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Abstract. The purpose of this paper is to establish a common
random fixed point theorem by using Ciric quasi contraction for
two random operators in the framework of cone random metric
spaces and also to obtain some random fixed point results as corol-
laries. Our results extend and generalize the corresponding recent
result from the current existing literature.
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1 Introduction

Random nonlinear analysis is an important mathematical discipline which
is mainly concerned with the study of random nonlinear operators and their
properties and is needed for the study of various classes of random equations.
The study of random fixed point theory was initiated by the Prague school of
Probabilities in the 1950s [12,13,28]. Common random fixed point theorems
are stochastic generalization of classical common fixed point theorems. The
machinery of random fixed point theory provides a convenient way of mod-
eling many problems arising from economic theory (see e.g. [22]) and refer-
ences mentioned therein. Random methods have revolutionized the financial
markets. The survey article by Bharucha-Reid [9] attracted the attention
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of several mathematicians and gave wings to the theory. Itoh [17] extended
Spacek’s and Hans’s theorem to multivalued contraction mappings (see, also
[2], [3], [23], [24]). Now this theory has become the full fledged research
area and various ideas associated with random fixed point theory are used to
obtain the solution of nonlinear random system (see [6–8,14,26]). Papageor-
giou [20, 21], Beg [4, 5] studied common random fixed points and random
coincidence points of a pair of compatible random operators and proved fixed
point theorems for contractive random operators in Polish spaces.

In 2007, Huang and Zhang [15] introduced the concept of cone metric
spaces and establish some fixed point theorems for contractive mappings in
normal cone metric spaces. Subsequently, several other authors [1,16,25,27]
studied the existence of fixed points and common fixed points of mappings
satisfying contractive type condition on a normal cone metric space.

In 2008, Rezapour and Hamlbarani [25] omitted the assumption of nor-
mality in cone metric space, which is a milestone in developing fixed point
theory in cone metric space. Recently, Mehta et al. [19] introduced the con-
cept of cone random metric space and proved the existence of random fixed
point under weak contraction condition in the setting of cone random metric
spaces.

2 Preliminaries

Definition 2.1. (See [19]) Let (E, τ) be a topological vector space. A subset
P of E is called a cone whenever the following conditions hold:

(c1) P is closed, nonempty and P 6= {0};

(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;

(c3) If x ∈ P and −x ∈ P implies x = 0.

For a given cone P ⊂ E, we define a partial ordering ≤ with respect to
P by x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that
x ≤ y but x 6= y, while x� y will stand for y− x ∈ P 0, where P 0 stands for
the interior of P .

Definition 2.2. (See [15, 29]) Let X be a nonempty set. Suppose that the
mapping d : X ×X → E satisfies:
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(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [15] or K-metric [29] on X and (X, d) is
called a cone metric space [15].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Definition 2.3. (See [15]) Let (X, d) be a cone metric space. We say that
{xn} is:

(i) a Cauchy sequence if for every ε in E with 0� ε, then there is an N
such that for all n,m > N , d(xn, xm)� ε;

(ii) a convergent sequence if for every ε in E with 0 � ε, then there is
an N such that for all n > N , d(xn, x)� ε for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence
in X is convergent in X.

In the following (X, d) will stands for a cone metric space with respect to
a cone P with P 0 6= ∅ in a real Banach space E and ≤ is partial ordering in
E with respect to P .

Definition 2.4. (Measurable function) (See [19]) Let (Ω,Σ) be a mea-
surable space with Σ-a sigma algebra of subsets of Ω and M be a nonempty
subset of a metric space X = (X, d). Let 2M be the family of nonempty
subsets of M and C(M) the family of all nonempty closed subsets of M . A
mapping G : Ω → 2M is called measurable if for each open subset U of M ,
G−1(U) ∈ Σ, where G−1(U) =

{
ω ∈ Ω : G(ω) ∩ U 6= ∅

}
.

Definition 2.5. (Measurable selector) (See [19]) A mapping ξ : Ω→ M
is called a measurable selector of a measurable mapping G : Ω → 2M if ξ is
measurable and ξ(ω) ∈ G(ω) for each ω ∈ Ω.

Definition 2.6. (Random operator) (See [19]) The mapping T : Ω×M →
X is said to be a random operator if and only if for each fixed x ∈ M , the
mapping T (., x) : Ω→ X is measurable.
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Definition 2.7. (Continuous random operator) (See [19]) A random
operator T : Ω×M → X is said to be continuous random operator if for each
fixed x ∈M and ω ∈ Ω, the mapping T (ω, .) : X → X is continuous.

Definition 2.8. (Random fixed point) (See [19]) A measurable mapping
ξ : Ω→ M is a random fixed point of a random operator T : Ω×M → X if
and only if T (ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

Definition 2.9. (Cone Random Metric Space) (See [19]) Let M be a
nonempty set and the mapping d : Ω×M → P , where P is a cone, ω ∈ Ω be
a selector, satisfy the following conditions:

(i) d(x(ω), y(ω)) ≥ 0 and d(x(ω), y(ω)) = 0 if and only if x(ω) = y(ω)
for all (x(ω), y(ω)) ∈ Ω×M ;

(ii) d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈M , ω ∈ Ω and x(ω), y(ω)
∈ Ω×M ;

(iii) d(x(ω), y(ω)) ≤ d(x(ω), z(ω)) + d(z(ω), y(ω)) for all x, y, z ∈M and
ω ∈ Ω a selector;

(iv) for any x, y ∈ M , ω ∈ Ω, d(x(ω), y(ω)) is non-increasing and left
continuous.

Then d is called a cone random metric on M and (M,d) is called a cone
random metric space.

Definition 2.10. Let (X, d) be a metric space. A mapping T : X → X is
called an a-contraction if

d(Tx, Ty) ≤ a d(x, y) for all x, y ∈ X, (2.1)

where a ∈ (0, 1).

Definition 2.11. The mapping T is called Kannan contraction mapping [18]
if there exists b ∈ (0, 1

2
) such that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)] for all x, y ∈ X. (2.2)

Definition 2.12. The mapping T is called Chatterjea contraction mapping
[11] if there exists c ∈ (0, 1

2
) such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)] for all x, y ∈ X. (2.3)
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Combining these three definitions, Zamfirescu [30] proved the following
important result.

Theorem Z. Let (X, d) be a complete metric space and T : X → X
a mapping for which there exists the real number a, b and c satisfying
a ∈ (0, 1), b, c ∈ (0, 1

2
) such that for any pair x, y ∈ X, at least one of

the following conditions holds:

(z1) d(Tx, Ty) ≤ a d(x, y),

(z2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(z3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}∞n=0 de-
fined by xn+1 = Txn, n = 0, 1, 2, . . . converges to p for any arbitrary but
fixed x0 ∈ X.

An operator T which satisfies at least one of the contractive conditions
(z1), (z2) and (z3) is called a Zamfirescu operator or a Z-operator.

The conditions (z1) - (z3) can be written in the following equivalent form

d(Tx, Ty) ≤ h max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,

d(x, Ty) + d(y, Tx)

2

}
, (2.4)

for all x, y ∈ X; 0 < h < 1, has been obtained by Ciric [10] in 1974.

A mapping satisfying (2.4) is commonly called Ciric quasi contraction. It
is obvious that each of the conditions (z1) - (z3) implies (2.4).

The purpose of this paper is to establish a common random fixed point
theorem for two random operators by using condition (2.4) in the framework
of cone random metric spaces and also to obtain some random fixed point
results as corollaries.
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3 Main Results

In this section we shall prove common random fixed point theorems under
contractive condition (2.4) in the framework of cone random metric spaces.

Theorem 3.1. Let (X, d) be a complete cone random metric space with re-
spect to a cone P and let M be a nonempty separable closed subset of X.
Let S and T be two continuous random operators defined on M such that for
ω ∈ Ω, S(ω, .), T (ω, .) : Ω×M →M satisfying the condition

d(S(x(ω)), T (y(ω))) ≤ h max
{
d(x(ω), y(ω)),

d(x(ω), S(x(ω))) + d(y(ω), T (y(ω)))

2
,

d(x(ω), T (y(ω))) + d(y(ω), S(x(ω)))

2

}
, (3.1)

for all x, y ∈ X; 0 < h < 1 and ω ∈ Ω. Then S and T have a unique common
random fixed point in X.

Proof. For each x0(ω) ∈ Ω×X and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω)
∈ Ω × X such that x1(ω) = S(x0(ω)) and x2(ω) = T (x1(ω)). In general
we define sequence of elements of X such that x2n+1(ω) = S(x2n(ω)) and
x2n+2(ω) = T (x2n+1(ω)). Then from (3.1), we have

d(x2n+1(ω), x2n(ω)) = d(S(x2n(ω)), T (x2n−1(ω)))

≤ h max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), S(x2n(ω))) + d(x2n−1(ω), T (x2n−1(ω)))

2
,

d(x2n(ω), T (x2n−1(ω))) + d(x2n−1(ω), S(x2n(ω)))

2

}
= h max

{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))

2
,

d(x2n(ω), x2n(ω)) + d(x2n−1(ω), x2n+1(ω))

2

}



Vol. LIII (2015) Random fixed point theorems for Ciric quasi . . . . . . 169

= h max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))

2
,

d(x2n−1(ω), x2n+1(ω))

2

}
= h max

{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))

2
,

d(x2n−1(ω), x2n(ω)) + d(x2n(ω), x2n+1(ω))

2

}
. (3.2)

Since for non-negative real numbers a and b, we have

a+ b

2
≤ max{a, b}. (3.3)

Therefore, we have

d(x2n(ω), x2n+1(ω)) + d(x2n−1(ω), x2n(ω))

2
≤ max

{
d(x2n+1(ω), x2n(ω)),

d(x2n(ω), x2n−1(ω))
}
. (3.4)

Using (3.4) in (3.2), we have

d(x2n+1(ω), x2n(ω)) ≤ h max
{
d(x2n(ω), x2n−1(ω)),

d(x2n+1(ω), x2n(ω)), d(x2n(ω), x2n−1(ω)),

d(x2n+1(ω), x2n(ω)), d(x2n(ω), x2n−1(ω))
}

≤ h d(x2n(ω), x2n−1(ω)). (3.5)

Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ h d(x2n−1(ω), x2n−2(ω)).

Hence

d(x2n+1(ω), x2n(ω)) ≤ h2 d(x2n−1(ω), x2n−2(ω)).

On continuing this process, we get

d(x2n+1(ω), x2n(ω)) ≤ h2n d(x1(ω), x0(ω)).
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Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + . . .

+d(xm+1(ω), xm(ω))

≤ (hn−1 + hn−2 + · · ·+ hm) d(x1(ω), x0(ω))

≤
( hm

1− h

)
d(x1(ω), x0(ω)).

Let 0� ε be given. Choose a natural number N such that(
hm

1−h

)
d(x1(ω), x0(ω))� ε for every m ≥ N . Thus

d(xn(ω), xm(ω)) ≤
( hm

1− h

)
d(x1(ω), x0(ω))� ε,

for every n > m ≥ N .
This shows that the sequence {xn(ω)} is a Cauchy sequence in Ω × X.

Since (X, d) is complete, there exists z(ω) ∈ Ω×X such that xn(ω)→ z(ω)
as n→∞. Hence, we have

d(z(ω), S(z(ω))) ≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω), T (x2n+1(ω))

≤ d(z(ω), x2n+2(ω))

+h max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))) + d(x2n+1(ω), T (x2n+1(ω)))

2
,

d(z(ω), T (x2n+1(ω))) + d(x2n+1(ω), S(z(ω)))

2

}

= d(z(ω), x2n+2(ω))

+h max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))

2
,

d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))

2

}
.

Taking the limit as n→∞ in the above inequality, we get

d(z(ω), S(z(ω))) ≤ h

2
d(z(ω), S(z(ω)))

≤ h d(z(ω), S(z(ω))),
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or,

(1− h)d(z(ω), S(z(ω))) ≤ 0⇒ d(z(ω), S(z(ω))) ≤ 0, since 0 < 1− h < 1.

Thus −d(z(ω), S(z(ω))) ∈ P . But d(z(ω), S(z(ω))) ∈ P . Therefore by
Definition 2.1(c3), we have d(z(ω), S(z(ω)) = 0 and so S(z(ω)) = z(ω).

In an exactly similar way we can prove that for all ω ∈ Ω, T (z(ω)) = z(ω).
Hence S(z(ω)) = T (z(ω)) = z(ω). This shows that z(ω) is a common ran-
dom fixed point of S and T .

Uniqueness
Let v(ω) be another random fixed point common to S and T , that is, for

ω ∈ Ω, S(v(ω)) = T (v(ω)) = v(ω). Then for ω ∈ Ω, we have

d(z(ω), v(ω)) = d(S(z(ω)), T (v(ω)))

≤ h max
{
d(z(ω), v(ω)),

d(z(ω), S(z(ω))) + d(v(ω), T (v(ω)))

2
,

d(z(ω), T (v(ω))) + d(v(ω), S(z(ω)))

2

}

= h max
{
d(z(ω), v(ω)), 0, d(z(ω), v(ω))

}
≤ h d(z(ω), v(ω))

< d(z(ω), v(ω)), since 0 < h < 1,

a contradiction. Hence z(ω) = v(ω) and so z(ω) is a unique common random
fixed point of S and T . This completes the proof.

Corollary 3.2. Let (X, d) be a complete cone random metric space with
respect to a cone P and let M be a nonempty separable closed subset of X.
Let T be a continuous random operator defined on M such that for ω ∈ Ω,
T (ω, .) : Ω×M →M satisfying the condition

d(T (x(ω)), T (y(ω))) ≤ h max
{
d(x(ω), y(ω)),

d(x(ω), T (x(ω))) + d(y(ω), T (y(ω)))

2
,

d(x(ω), T (y(ω))) + d(y(ω), T (x(ω)))

2

}
,

for all x, y ∈ X; 0 < h < 1 and ω ∈ Ω. Then T has a unique random fixed
point in X.
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Proof. The proof of the Corollary 3.2 immediately follows by taking S = T
in Theorem 3.1. This completes the proof.

Since each of the conditions (z1) - (z3) included in (2.4). Hence from
Theorem 3.1, we obtain the following results as corollaries by taking S = T .

Corollary 3.3. Let (X, d) be a complete cone random metric space with
respect to a cone P and let M be a nonempty separable closed subset of X. Let
T be a random operator defined on M such that for ω ∈ Ω, T (ω, .) : Ω×M →
M satisfying the condition

d(T (x(ω)), T (y(ω))) ≤ a d(x(ω), y(ω)),

for all x, y ∈ X, a ∈ (0, 1) and ω ∈ Ω. Then T has a unique random fixed
point in X.

Corollary 3.4. ([19], Corollary 3.2) Let (X, d) be a complete cone random
metric space with respect to a cone P and let M be a nonempty separable
closed subset of X. Let T be a continuous random operator defined on M
such that for ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition

d(T (x(ω)), T (y(ω))) ≤ b [d(x(ω), T (x(ω))) + d(y(ω), T (y(ω)))]

for all x, y ∈ X, b ∈ (0, 1
2
) and ω ∈ Ω. Then T has a unique random fixed

point in X.

Corollary 3.5. ([19], Corollary 3.3) Let (X, d) be a complete cone random
metric space with respect to a cone P and let M be a nonempty separable
closed subset of X. Let T be a continuous random operator defined on M
such that for ω ∈ Ω, T (ω, .) : Ω×M →M satisfying the condition

d(T (x(ω)), T (y(ω))) ≤ c [d(x(ω), T (y(ω))) + d(y(ω), T (x(ω)))]

for all x, y ∈ X, c ∈ (0, 1
2
) and ω ∈ Ω. Then T has a unique random fixed

point in X.

Corollary 3.6. Let (X, d) be a complete cone random metric space with
respect to a cone P and let M be a nonempty separable closed subset of X.
Let T be a continuous random operator defined on M such that for ω ∈ Ω,
T (ω, .) : Ω×M →M satisfying a Z-operator. Then T has a unique random
fixed point in X.

Remark 3.1. Theorem 3.1 extends Theorem Z of [30] to the case of more
general contractive condition and from complete metric space to cone random
metric space.
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Remark 3.2. Our results also extend and generalize the corresponding re-
sults of Mehta et al. [19] (Bull. Cal. Math. Soc. 103(4) (2011), 303-310)
and some others from the current existing literature.

Example 3.1. Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and
Σ be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X =
[0,∞) and define a mapping d : (Ω×X)× (Ω×X)→M by d(x(ω), y(ω)) =
|x(ω) − y(ω)|. Then (X, d) is a cone random metric space. Define random
operator T form (Ω × X) to X as T (ω, x) = 1−ω2+2x

3
. Also sequence of

mapping ξn : Ω → X is defined by ξn(ω) = (1 − ω2)1+(1/n) for every ω ∈ Ω
and n ∈ N . Define measurable mapping ξ : Ω → X as ξ(ω) = (1 − ω2)
for every ω ∈ Ω. Hence (1 − ω2) is the random fixed point of the random
operator T .

Example 3.2. Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and
Σ be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X =
[0,∞) and define a mapping d : (Ω×X)× (Ω×X)→M by d(x(ω), y(ω)) =
|x(ω) − y(ω)|. Then (X, d) is a cone random metric space. Define random
operators S and T form (Ω × X) to X as S(ω, x) = 1−ω2+x

2
and T (ω, x) =

1−ω2+2x
3

. Also sequence of mapping ξn : Ω → X is defined by ξn(ω) = (1 −
ω2)1+(1/n) for every ω ∈ Ω and n ∈ N . Define measurable mapping ξ : Ω→ X
as ξ(ω) = (1 − ω2) for every ω ∈ Ω. Hence (1 − ω2) is a common random
fixed point of the random operators S and T .
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