1, h2)-convexity becomes in this case the (h1, h2)-
convexity, introduced in [3] independently and simultaneously with [20], in
which it is a particular case. The inequality (3.1) yields to

2

y − x

∫ y

x

f(u)du ≤ [f(x) + f(y)]

∫ 1

0

[h1(t) + h2(t)]dt, (3.8)

for all x, y ∈ I, x < y. Inequality (3.8) seems to be new.

4 (h1, h2)-convex dominated functions and Hermite-Hadamard
like inequalities

In this section we suppose that k : [0, 1] → [0, 1] is the particular function
k(t) = t. Let h1, h2 : [0, 1] → R be two non-negative functions. In this case
the (k, h1, h2)-convexity will be called, as in [3], (h1, h2)-convexity. Let I ⊆ R
be an interval and g : I ⊂ R→ [0,∞) be a (h1, h2)-convex function.
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Definition 4.1. The real function f : I ⊂ R → [0,∞) is said to be a
(h1, h2)-convex dominated function by g on I, if

|h1(t)f(x) + h2(t)f(y)− f(tx+ (1− t)y)| (4.1)

≤ h1(t)g(x) + h2(t)g(y)− g(tx+ (1− t)y), ∀x, y ∈ I, t ∈ (0, 1).

Many particular cases are in the literature. For h1(t) = t, h2(t) = 1 − t
in Definition 4.1, we have the definition of convex dominated functions [7].
For h1(t) = ts and h2(t) = (1− t)s in Definition 4.1, we have the definition of
s-convex dominated functions by g, discussed in [13]. For h1(t) = 1 = h2(t)
in Definition 4.1, we have the definition of P (D)-dominated by g functions
[18]. For h1(t) = t−1 and h2(t) = (1 − t)−1, t ∈ (0, 1), in Definition 4.1,
we have the definition of Q(I)-dominated functions [18]. For h1(t) = t−s

and h2(t) = (1 − t)−s, t ∈ (0, 1), in Definition 4.1, we have the definition of
s−Q(I)-dominated functions by g, which appears to be new in the literature.

Definition 4.2. Let g : I ⊂ R → [0,∞) be a s − Q(I)-function. The real
function f : I ⊂ R → [0,∞) is said to be s−Q(I)-dominated function by g
on I, if ∣∣∣∣ 1

ts
f(x) +

1

(1− t)s
f(y)− f(tx+ (1− t)y)

∣∣∣∣ (4.2)

≤ 1

ts
g(x) +

1

(1− t)s
g(y)− g(tx+ (1− t)y), ∀x, y ∈ I, s ∈ [0, 1], t ∈ (0, 1).

Hermite-Hadamard type inequalities are derived for more classes of gen-
eralized convex dominated functions in [5], [17], [18], [19].

Theorem 4.1. Let h1, h2 : [0, 1] → R be two non-negative functions, g :
I ⊂ R → [0,∞) be (h1, h2)-convex functions. Let f : I ⊂ R → [0,∞) be
(g, h1, h2)-convex dominated function on I where f ∈ L1[a, b], then∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

h1
(
1
2

)
+ h2

(
1
2

)f(a+ b

2

)∣∣∣∣∣∣ (4.3)

≤ 1

b− a

b∫
a

g(x)dx− 1

h1
(
1
2

)
+ h2

(
1
2

)g(a+ b

2

)
.

Proof. Using t = 1
2
, x = µa+ (1−µ)b and y = (1−µ)a+µb where µ ∈ [0, 1]

in the definition of (g, h1, h2)-convex dominated function, we have∣∣∣∣h1(1

2

)
f(µa+ (1− µ)b) + h2

(1

2

)
f((1− µ)a+ µb)− f

(a+ b

2

)∣∣∣∣
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≤ h1

(1

2

)
g(µa+ (1− µ)b) + h2

(1

2

)
g((1− µ)a+ µb)− g

(a+ b

2

)
.

Integrating above inequality with respect to µ on [0, 1], we have∣∣∣∣∣∣
[
h1

(1

2

)
+ h2

(1

2

)] 1

b− a

b∫
a

f(x)dx− f
(a+ b

2

)∣∣∣∣∣∣
≤

[
h1

(1

2

)
+ h2

(1

2

)] 1

b− a

b∫
a

g(x)dx− g
(a+ b

2

)
.

This implies that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

h1
(
1
2

)
+ h2

(
1
2

)f(a+ b

2

)∣∣∣∣∣∣
≤ 1

b− a

b∫
a

g(x)dx− 1

h1
(
1
2

)
+ h2

(
1
2

)g(a+ b

2

)
.

This completes the proof.

Theorem 4.2. Let h1, h2 : [0, 1] → R be two non-negative functions and
g : I ⊂ R→ [0,∞) be a (h1, h2)-convex function. Let f : I ⊂ R→ [0,∞) be
(g, h1, h2)-convex dominated function on I where f ∈ L1[a, b], then∣∣∣∣∣∣f(a)

1∫
0

h1(t)dt+ f(b)

1∫
0

h2(t)dt−
1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ (4.4)

≤ g(a)

1∫
0

h1(t)dt+ g(b)

1∫
0

h2(t)dt−
1

b− a

b∫
a

g(x)dx.

Proof. Let x = a and y = b in the definition of (g, h1, h2)-convex dominated
function, we have

|h1(t)f(a) + h2(t)f(b)− f(ta+ (1− t)b)|

≤ h1(t)g(a) + h2(t)g(b)− g(ta+ (1− t)b).
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Integrating above inequalities with respect to t on [0, 1], we have∣∣∣∣∣∣f(a)

1∫
0

h1(t)dt+ f(b)

1∫
0

h2(t)dt−
1∫

0

f(ta+ (1− t)b)dt

∣∣∣∣∣∣
≤ g(a)

1∫
0

h1(t)dt+ g(b)

1∫
0

h2(t)dt−
1∫

0

g(ta+ (1− t)b)dt.

This implies that∣∣∣∣∣∣f(a)

1∫
0

h1(t)dt+ f(b)

1∫
0

h2(t)dt−
1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ g(a)

1∫
0

h1(t)dt+ g(b)

1∫
0

h2(t)dt−
1

b− a

b∫
a

g(x)dx.

This completes the proof.

Corollary 4.3. Under the conditions of Theorem 4.1 and of Theorem 4.2,
if h1(t) = t,h2(t) = 1− t, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f
(a+ b

2

)∣∣∣∣∣∣ ≤ 1

b− a

b∫
a

g(x)dx− g
(a+ b

2

)
, (4.5)

∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ g(a) + g(b)

2
− 1

b− a

b∫
a

g(x)dx. (4.6)

These inequalities were proved for the first time in [7].

Corollary 4.4. Under the conditions of Theorem 4.1 and of Theorem 4.2,
if h1(t) = ts and h2(t) = (1− t)s, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 2s−1f
(a+ b

2

)∣∣∣∣∣∣ ≤ 1

b− a

b∫
a

g(x)dx−2s−1g
(a+ b

2

)
, (4.7)

∣∣∣∣∣∣f(a) + f(b)

s+ 1
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ g(a) + g(b)

s+ 1
− 1

b− a

b∫
a

g(x)dx. (4.8)

These inequalities were derived for the first time in [13].
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Corollary 4.5. Under the conditions of Theorem 4.1 and of Theorem 4.2,
if h1(t) = 1 = h2(t), we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2
f
(a+ b

2

)∣∣∣∣∣∣ ≤ 1

b− a

b∫
a

g(x)dx− 1

2
g
(a+ b

2

)
, (4.9)

∣∣∣∣∣∣f(a) + f(b)− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ g(a) + g(b)− 1

b− a

b∫
a

g(x)dx. (4.10)

These inequalities were proved for the first time in [18].

Corollary 4.6. Under the conditions of Theorem 4.1 and of Theorem 4.2,
if h1(t) = t−1 and h2(t) = (1− t)−1, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

4
f
(a+ b

2

)∣∣∣∣∣∣ ≤ 1

b− a

b∫
a

g(x)dx− 1

4
g
(a+ b

2

)
, (4.11)

This inequality was derived for the first time in [18].

Corollary 4.7. Under the conditions of Theorem 4.1 and of Theorem 4.2,
if h1(t) = t−s and h2(t) = (1− t)−s, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2s+1
f
(a+ b

2

)∣∣∣∣∣∣ ≤ 1

b− a

b∫
a

g(x)dx− 1

2s+1
g
(a+ b

2

)
,

(4.12)∣∣∣∣∣∣f(a) + f(b)

1− s
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ g(a) + g(b)

1− s
− 1

b− a

b∫
a

g(x)dx. (4.13)

These inequalities are new.

We suggest that it may be possible to derive inequalities of Hermite-
Hadamard type in case of (k, h1, h2)-convex dominated functions, if there is
a point t in which k(t) 6= t, under suitable hypotheses on function k.
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functions, Anal. Numér. Théor. Approx., 19, (1990), 21–28
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equalities for (g, ϕh)-convex dominated functions, J. Inequal. Appl., 184, (2013)
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