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Strong convergence of the Ishikawa iteration

for Lipschitz α-hemicontractive mappings

Micah Okwuchukwu Osilike and Anthony Chibuike Onah

Abstract. A new class of α-hemicontractive maps T for which the
strong convergence of the Ishikawa iteration algorithm to a fixed
point of T is assured is introduced and studied. The study is a
continuation of a recent study of a new class of α-demicontractive
mappings T by L. Mǎruşter and S.̧ Mǎruşter, Mathematical and
Computer Modeling 54 (2011) 2486-2492 in which they proved
strong convergence of the Mann iteration scheme to a fixed point
of T . Our class of α-hemicontractive maps is more general than
the class of α-demicontractive maps. No compactness assumption
is imposed on the operator or it’s domain, and no additional re-
quirement is imposed on the set of fixed points.
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1 Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ||.||.
Let C be a nonempty closed convex subset of H.

Definition 1.1. A mapping T : C → C is said to be demicontractive (see
for example [1]) if F (T ) := {x ∈ C : Tx = x} 6= ∅ and there exists k ∈ [0, 1)
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such that

||Tx− p||2 ≤ ||x− p||2 + k||x− Tx||2, ∀ x ∈ C and ∀p ∈ F (T ). (1.1)

The class of demicontractive maps coincides with the class of mappings
satisfying condition (A) which was studied by S.̧ Mǎruşter [2, 3].

Definition 1.2. T : C → C is said to satisfy condition (A) if F (T ) 6= ∅ and
there exists λ > 0 such that

〈x− Tx, x− p〉 ≥ λ||x− Tx||2, ∀ x ∈ C and ∀p ∈ F (T ). (1.2)

Definition 1.3. T is said to be hemicontractive (see for example [4]) if k = 1
in (1.1).

The class of demicontractive maps is a proper subclass of the class of
hemicontractive maps (see for example [4]). The classes of demicontractive
maps and hemicontractive maps have been studied by many authors (see for
example [1–14]).

The Mann iteration scheme {xn}∞n=1 generated from an arbitrary x1 ∈ C
by

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.3)

where the control sequence {αn}∞n=1 is a real sequence in (0, 1] satisfying some
appropriate conditions has been used by several authors for the approxima-
tion of fixed points of demicontractive maps. It is now well known (see for
example [15]) that Mann iteration scheme may not in general converge to
a fixed point of a hemicontractive map in Hilbert spaces. For hemicontrac-
tive maps, the Ishikawa iteration sequence {xn}∞n=1 generated from arbitrary
x1 ∈ C by

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1, (1.4)

where {αn} and {βn} are control sequences in [0, 1] is usually applicable.
Demicontractivity of T alone is not sufficient for the convergence of the

Mann iteration to a fixed point of T even in finite dimensional spaces (see
for example [17]). Some additional smoothness properties of T are necessary,
like continuity or demiclosedness principle.

Definition 1.4. T : C → H is said to be demiclosed at p if whenever
{xn}∞n=1 is a sequence in C which converges weakly to x∗ in C and {Txn}∞n=1

converges strongly to p, then Tx∗ = p.

In finite dimensional spaces, Mǎruşter proved the following:
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Theorem 1.1. ([2]) Let <m be the Euclidean m-dimensional space and let
T : <m → <m be a nonlinear mapping satisfying the conditions:
(i) (I − T ) is demiclosed at 0;
(ii) T is demicontractive with constant k, or, equivalently T satisfies condi-

tion (A) with λ = (1−k)
2

;
(iii) 0 < a < αn ≤ b < 2λ = 1− k. Then the Mann iteration sequence {xn}
converges to a point of F (T ) for any starting point x0 ∈ <m.

In infinite dimensional spaces, the two conditions (demicontractivity and
demiclosedness principle) are not sufficient for strong convergence (see for ex-
ample [3,17]). The two conditions however ensure weak convergence of {xn}
to a fixed point of T in real Hilbert spaces and some more general Banach
spaces (see for example [1,3,8]). In order to obtain strong convergence, some
additional conditions or some modifications of the standard Mann iteration
are necessary. Such modifications have been considered by several authors
(see for example [3, 5, 6, 8, 10–12,18–20]).

In [3] the existence of a nonzero solution h ∈ H, h 6= 0, of the variational
inequality

〈x− Tx, h〉 ≤ 0, ∀x ∈ H (1.5)

is required as an additional condition for strong convergence. The results of
[3] has been extended by some authors to either more general Banach spaces
or to the Ishikawa iteration scheme (see for example [8, 11–13]). We note
however that the existence of a nonzero solution of the variational inequality
(1.5) exists only in very particular cases.

In exploring more conditions that may be less restrictive than the con-
dition of the existence of a nonzero solution of (1.5), L. Mǎruşter and S.̧
Mǎruşter [17] introduced a new concept of demicontractivity called
α-demicontractivity.

Definition 1.5. A mapping T : C → C is said to be α-demicontractive [17]
if F (T ) 6= ∅ and there exist λ > 0, α ≥ 1 such that

〈x− Tx, x− αp〉 ≥ λ||x− Tx||2, ∀x ∈ C and ∀p ∈ F (T ) (1.6)

Clearly (1.6) is equivalent to

||Tx− αp||2 ≤ ||x− αp||2 + k||x− Tx||2, ∀x ∈ C and ∀p ∈ F (T ), (1.7)

where k = 1−2λ ∈ [0, 1). It is easy to observe that if T is α-demicontractive,
then αp ∈ F (T ) ∀p ∈ F (T ) such that αp remains in the domain D(T ) of T .
Since if T is demicontractive, then F (T ) is closed and convex, it follows that if
T is both demicontractive (1-demicontractive) and α-demicontractive, α > 1
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then the line segment (1−t)p+tαp, t ∈ [0, 1], is contained in F (T ), ∀p ∈ F (T )
such that αp remains in the domain D(T ) of T . In [17] an example of an
α-demicontractive mapping with α > 1 which is not demicontractive is given
and it is easy to observe that there are demicontractive (1-demicontractive)
maps which are not α-demicontractive for α > 1 (see for example ([4], Exam-
ple 2.2)). For other properties of this new class of demicontractive mappings,
the reader may consult [17].

In [17] the authors proved the following strong convergence theorem:

Theorem 1.2 ([17] Theorem 5). Let C be a closed convex subset of a real
Hilbert space H and let let T : C → C be a demicontractive mapping with
constant k, or, equivalently T satisfies condition (A) with λ = (1−k)

2
. Let T

be α-demicontractive for some α > 1 and let (I − T ) be demiclosed at 0. Let
{αn}∞n=1 be a real sequence in [0, 1] which satisfy the condition 0 < a ≤ αn ≤
b < 2λ = 1−k. Then for suitable x0 ∈ C, the sequence {xn}∞n=1 of the Mann
iteration sequence given by (1.3) converges strongly to a fixed point of T .

It is our purpose in this paper to study the more general class of α-
demicontractive mappings for which k = 1 and which we call α-hemicontractive
mappings following the usual terminology. For this more general class of
mapppings, we prove strong convergence theorem similar to Theorem 1.2
using the Ishikawa iteration scheme.

2 Main Results

Definition 2.1. We say that a mapping T : C → C is α-hemicontractive if
F (T ) 6= ∅ and there exists α ≥ 1 such that

||Tx− αp||2 ≤ ||x− αp||2 + ||x− Tx||2, ∀x ∈ C and ∀p ∈ F (T ). (2.1)

Observe that (2.1) is equivalent to

〈x− Tx, x− αp〉 ≥ 0, ∀x ∈ C and ∀p ∈ F (T ). (2.2)

We discuss the following examples.

Example 2.1. ([4], Example 2.4) Let < denote the reals with the usual
norm and let C = [0, 1]. Define T : C → C by

Tx =

{
1
2
, x ∈ [0, 1

2
],

0, x ∈ (1
2
, 1].
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Then T is hemicontractive (1-hemicontractive) but not α-hemicontractive
for some α > 1. T is neither demicontractive (1-demicontractive) nor α-
demicontractive for some α > 1.

Example 2.2. Let < denote the reals with the usual norm and let C =
[1, 4] ⊂ <. Define T : C → C by;

Tx =


x2, 1 ≤ x ≤ 2

1, 2 < x ≤ 4

Then T is 2−hemicontractive (i.e., T is α-hemicontractive with α = 2).
T is not hemicontractive (1-hemicontractive).

Example 2.3. ([21]) Let < denote the reals with the usual norm and let
C = (−∞, 1). Define T : C → C by

Tx =

{
x

1−x , x ∈ (−∞, 0],
x

x−1 , x ∈ [0, 1).

Then T is hemicontractive (1-hemicontractive) and is also α-hemicontractive
for all α > 1. T is neither demicontractive (1-demicontractive) nor α-
demicontractive for some α > 1.

Remark 2.1. It is easy to verify that if T is hemicontractive and

〈x− Tx, p〉 ≤ 0, ∀ (x, p) ∈ C × F (T ),

then T is α-hemicontractive for all α > 1.

In [13] the authors proved the following:

Theorem 2.1. ([13], Theorem 1.) Let H be a real Hilbert space and C
a nonempty closed convex subset of H. Let T : C → C be a Lipschitz
hemicontractive mapping. Let {an}, {bn}, {cn}, {a′n}, {b′n} and {c′n} be real
sequences in [0, 1] satisfying the conditions:
(i) an + bn + cn = a′n + b′n + c′n = 1, n ≥ 1,
(ii) 0 < ε ≤ b′n ≤ bn ≤ b < 1, ∀n ≥ 1, for some ε > 0 and for some b ∈
(0, 1

[(
√
1+L2)+1]

),

(iii)
∑∞

n=1 cn <∞,
∑∞

n=1 c
′
n <∞.

Let {un} and {vn} be bounded sequences in C and let {xn} be the sequence
generated from an arbitrary x1 ∈ C by

xn+1 = a′nxn + b′nT [anxn + bnTxn + cnun] + c′nvn, n ≥ 1. (2.3)

Then lim
n→∞

||xn − Txn|| = 0.
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Remark 2.2. If in Theorem 2.1 (I − T ) is demiclosed at 0, then {xn} con-
verges weakly to a fixed point of T (see for example Theorem 2 of [13]).

As in the case of demicontractive maps, hemicontractiveness and the
demiclosedness principle are not sufficient to obtain strong convergence of
the Ishikawa scheme to a fixed point of T . Additional conditions are re-
quired on the map and or the subset C. In [22] the authors assumed that the
interior of F (T ) is nonempty (int(F (T )) 6= ∅) to achieve strong convergence.
This appears very restrictive since even in < with the usual norm, Lipschitz
hemicontractive maps with finite number of fixed points do not enjoy this
condition that int(F (T )) 6= ∅.

Remark 2.3. The assumption that T is demicontractive (1 - demicontrac-
tive) in Theorem 1.2 is to ensure the weak convergence of {xn} to a point
p ∈ F (T ). This assumption appears unnecessary since the following argu-
ment shows that weak convergence of {xn} to a point p ∈ F (T ) is guaranteed
if T is α-demicontractive for some α > 1. If T : C → C is α-demicontractive
with some α > 1, let p ∈ F (T ) be arbitrary. Then using the well known
identity

||(1− t)x+ ty||2 = (1− t)||x||2 + t||y||2 − t(1− t)||x− y||2 (2.4)

which holds for all x, y in H and for all t in [0, 1] we obtain

||xn+1 − αp||2 = ||(1− αn)(xn − αp) + αn(Txn − αp)||2

= (1− αn)||xn − αp||2 + αn||Txn − αp||2

−αn(1− αn)||xn − Txn||2

≤ ||xn − αp||2 − αn[1− αn − k]||xn − Txn||2

≤ ||xn − αp||2 − a[1− k − b]||xn − Txn||2. (2.5)

It follows from (2.5) that lim
n→∞

||xn − αp|| exists for all p ∈ F (T ), and

lim
n→∞

||xn − Txn|| = 0. Since {xn} is bounded, it has a subsequence say

{un}∞n=1 which converges weakly to a point u ∈ C. Since lim
n→∞

||un−Tun|| = 0

and (I − T ) is demiclosed at 0, then u ∈ F (T ). To conclude that {xn} con-
verges weakly to u, it suffices to show that if {xn} has any other subsequence
{vn}∞n=1 which converges weakly to v, then u = v. Observe that we also
have that v ∈ F (T ) and thus lim

n→∞
||xn − αu|| and lim

n→∞
||xn − αv|| exist.

Let lim
n→∞

||xn−αu|| = d1 and lim
n→∞

||xn−αv|| = d2 and consider the sequence

{an}∞n=1 given by an = ||un−αu||2−||vn−αu||2−||un−αv||2+||vn−αv||2, n ≥
1. Observe that lim

n→∞
an = 0. Observe also that an = −2α〈un− vn, u− v〉 and
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the weak convergence of {un} and {vn} to u and v respectively imply that
lim
n→∞

an = −α||u− v||2. Hence −α||u− v||2 = 0 and u = v.

We now prove the following.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and let T : C → C be an L-Lipschitzian and α-hemicontractive
mapping with α > 1. Let {αn} and {βn} be real sequences in [0, 1] which
satisfy the condition 0 < ε ≤ αn ≤ βn ≤ b < 1 for some ε > 0 and for some
b ∈ (0, 1√

1+L2+1
). Let (I − T ) be demiclosed at 0. Then for suitable x1 ∈ K,

the sequence {xn} given by

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1 (2.6)

converges strongly to a point in F (T ).

Proof. Let Gnxn := T [(1 − βn)xn + βnTxn], n ≥ 1. Then for all p ∈ F (T )
we have

||Gnxn − αp||2 = ||T [(1− βn)xn + βnTxn]− αp||2

≤ ||(1− βn)xn + βnTxn − αp||2

+||(1− βn)xn + βnTxn −Gnxn||2

= ||(1− βn)(xn − αp) + βn(Txn − αp)||2

+||(1− βn)(xn −Gnxn)

+βn(Txn − T [(1− βn)xn + βnTxn])||2

= (1− βn)||xn − αp||2 + βn||Txn − αp||2

−βn(1− βn)||xn − Txn||2 + (1− βn)||xn −Gnxn||2

+βn||Txn − T [(1− βn)xn + βnTxn]||2

−βn(1− βn)||xn − Txn||2

≤ ||xn − αp||2 + βn||xn − Txn||2 − βn(1− βn)||xn − Txn||2

+(1− βn)||xn −Gnxn||2 + L2β3
n||xn − Txn||2

−βn(1− βn)||xn − Txn||2

= ||xn − αp||2 + (1− βn)||xn −Gnxn||2

−βn[1− 2βn − β2
nL

2]||xn − Txn||2. (2.7)

Using the condition on {βn} in (2.7) we obtain

||Gnxn − αp||2 ≤ ||xn − αp||2 + (1− βn)||xn −Gnxn||2. (2.8)
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It follows easily from (2.8) that

〈xn −Gnxn, xn − αp〉 ≥
βn
2
||xn −Gnxn||2. (2.9)

Using (2.7) we obtain for arbitrary p ∈ F (T ) that

||xn+1 − αp||2 = ||(1− αn)(xn − αp) + αn(Gnxn − αp)||2

= (1− αn)||xn − αp||2 + αn||Gnxn − αp||2

−αn(1− αn)||xn −Gnxn||2

≤ (1− αn)||xn − αp||2 + αn

[
||xn − αp||2

+(1− βn)||xn −Gnxn||2

−βn(1− 2βn − β2
nL

2)||xn − Txn||2
]

−αn(1− αn)||xn −Gnxn||2

= ||xn − αp||2 − αn(βn − αn)||xn −Gnxn||2

−αnβn[1− 2βn − β2
nL

2]||xn − Txn||2

≤ ||xn − αp||2 − αnβn[1− 2βn − β2
nL

2]||xn − Txn||2

≤ ||xn − αp||2 − ε2[1− 2b− b2L2]||xn − Txn||2. (2.10)

It follows from (2.10) that lim
n→∞

||xn − αp|| exists for all p ∈ F (T ), and

lim
n→∞

||xn − Txn|| = 0.

Thus as in Remark 2.3 we obtain that {xn} converges weakly to some
p ∈ F (T ). We prove that

〈xn − p, p〉 ≥
1

2(α− 1)
||xn − p||2, ∀n ≥ 1. (2.11)

We choose x1 ∈ C (see for example [17]) such that

〈x1 − p, p〉 ≥
1

2(α− 1)
||x1 − p||2. (2.12)

Suitable x1 ∈ C exists since if PC : H → C is the proximity map (projection
map from H onto C), then for λ ∈ < such that 1 < λ ≤ 2α − 1, we can
choose x1 = PC(λp).

Then since the proximity map, PC is firmly nonexpansive (i.e., ‖PCx −
PCy‖2 ≤ 〈PCx− PCy, x− y〉), it is easy to verify that x1 satisfies (2.12).
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The proof of (2.11) now follows by induction since if we assume (2.11),
then from (2.9) and α > 1 we obtain

〈xn −Gnxn, xn − αp〉 ≥
βn
2
||xn −Gnxn||2 ≥

αn

2
||xn −Gnxn||2

⇒ 〈xn −Gnxn, xn − p− (α− 1)p〉 ≥ αn

2
||xn −Gnxn||2

⇒ −(α− 1)〈xn −Gnxn, p〉 ≥ −〈xn −Gnxn, xn − p〉
+
αn

2
||xn −Gnxn||2

⇒ −〈xn −Gnxn, p〉 ≥ −
1

(α− 1)
〈xn −Gnxn, xn − p〉

+
αn

2(α− 1)
||xn −Gnxn||2

⇒ −αn〈xn −Gnxn, p〉 ≥ −
αn

(α− 1)
〈xn −Gnxn, xn − p〉

+
α2
n

2(α− 1)
||xn −Gnxn||2,

and with the inductive hypothesis (2.11) we obtain

〈xn − p− αn(xn −Gnxn), p〉 ≥ 1

2(α− 1)
||xn − p||2

− αn

(α− 1)
〈xn −Gnxn, xn − p〉

+
α2
n

2(α− 1)
||xn −Gnxn||2,

⇒ 〈(1− αn)xn + αnGnxn − p, p〉 ≥
1

2(α− 1)

[
||xn − p||2

− 2αn〈xn −Gnxn, xn − p〉

+ α2
n||xn −Gnxn||2

]
⇒ 〈(1− αn)xn + αnGnxn − p, p〉 ≥

1

2(α− 1)
||xn − p− αn(xn −Gnxn)||2

⇒ 〈xn+1 − p, p〉 ≥
1

2(α− 1)
||xn+1 − p||2.

Since {xn} converges weakly to p, we have that lim
n→∞

||xn − p|| = 0.

Remark 2.4. If C is a nonempty closed convex subset of a real Hilbert space
H and T : C → C is an L-Lipschizian α-hemicontractive map, α ≥ 1, then
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αp ∈ F (T ) for all p ∈ F (T ) such that αp remains in the domain D(T ) of T .
Furthermore, since if T is L-Lipschtzian hemicontractive, then F (T ) is closed
and convex, it follows that if T is both L-Lipschitzian hemictractive and α-
hemicontractive, α > 1, then the line segment (1 − t)p + t(αp), t ∈ [0, 1],
is contained in F (T ) for all p ∈ F (T ) such that αp remains in the domain
D(T ) of T .
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